

4

Functions for
All Subtasks

4.1

void

Functions 176

Definitions of

void

 Functions 177

Programming Example:

Converting
Temperatures 179

return

 Statements in

void

 Functions 179

4.2 Call-by-Reference Parameters 184

A First View of Call-by-Reference 184
Call-by-Reference in Detail 188

Programming Example:

The

swap_values

Function 191

Mixed Parameter Lists 192

Programming Tip:

What Kind of Parameter to Use 194

Pitfall:

Inadvertent Local Variables 194

4.3 Using Procedural Abstraction 198

Functions Calling Functions 198
Preconditions and Postconditions 199

Case Study:

Supermarket Pricing 202

4.4 Testing and Debugging Functions 208

Stubs and Drivers 209

Chapter Summary 214
Answers to Self-Test Exercises 215
Programming Projects 219

CH04.fm Page 175 Thursday, July 24, 2003 3:18 PM

4

Functions for
All Subtasks

Everything is possible.

C

OMMON

MAXIM

Introduction

The top-down design strategy discussed in Chapter 3 is an effective way to design an
algorithm for a program. You divide the program’s task into subtasks and then imple-
ment the algorithms for these subtasks as functions. Thus far, we have seen how to
define functions that start with the values of some arguments and return a single
value as the result of the function call. A subtask that computes a single value is a
very important kind of subtask, but it is not the only kind. In this chapter we will
complete our description of C++ functions and present techniques for designing
functions that perform other kinds of subtasks.

Prerequisites

You should read Chapters 2 and 3 before reading this chapter.

4.1

void

Functions

Subtasks are implemented as functions in C++. The functions discussed in Chapter 3
always return a single value, but there are other forms of subtasks. A subtask might
produce several values or it might produce no values at all. In C++, a function must
either return a single value or return no values at all. As we will see later in this
chapter, a subtask that produces several different values is usually (and perhaps
paradoxically) implemented as a function that returns no value. For the moment,
however, let us avoid that complication and focus on subtasks that intuitively
produce no values at all and let us see how these subtasks are implemented. A
function that returns no value is called a

void

 function.

 For example, one typical
subtask for a program is to output the results of some calculation. This subtask
produces output on the screen, but it produces no values for the rest of the program
to use. This kind of subtask would be implemented as a

void

 function.

void functions
return no value

CH04.fm Page 176 Thursday, July 24, 2003 3:18 PM

4.1

void

 Functions

177

Definitions of

void

 Functions

In C++ a

void

 function is defined in a way similar to the way that functions that
return a value are defined. For example, the following is a

void

 function that outputs
the result of a calculation that converts a temperature expressed in Fahrenheit
degrees to a temperature expressed in Celsius degrees. The actual calculation would
be done elsewhere in the program. This

void

 function implements only the subtask
for outputting the results of the calculation. For now, we do not need to worry about
how the calculation will be performed.

void

 show_results(

double

 f_degrees,

double

 c_degrees)
{

using namespace

 std;
 cout.setf(ios::fixed);
 cout.setf(ios::showpoint);
 cout.precision(1);
 cout << f_degrees
 << " degrees Fahrenheit is equivalent to\n"
 << c_degrees << " degrees Celsius.\n";

 return

;
}

As the above function definition illustrates, there are only two differences between
a function definition for a

void

 function and the function definitions we discussed in
Chapter 3. One difference is that we use the keyword

void

 where we would normally
specify the type of the value to be returned. This tells the compiler that this function
will not return any value. The name

void

 is used as a way of saying “no value is
returned by this function.” The second difference is that the

return

 statement does not
contain an expression for a value to be returned, because, after all, there is no value
returned. The syntax is summarized in Display 4.1.

A

void

 function call is an executable statement. For example, the above func-
tion

show_results

 might be called as follows:

show_results(32.5, 0.3);

If the above statement were executed in a program, it would cause the following to
appear on the screen:

Notice that the function call ends with a semicolon, which tells the compiler that the
function call is an executable statement.

function definition

function call

32.5 degrees Fahrenheit is equivalent to
0.3 degrees Celsius.

CH04.fm Page 177 Thursday, July 24, 2003 3:18 PM

178

4 FUNCTIONS FOR ALL SUBTASKS

When a

void

 function is called, the arguments are substituted for the formal
parameters and the statements in the function body are executed. For example, a
call to the

void

 function

show_results

, which we gave earlier in this section,
will cause some output to be written to the screen. One way to think of a call to a

void

 function is to imagine that the body of the function definition is copied into
the program in place of the function call. When the function is called, the argu-
ments are substituted for the formal parameters, and then it is just as if the body of
the function were lines in the program.

It is perfectly legal, and sometimes useful, to have a function with no arguments. In
that case there simply are no formal parameters listed in the function declaration and no
arguments are used when the function is called. For example, the

void

 function

initialize_screen

, defined below, simply sends a new line command to the screen:

void

 initialize_screen(

)
{

using namespace

 std;
 cout << endl;

 return

;
}

Display 4.1 Syntax for a

void

 Function Definition

void Function Declaration

void Function_Name(Parameter_List);

Function_Declaration_Comment

void Function Definition

void Function_Name(Parameter_List)
{
 Declaration_1
 Declaration_2
 . . .
 Declaration_Last
 Executable_Statement_1
 Executable_Statement_2
 . . .

 Executable_Statement_Last
}

body

function header

May (or may not)
include
one or more
return statements.

You may intermix the
declarations with the
executable statements.

functions with
no arguments

CH04.fm Page 178 Thursday, July 24, 2003 3:18 PM

4.1 void Functions 179

If your program includes the following call to this function as its first executable
statement, then the output from the previously run program will be separated from
the output for your program:

initialize_screen();

Be sure to notice that even when there are no parameters to a function, you still must
include the parentheses in the function declaration and in a call to the function. The next
programming example shows these two sample void functions in a complete program.

Programming EXAMPLE
Converting Temperatures

The program in Display 4.2 takes a Fahrenheit temperature as input and outputs the
equivalent Celsius temperature. A Fahrenheit temperature F can be converted to an
equivalent Celsius temperature C as follows:

C = (5/9)(F − 32)

The function celsius shown in Display 4.2 uses this formula to do the temperature
conversion.

return Statements in void Functions

Both void functions and functions that return a value can have return statements.
In the case of a function that returns a value, the return statement specifies the
value returned. In the case of a void function, the return statement simply ends the
function call. As we saw in the previous chapter, every function that returns a value
must end by executing a return statement. However, a void function need not
contain a return statement. If it does not contain a return statement, it will end
after executing the code in the function body. It is as if there were an implicit
return statement just before the final closing brace } at the end of the function
body. For example, the functions initialize_screen and show_results in
Display 4.2 would perform exactly the same if we omitted the return statements
from their function definitions.

The fact that there is an implicit return statement before the final closing brace
in a function body does not mean that you never need a return statement in a void
function. For example, the function definition in Display 4.3 might be used as part of
a restaurant-management program. That function outputs instructions for dividing a
given amount of ice cream among the people at a table. If there are no people at the
table (that is, if number equals 0), then the return statement within the if state-
ment terminates the function call and avoids a division by zero. If number is not 0,

void functions and
return statements

CH04.fm Page 179 Thursday, July 24, 2003 3:18 PM

180 4 FUNCTIONS FOR ALL SUBTASKS

Display 4.2 void Functions (part 1 of 2)

//Program to convert a Fahrenheit temperature to a Celsius temperature.
#include <iostream>

void initialize_screen();
//Separates current output from
//the output of the previously run program.

double celsius(double fahrenheit);
//Converts a Fahrenheit temperature
//to a Celsius temperature.

void show_results(double f_degrees, double c_degrees);
//Displays output. Assumes that c_degrees
//Celsius is equivalent to f_degrees Fahrenheit.

int main()
{
 using namespace std;
 double f_temperature, c_temperature;

 initialize_screen();
 cout << "I will convert a Fahrenheit temperature"
 << " to Celsius.\n"
 << "Enter a temperature in Fahrenheit: ";
 cin >> f_temperature;

 c_temperature = celsius(f_temperature);

 show_results(f_temperature, c_temperature);
 return 0;
}

//Definition uses iostream:
void initialize_screen()
{
 using namespace std;
 cout << endl;
 return;
}

This return is optional.

CH04.fm Page 180 Thursday, July 24, 2003 3:18 PM

code180.html

4.1 void Functions 181

then the function call ends when the last cout statement is executed at the end of the
function body.

By now you may have guessed that the main part of a program is actually the
definition of a function called main. When the program is run, the function main is
automatically called and it, in turn, may call other functions. Although it may seem
that the return statement in the main part of a program should be optional, offi-
cially it is not. Technically, the main part of a program is a function that returns a
value of type int, so it requires a return statement. However, the function main is
used as if it were a void function. Treating the main part of your program as a
function that returns an integer may sound crazy, but that’s the tradition. It might be

Display 4.2 void Functions (part 2 of 2)

double celsius(double fahrenheit)
{
 return ((5.0/9.0)*(fahrenheit − 32));
}

//Definition uses iostream:
void show_results(double f_degrees, double c_degrees)
{
 using namespace std;
 cout.setf(ios::fixed);
 cout.setf(ios::showpoint);
 cout.precision(1);
 cout << f_degrees
 << " degrees Fahrenheit is equivalent to\n"
 << c_degrees << " degrees Celsius.\n";
 return;
}

Sample Dialogue

I will convert a Fahrenheit temperature to Celsius.
Enter a temperature in Fahrenheit: 32.5
32.5 degrees Fahrenheit is equivalent to
0.3 degrees Celsius.

This return is optional.

The main part of
a program is a
function.

CH04.fm Page 181 Thursday, July 24, 2003 3:18 PM

182 4 FUNCTIONS FOR ALL SUBTASKS

best to continue to think of the main part of the program as just “the main part of the
program” and not worry about this minor detail.1

SELF-TEST EXERCISES

1 What is the output of the following program?

#include <iostream>

void friendly();

void shy(int audience_count);

Display 4.3 Use of return in a void Function

Function Declaration

void ice_cream_division(int number, double total_weight);
//Outputs instructions for dividing total_weight ounces of
//ice cream among number customers.
//If number is 0, nothing is done.

Function Definition

//Definition uses iostream:
void ice_cream_division(int number, double total_weight)
{
 using namespace std;
 double portion;

 if (number == 0)
 return;
 portion = total_weight/number;
 cout.setf(ios::fixed);
 cout.setf(ios::showpoint);
 cout.precision(2);
 cout << "Each one receives "
 << portion << " ounces of ice cream." << endl;
}

1 The C++ Standard says that you can omit the return 0 in the main part, but many compilers still
require it.

If number is 0, then the
function execution ends here.

CH04.fm Page 182 Thursday, July 24, 2003 3:18 PM

4.1 void Functions 183

int main()
{

 using namespace std;
 friendly();
 shy(6);
 cout << "One more time:\n";
 shy(2);
 friendly();
 cout << "End of program.\n";
 return 0;
}

void friendly()
{

 using namespace std;
 cout << "Hello\n";

}

void shy(int audience_count)

{

 using namespace std;
 if (audience_count < 5)

 return;

 cout << "Goodbye\n";

}

2 Are you required to have a return statement in a void function definition?

3 Suppose you omitted the return statement in the function definition for
initialize_screen in Display 4.2. What effect would it have on the pro-
gram? Would the program compile? Would it run? Would the program
behave any differently? What about the return statement in the function
definition for show_results in that same program? What effect would it
have on the program if you omitted the return statement in the definition of
show_results? What about the return statement in the function definition
for celsius in that same program? What effect would it have on the pro-
gram if you omitted the return statement in the definition of celsius?

CH04.fm Page 183 Thursday, July 24, 2003 3:18 PM

184 4 FUNCTIONS FOR ALL SUBTASKS

4 Write a definition for a void function that has three arguments of type int and
that outputs to the screen the product of these three arguments. Put the definition
in a complete program that reads in three numbers and then calls this function.

5 Does your compiler allow void main() and int main()? What warnings
are issued if you have int main() and do not supply a return 0;
statement? To find out, write several small test programs and perhaps ask
your instructor or a local guru.

6 Is a call to a void function used as a statement or is it used as an expression?

4.2 Call-by-Reference Parameters

When a function is called, its arguments are substituted for the formal parameters in
the function definition, or to state it less formally, the arguments are “plugged in” for
the formal parameters. There are different mechanisms used for this substitution
process. The mechanism we used in Chapter 3, and thus far in this chapter, is known
as the call-by-value mechanism. The second main mechanism for substituting
arguments is known as the call-by-reference mechanism.

A First View of Call-by-Reference

The call-by-value mechanism that we used until now is not sufficient for certain
subtasks. For example, one common subtask is to obtain one or more input values
from the user. Look back at the program in Display 4.2. Its tasks are divided into
four subtasks: initialize the screen, obtain the Fahrenheit temperature, compute the
corresponding Celsius temperature, and output the results. Three of these four
subtasks are implemented as the functions initialize_screen, celsius, and
show_results. However, the subtask of obtaining the input is implemented as the
following four lines of code (rather than as a function call):

cout << "I will convert a Fahrenheit temperature"
 << " to Celsius.\n"
 << "Enter a temperature in Fahrenheit: ";
cin >> f_temperature;

The subtask of obtaining the input should be accomplished by a function call. To do
this with a function call, we will use a call-by-reference parameter.

A function for obtaining input should set the values of one or more variables to
values typed in at the keyboard, so the function call should have one or more vari-
ables as arguments and should change the values of these argument variables. With
the call-by-value formal parameters that we have used until now, an argument in a

CH04.fm Page 184 Thursday, July 24, 2003 3:18 PM

4.2 Call-by-Reference Parameters 185

function call can be a variable, but the function takes only the value of the variable
and does not change the variable in any way. With a call-by-value formal parameter
only the value of the argument is substituted for the formal parameter. For an input
function, we want the variable (not the value of the variable) to be substituted for the
formal parameter. The call-by-reference mechanism works in just this way. With a
call-by-reference formal parameter (also called simply a reference parameter), the
corresponding argument in a function call must be a variable and this argument vari-
able is substituted for the formal parameter. It is as if the argument variable were lit-
erally copied into the body of the function definition in place of the formal
parameter. After the argument is substituted in, the code in the function body is exe-
cuted and this code can change the value of the argument variable.

A call-by-reference parameter must be marked in some way so that the compiler
will know it from a call-by-value parameter. The way that you indicate a call-by-
reference parameter is to attach the ampersand sign, &, to the end of the type
name in the formal parameter list in both the function declaration and the header of
the function definition. For example, the following function definition has one for-
mal parameter, f_variable, and that formal parameter is a call-by-reference
parameter:

void get_input(double& f_variable)
{
 using namespace std;
 cout << "I will convert a Fahrenheit temperature"
 << " to Celsius.\n"
 << "Enter a temperature in Fahrenheit: ";
 cin >> f_variable;
}

In a program that contains this function definition, the following function call will
set the variable f_temperature equal to a value read from the keyboard:

get_input(f_temperature);

Using this function definition, we could easily rewrite the program shown in Display
4.2 so that the subtask of reading the input is accomplished by this function call.
However, rather than rewrite an old program, let’s look at a completely new program.

Display 4.4 demonstrates call-by-reference parameters. The program doesn’t do
very much. It just reads in two numbers and writes the same numbers out, but in the
reverse order. The parameters in the functions get_numbers and swap_values are
call-by-reference parameters. The input is performed by the function call

get_numbers(first_num, second_num);

reference parameter

&

CH04.fm Page 185 Thursday, July 24, 2003 3:18 PM

186 4 FUNCTIONS FOR ALL SUBTASKS

Display 4.4 Call-by-Reference Parameters (part 1 of 2)

//Program to demonstrate call-by-reference parameters.
#include <iostream>

void get_numbers(int& input1, int& input2);
//Reads two integers from the keyboard.

void swap_values(int& variable1, int& variable2);
//Interchanges the values of variable1 and variable2.

void show_results(int output1, int output2);
//Shows the values of variable1 and variable2, in that order.

int main()
{
 int first_num, second_num;

 get_numbers(first_num, second_num);
 swap_values(first_num, second_num);
 show_results(first_num, second_num);
 return 0;
}

//Uses iostream:
void get_numbers(int& input1, int& input2)
{
 using namespace std;
 cout << "Enter two integers: ";
 cin >> input1

>> input2;
}

void swap_values(int& variable1, int& variable2)
{
 int temp;

 temp = variable1;
 variable1 = variable2;
 variable2 = temp;
}

CH04.fm Page 186 Thursday, July 24, 2003 3:18 PM

code186.html

4.2 Call-by-Reference Parameters 187

The values of the variables first_num and second_num are set by this function call.
After that, the following function call reverses the values in the two variables
first_num and second_num:

swap_values(first_num, second_num);

In the next few subsections we describe the call-by-reference mechanism in more
detail and also explain the particular functions used in Display 4.4.

Display 4.4 Call-by-Reference Parameters (part 2 of 2)

//Uses iostream:
void show_results(int output1, int output2)
{
 using namespace std;
 cout << "In reverse order the numbers are: "
 << output1 << " " << output2 << endl;
}

Sample Dialogue

Enter two integers: 5 10
In reverse order the numbers are: 10 5

Call-by-Reference
To make a formal parameter a call-by-reference parameter, append the ampersand sign
& to its type name. The corresponding argument in a call to the function should then
be a variable, not a constant or other expression. When the function is called, the
corresponding variable argument (not its value) will be substituted for the formal
parameter. Any change made to the formal parameter in the function body will be
made to the argument variable when the function is called. The exact details of the
substitution mechanisms are given in the text of this chapter.

Example (of call-by-reference parameters in a function declaration)

void get_data(int& first_in, double& second_in);

CH04.fm Page 187 Thursday, July 24, 2003 3:18 PM

188 4 FUNCTIONS FOR ALL SUBTASKS

Call-by-Reference in Detail

In most situations the call-by-reference mechanism works as if the name of the
variable given as the function argument were literally substituted for the call-by-
reference formal parameter. However, the process is a bit more subtle than that. In
some situations, this subtlety is important, so we need to examine more details of
this call-by-reference substitution process.

Recall that program variables are implemented as memory locations. The com-
piler assigns one memory location to each variable. For example, when the program
in Display 4.4 is compiled, the variable first_num might be assigned location
1010, and the variable second_num might be assigned 1012. For all practical pur-
poses, these memory locations are the variables.

For example, consider the following function declaration from Display 4.4:

void get_numbers(int& input1, int& input2);

The call-by-reference formal parameters input1 and input2 are placeholders for
the actual arguments used in a function call.

Now consider a function call like the following from the same display:

get_numbers(first_num, second_num);

When the function call is executed, the function is not given the argument names
first_num and second_num. Instead, it is given a list of the memory locations
associated with each name. In this example, the list consists of the locations

1010
1012

which are the locations assigned to the argument variables first_num and
second_num, in that order. It is these memory locations that are associated with the
formal parameters. The first memory location is associated with the first formal
parameter, the second memory location is associated with the second formal
parameter, and so forth. Diagrammatically, in this case the correspondence is

When the function statements are executed, whatever the function body says to do to
a formal parameter is actually done to the variable in the memory location associated
with that formal parameter. In this case, the instructions in the body of the function
get_numbers say that a value should be stored in the formal parameter input1

first_num 1010 input1
second_num 1012 input2

CH04.fm Page 188 Thursday, July 24, 2003 3:18 PM

4.2 Call-by-Reference Parameters 189

using a cin statement, and so that value is stored in the variable in memory location
1010 (which happens to be the variable first_num). Similarly, the instructions in
the body of the function get_numbers say that a value should then be stored in the
formal parameter input2 using a cin statement, and so that value is stored in the
variable in memory location 1012 (which happens to be the variable second_num).
Thus, whatever the function instructs the computer to do to input1 and input2 is
actually done to the variables first_num and second_num. These details of how the
call-by-reference mechanism works in this function call to get_numbers are
described in Display 4.5.

It may seem that there is an extra level of detail, or at least an extra level of ver-
biage. If first_num is the variable with memory location 1010, why do we insist on
saying “the variable at memory location 1010” instead of simply saying “first_num”?
This extra level of detail is needed if the arguments and formal parameters contain some
confusing coincidence of names. For example, the function get_numbers has formal
parameters named input1 and input2. Suppose you want to change the program in
Display 4.4 so that it uses the function get_numbers with arguments that are also
named input1 and input2, and suppose that you want to do something less than
obvious. Suppose you want the first number typed in to be stored in a variable named
input2, and the second number typed in to be stored in the variable named
input1—perhaps because the second number will be processed first, or because it is
the more important number. Now, let’s suppose that the variables input1 and
input2, which are declared in the main part of your program, have been assigned
memory locations 1014 and 1016. The function call could be as follows:

In this case if you say “input1,” we do not know whether you mean the variable named
input1 that is declared in the main part of your program or the formal parameter
input1. However, if the variable input1 declared in the main part of your program is
assigned memory location 1014, the phrase “the variable at memory location 1014” is
unambiguous. Let’s go over the details of the substitution mechanisms in this case.

In this call the argument corresponding to the formal parameter input1 is the
variable input2, and the argument corresponding to the formal parameter input2 is
the variable input1. This can be confusing to us, but it produces no problem at all
for the computer, since the computer never does actually “substitute input2 for
input1” or “substitute input1 for input2.” The computer simply deals with mem-
ory locations. The computer substitutes “the variable at memory location 1016” for
the formal parameter input1, and “the variable at memory location 1014” for the
formal parameter input2.

int input1, input 2;
get_numbers(input2, input1);

Notice the order
of the arguments

CH04.fm Page 189 Thursday, July 24, 2003 3:18 PM

190 4 FUNCTIONS FOR ALL SUBTASKS

Display 4.5 Behavior of Call-by-Reference Arguments (part 1 of 2)

Anatomy of a Function Call from Display 4.4
Using Call-by-Reference Arguments

0 Assume the variables first_num and second_num have been assigned the
 following memory address by the compiler:

first_num 1010
second_num 1012

 (We do not know what addresses are assigned and the results will not depend
 on the actual addresses, but this will make the process very concrete and
 thus perhaps easier to follow.)

1 In the program in Display 4.4, the following function call begins executing:

get_numbers(first_num, second_num);

2 The function is told to use the memory location of the variable first_num
 in place of the formal parameter input1 and the memory location of the
 second_num in place of the formal parameter input2. The effect is the
 same as if the function definition were rewritten to the following (which is
 not legal C++ code, but does have a clear meaning to us):

void get_numbers(int& <the variable at memory location 1010>,
int& <the variable at memory location 1012>)

{
 using namespace std;
 cout << "Enter two integers: ";
 cin >> <the variable at memory location 1010>
 >> <the variable at memory location 1012>;
}

 Since the variables in locations 1010 and 1012 are first_num and
 second_num, the effect is thus the same as if the function definition were
 rewritten to the following:

void get_numbers(int& first_num, int& second_num)
{
 using namespace std;
 cout << "Enter two integers: ";
 cin >> first_num
 >> second_num;
}

CH04.fm Page 190 Thursday, July 24, 2003 3:18 PM

4.2 Call-by-Reference Parameters 191

Programming EXAMPLE
The swap_values Function

The function swap_values defined in Display 4.4 interchanges the values stored in
two variables. The description of the function is given by the following function
declaration and accompanying comment:

void swap_values(int& variable1, int& variable2);
//Interchanges the values of variable1 and variable2.

To see how the function is supposed to work, assume that the variable
first_num has the value 5 and the variable second_num has the value 10 and con-
sider the function call:

swap_values(first_num, second_num);

After this function call, the value of first_num will be 10 and the value of
second_num will be 5.

Display 4.5 Behavior of Call-by-Reference Arguments (part 2 of 2)

Anatomy of the Function Call in Display 4.4 (concluded)

3 The body of the function is executed. The effect is the same as if the following
 were executed:

{
 using namespace std;
 cout << "Enter two integers: ";
 cin >> first_num
 >> second_num;
}

4 When the cin statement is executed, the values of the variables first_num
 and second_num are set to the values typed in at the keyboard. (If the dialogue
 is as shown in Display 4.4, then the value of first_num is set to 5 and the value
 of second_num is set to 10.)

5 When the function call ends, the variables first_num and second_num retain
 the values that they were given by the cin statement in the function body. (If the
 dialogue is as shown in Display 4.4, then the value of first_num is 5 and the
 value of second_num is 10 at the end of the function call.)

CH04.fm Page 191 Thursday, July 24, 2003 3:18 PM

192 4 FUNCTIONS FOR ALL SUBTASKS

As shown in Display 4.4, the definition of the function swap_values uses a
local variable called temp. This local variable is needed. You might be tempted to
think the function definition could be simplified to the following:

To see that this alternative definition cannot work, consider what would happen with
this definition and the function call

swap_values(first_num, second_num);

The variables first_num and second_num are substituted for the formal parameters
variable1 and variable2 so that, with this incorrect function definition, the
function call is equivalent to the following:

first_num = second_num;
second_num = first_num;

This code does not produce the desired result. The value of first_num is set equal
to the value of second_num, just as it should be. But then, the value of second_num
is set equal to the changed value of first_num, which is now the original value of
second_num. Thus the value of second_num is not changed at all. (If this is unclear
go through the steps with specific values for the variables first_num and
second_num.) What the function needs to do is to save the original value of
first_num so that value is not lost. This is what the local variable temp in the
correct function definition is used for. That correct definition is the one in Display
4.4. When that correct version is used and the function is called with the arguments
first_num and second_num, the function call is equivalent to the following code,
which works correctly:

temp = first_num;
first_num = second_num;
second_num = temp;

Mixed Parameter Lists

Whether a formal parameter is a call-by-value parameter or a call-by-reference
parameter is determined by whether or not there is an ampersand attached to its type

void swap_values(int& variable1, int& variable2)
{
 variable1 = variable2;
 variable2 = variable1;
}

This does not work!

CH04.fm Page 192 Thursday, July 24, 2003 3:18 PM

4.2 Call-by-Reference Parameters 193

specification. If the ampersand is present, then the formal parameter is a call-by-
reference parameter. If there is no ampersand associated with the formal parameter,
then it is a call-by-value parameter.

It is perfectly legitimate to mix call-by-value and call-by-reference formal
parameters in the same function. For example, the first and last of the formal param-
eters in the following function declaration are call-by-reference formal parameters
and the middle one is a call-by-value parameter:

void good_stuff(int& par1, int par2, double& par3);

Call-by-reference parameters are not restricted to void functions. You can also
use them in functions that return a value. Thus, a function with a call-by-reference
parameter could both change the value of a variable given as an argument and return
a value.

mixing
call-by-reference
and call-by-value

Parameters and Arguments
All the different terms that have to do with parameters and arguments can be
confusing. However, if you keep a few simple points in mind, you will be able to
easily handle these terms.

1. The formal parameters for a function are listed in the function declaration
and are used in the body of the function definition. A formal parameter
(of any sort) is a kind of blank or placeholder that is filled in with
something when the function is called.

2. An argument is something that is used to fill in a formal parameter. When
you write down a function call, the arguments are listed in parentheses
after the function name. When the function call is executed, the
arguments are “plugged in” for the formal parameters.

3. The terms call-by-value and call-by-reference refer to the mechanism that
is used in the “plugging in” process. In the call-by-value method only the
value of the argument is used. In this call-by-value mechanism, the formal
parameter is a local variable that is initialized to the value of the
corresponding argument. In the call-by-reference mechanism the argument
is a variable and the entire variable is used. In the call-by-reference
mechanism the argument variable is substituted for the formal parameter
so that any change that is made to the formal parameter is actually made
to the argument variable.

CH04.fm Page 193 Thursday, July 24, 2003 3:18 PM

194 4 FUNCTIONS FOR ALL SUBTASKS

Programming TIP
What Kind of Parameter to Use

Display 4.6 illustrates the differences between how the compiler treats call-by-value
and call-by-reference formal parameters. The parameters par1_value and par2_ref
are both assigned a value inside the body of the function definition. But since they are
different kinds of parameters, the effect is different in the two cases.

par1_value is a call-by-value parameter, so it is a local variable. When the
function is called as follows

do_stuff(n1, n2);

the local variable par1_value is initialized to the value of n1. That is, the local
variable par1_value is initialized to 1 and the variable n1 is then ignored by the
function. As you can see from the sample dialogue, the formal parameter
par1_value (which is a local variable) is set to 111 in the function body and this
value is output to the screen. However, the value of the argument n1 is not changed.
As shown in the sample dialogue, n1 has retained its value of 1.

On the other hand, par2_ref is a call-by-reference parameter. When the func-
tion is called, the variable argument n2 (not just its value) is substituted for the for-
mal parameter par2_ref. So that when the following code is executed:

par2_ref = 222;

it is the same as if the following were executed:

n2 = 222;

Thus, the value of the variable n2 is changed when the function body is executed, so
as the dialogue shows, the value of n2 is changed from 2 to 222 by the function call.

If you keep in mind the lesson of Display 4.6, it is easy to decide which parame-
ter mechanism to use. If you want a function to change the value of a variable, then
the corresponding formal parameter must be a call-by-reference formal parameter
and must be marked with the ampersand sign, &. In all other cases, you can use a
call-by-value formal parameter.

PITFALL Inadvertent Local Variables

If you want a function to change the value of a variable, the corresponding
formal parameter must be a call-by-reference parameter and must have the
ampersand, &, attached to its type. If you carelessly omit the ampersand, the
function will have a call-by-value parameter where you meant to have a call-by-
reference parameter, and when the program is run, you will discover that the
function call does not change the value of the corresponding argument. This is

CH04.fm Page 194 Thursday, July 24, 2003 3:18 PM

4.2 Call-by-Reference Parameters 195

Display 4.6 Comparing Argument Mechanisms

//Illustrates the difference between a call-by-value
//parameter and a call-by-reference parameter.
#include <iostream>

void do_stuff(int par1_value, int& par2_ref);
//par1_value is a call-by-value formal parameter and
//par2_ref is a call-by-reference formal parameter.

int main()
{
 using namespace std;
 int n1, n2;

 n1 = 1;
 n2 = 2;
 do_stuff(n1, n2);
 cout << "n1 after function call = " << n1 << endl;
 cout << "n2 after function call = " << n2 << endl;
 return 0;
}

void do_stuff(int par1_value, int& par2_ref)
{
 using namespace std;
 par1_value = 111;
 cout << "par1_value in function call = "
 << par1_value << endl;
 par2_ref = 222;
 cout << "par2_ref in function call = "
 << par2_ref << endl;
}

Sample Dialogue

par1_value in function call = 111
par2_ref in function call = 222
n1 after function call = 1
n2 after function call = 222

CH04.fm Page 195 Thursday, July 24, 2003 3:18 PM

code195.html

196 4 FUNCTIONS FOR ALL SUBTASKS

because a formal call-by-value parameter is a local variable, so if it has its value
changed in the function, then as with any local variable, that change has no effect
outside of the function body. This is a logic error that can be very difficult to see
because it looks right.

For example, the program in Display 4.7 is identical to the program in Display 4.4,
except that the ampersands were mistakenly omitted from the function swap_values.
As a result, the formal parameters variable1 and variable2 are local variables. The
argument variables first_num and second_num are never substituted in for
variable1 and variable2; variable1 and variable2 are instead initialized to the
values of first_num and second_num. Then, the values of variable1 and
variable2 are interchanged, but the values of first_num and second_num are left
unchanged. The omission of two ampersands has made the program completely
wrong, yet it looks almost identical to the correct program and will compile and run
without any error messages.

SELF-TEST EXERCISES

7 What is the output of the following program?

#include <iostream>
void figure_me_out(int& x, int y, int& z);
int main()
{
 using namespace std;
 int a, b, c;
 a = 10;
 b = 20;
 c = 30;
 figure_me_out(a, b, c);
 cout << a << " " << b << " " << c;
 return 0;
}

void figure_me_out(int& x, int y, int& z)
{
 using namespace std;
 cout << x << " " << y << " " << z << endl;
 x = 1;
 y = 2;
 z = 3;
 cout << x << " " << y << " " << z << endl;
}

CH04.fm Page 196 Thursday, July 24, 2003 3:18 PM

4.2 Call-by-Reference Parameters 197

Display 4.7 Inadvertent Local Variable

//Program to demonstrate call-by-reference parameters.
#include <iostream>

void get_numbers(int& input1, int& input2);
//Reads two integers from the keyboard.

void swap_values(int variable1, int variable2);
//Interchanges the values of variable1 and variable2.

void show_results(int output1, int output2);
//Shows the values of variable1 and variable2, in that order.

int main()
{
 using namespace std;
 int first_num, second_num;

 get_numbers(first_num, second_num);
 swap_values(first_num, second_num);
 show_results(first_num, second_num);
 return 0;
}

void swap_values(int variable1, int variable2)
{
 int temp;

 temp = variable1;
 variable1 = variable2;
 variable2 = temp;
}

<The definitions of get_numbers and
show_results are the same as in Display 4.4.>

Sample Dialogue

Enter two integers: 5 10
In reverse order the numbers are: 5 10

forgot
 the & here

forgot
the & here

inadvertent
local variables

CH04.fm Page 197 Thursday, July 24, 2003 3:18 PM

code197.html

198 4 FUNCTIONS FOR ALL SUBTASKS

8 What would be the output of the program in Display 4.4 if you omit the
ampersands, &, from the first parameter in the function declaration and func-
tion heading of swap_values? The ampersand is not removed from the
second parameter.

9 What would be the output of the program in Display 4.6 if you change the
function declaration for the function do_stuff to the following and you
change the function header to match, so that the formal parameter par2_ref
is changed to a call-by-value parameter:

void do_stuff(int par1_value, int par2_ref);

10 Write a void function definition for a function called zero_both that has
two reference parameters, both of which are variables of type int, and sets
the values of both variables to 0.

11 Write a void function definition for a function called add_tax. The function
add_tax has two formal parameters: tax_rate, which is the amount of sales
tax expressed as a percentage, and cost, which is the cost of an item before
tax. The function changes the value of cost so that it includes sales tax.

12 Can a function that returns a value have a call-by-reference parameter? May
a function have both call-by-value and a call-by-reference parameters?

4.3 Using Procedural Abstraction

My memory is so bad,
that many times I forget my own name!

MIGUEL DE CERVANTES SAAVEDRA, DON QUIXOTE

Recall that the principle of procedural abstraction says that functions should be
designed so that they can be used as black boxes. For a programmer to use a function
effectively, all the programmer should need to know is the function declaration and
the accompanying comment that says what the function accomplishes. The
programmer should not need to know any of the details contained in the function
body. In this section we will discuss a number of topics that deal with this principle
in more detail.

Functions Calling Functions

A function body may contain a call to another function. The situation for these
sorts of function calls is exactly the same as it would be if the function call had

CH04.fm Page 198 Thursday, July 24, 2003 3:18 PM

4.3 Using Procedural Abstraction 199

occurred in the main function of the program; the only restriction is that the
function declaration should appear before the function is used. If you set up your
programs as we have been doing, this will happen automatically, since all function
declarations come before the main function and all function definitions come after
the main function. Although you may include a function call within the definition
of another function, you cannot place the definition of one function within the
body of another function definition.

Display 4.8 shows an enhanced version of the program shown in Display 4.4.
The program in Display 4.4 always reversed the values of the variables first_num
and second_num. The program in Display 4.8 reverses these variables only some of
the time. The program in Display 4.8 uses the function order to reorder the values
in these variables so as to ensure that

first_num <= second_num

If this condition is already true, then nothing is done to the variables first_num and
second_num. If, however, first_num is greater than second_num, then the function
swap_values is called to interchange the values of these two variables. This testing for
order and exchanging of variable values all takes place within the body of the function
order. Thus, the function swap_values is called within the body of the function
order. This presents no special problems. Using the principle of procedural abstraction,
we think of the function swap_values as performing an action (namely, interchanging
the values of two variables); this action is the same no matter where it occurs.

Preconditions and Postconditions

One good way to write a function declaration comment is to break it down into two
kinds of information, called a precondition and a postcondition. The precondition
states what is assumed to be true when the function is called. The function should
not be used and cannot be expected to perform correctly unless the precondition
holds. The postcondition describes the effect of the function call; that is, the
postcondition tells what will be true after the function is executed in a situation in
which the precondition holds. For a function that returns a value, the postcondition
will describe the value returned by the function. For a function that changes the
value of some argument variables, the postcondition will describe all the changes
made to the values of the arguments.

For example, the function declaration comment for the function swap_values
shown in Display 4.8 can be put into this format as follows:

void swap_values(int& variable1, int& variable2);
//Precondition: variable1 and variable2 have been given
//values.
//Postcondition: The values of variable1 and variable2
//have been interchanged.

precondition

postcondition

CH04.fm Page 199 Thursday, July 24, 2003 3:18 PM

200 4 FUNCTIONS FOR ALL SUBTASKS

Display 4.8 Function Calling Another Function (part 1 of 2)

//Program to demonstrate a function calling another function.
#include <iostream>

void get_input(int& input1, int& input2);
//Reads two integers from the keyboard.

void swap_values(int& variable1, int& variable2);
//Interchanges the values of variable1 and variable2.

void order(int& n1, int& n2);
//Orders the numbers in the variables n1 and n2
//so that after the function call n1 <= n2.

void give_results(int output1, int output2);
//Outputs the values in output1 and output2.
//Assumes that output1 <= output2

int main()
{
 int first_num, second_num;

 get_input(first_num, second_num);
 order(first_num, second_num);
 give_results(first_num, second_num);
 return 0;
}

//Uses iostream:
void get_input(int& input1, int& input2)
{
 using namespace std;
 cout << "Enter two integers: ";
 cin >> input1 >> input2;
}

CH04.fm Page 200 Thursday, July 24, 2003 3:18 PM

code200.html

4.3 Using Procedural Abstraction 201

The comment for the function celsius from Display 4.2 can be put into this
format as follows:

double celsius(double fahrenheit);
//Precondition: fahrenheit is a temperature expressed
//in degrees Fahrenheit.
//Postcondition: Returns the equivalent temperature
//expressed in degrees Celsius.

Display 4.8 Function Calling Another Function (part 2 of 2)

void swap_values(int& variable1, int& variable2)
{
 int temp;

 temp = variable1;
 variable1 = variable2;
 variable2 = temp;
}

void order(int& n1, int& n2)
{
 if (n1 > n2)
 swap_values(n1, n2);
}

//Uses iostream:
void give_results(int output1, int output2)
{
 using namespace std;
 cout << "In increasing order the numbers are: "
 << output1 << " " << output2 << endl;
}

Sample Dialogue

Enter two integers: 10 5
In increasing order the numbers are: 5 10

These function
definitions can
be in any order.

CH04.fm Page 201 Thursday, July 24, 2003 3:18 PM

202 4 FUNCTIONS FOR ALL SUBTASKS

When the only postcondition is a description of the value returned, programmers
often omit the word postcondition. A common and acceptable alternative form for
the previous function declaration comments is the following:

//Precondition: fahrenheit is a temperature expressed
//in degrees Fahrenheit.
//Returns the equivalent temperature expressed in
//degrees Celsius.

Another example of preconditions and postconditions is given by the following
function declaration:

void post_interest(double& balance, double rate);
//Precondition: Balance is a nonnegative savings
//account balance. Rate is the interest rate
//expressed as a percent, such as 5 for 5%.
//Postcondition: The value of balance has been
//increased by rate percent.

You do not need to know the definition of the function post_interest in order to
use this function, so we have given only the function declaration and accompanying
comment.

Preconditions and postconditions are more than a way to summarize a function’s
actions. They should be the first step in designing and writing a function. When you
design a program, you should specify what each function does before you start
designing how the function will do it. In particular, the function declaration com-
ments and the function declaration should be designed and written down before
starting to design the function body. If you later discover that your specification can-
not be realized in a reasonable way, you may need to back up and rethink what the
function should do, but by clearly specifying what you think the function should do,
you will minimize both design errors and wasted time writing code that does not fit
the task at hand.

Some programmers prefer not to use the words precondition and postcondition in
their function comments. However, whether you use the words or not, your function
comment should always contain the precondition and postcondition information.

CASE STUDY Supermarket Pricing

This case study solves a very simple programming task. It may seem that it contains
more detail than is needed for such a simple task. However, if you see the design
elements in the context of a simple task, you can concentrate on learning them

CH04.fm Page 202 Thursday, July 24, 2003 3:18 PM

4.3 Using Procedural Abstraction 203

without the distraction of any side issues. Once you learn the techniques that are
illustrated in this simple case study, you can apply these same techniques to much
more complicated programming tasks.

P R O B L E M D E F I N I T I O N

We have been commissioned by the Quick-Shop supermarket chain to write a
program that will determine the retail price of an item given suitable input. Their
pricing policy is that any item that is expected to sell in one week or less is marked
up 5%, and any item that is expected to stay on the shelf for more than one week is
marked up 10% over the wholesale price. Be sure to notice that the low markup of
5% is used for up to 7 days and that at 8 days the markup changes to 10%. It is
important to be precise about exactly when a program should change from one form
of calculation to a different one.

As always, we should be sure we have a clear statement of the input required
and the output produced by the program.
I NPUT

The input will consist of the wholesale price of an item and the expected number of
days until the item is sold.
OUTPUT

The output will give the retail price of the item.

A N A L Y S I S O F T H E P R O B L E M

Like many simple programming tasks, this one breaks down into three main
subtasks:

1. Input the data.
2. Compute the retail price of the item.
3. Output the results.

These three subtasks will be implemented by three functions. The three func-
tions are described by their function declarations and accompanying comments,
which are given below. Note that only those items that are changed by the functions
are call-by-reference parameters. The remaining formal parameters are call-by-value
parameters.

void get_input(double& cost, int& turnover);
//Precondition: User is ready to enter values correctly.
//Postcondition: The value of cost has been set to the
//wholesale cost of one item. The value of turnover has been
//set to the expected number of days until the item is sold.

CH04.fm Page 203 Thursday, July 24, 2003 3:18 PM

204 4 FUNCTIONS FOR ALL SUBTASKS

double price(double cost, int turnover);
//Precondition: cost is the wholesale cost of one item.
//turnover is the expected number of days
//until sale of the item.
//Returns the retail price of the item.

void give_output(double cost, int turnover, double price);
//Precondition: cost is the wholesale cost of one item;
//turnover is the expected time until sale of the item;
//price is the retail price of the item.
//Postcondition: The values of cost, turnover, and price have
//been written to the screen.

Now that we have the function headings, it is trivial to write the main part of our
program:

int main()
{
 double wholesale_cost, retail_price;
 int shelf_time;

 get_input(wholesale_cost, shelf_time);
 retail_price = price(wholesale_cost, shelf_time);
 give_output(wholesale_cost, shelf_time, retail_price);
 return 0;
}

Even though we have not yet written the function bodies and have no idea of how the
functions work, we can write the above code which uses the functions. That is what
is meant by the principle of procedural abstraction. The functions are treated like
black boxes.

A L G O R I T H M D E S I G N

The implementations of the functions get_input and give_output are straight-
forward. They simply consist of a few cin and cout statements. The algorithm for
the function price is given by the following pseudocode:

if turnover ≤ 7 days then
 return (cost + 5% of cost);
else
 return (cost + 10% of cost);

CH04.fm Page 204 Thursday, July 24, 2003 3:18 PM

4.3 Using Procedural Abstraction 205

C O D I N G

There are three constants used in this program: a low markup figure of 5%, a high
markup figure of 10%, and an expected shelf stay of 7 days as the threshold above
which the high markup is used. Since these constants might need to be changed to
update the program should the company decide to change its pricing policy, we
declare global named constants at the start of our program for each of these three
numbers. The declarations with the const modifier are the following:

const double LOW_MARKUP = 0.05; //5%
const double HIGH_MARKUP = 0.10; //10%
const int THRESHOLD = 7; //Use HIGH_MARKUP if do not

 //expect to sell in 7 days or less.

The body of the function price is a straightforward translation of our algorithm
from pseudocode to C++ code:

{
 if (turnover <= THRESHOLD)
 return (cost + (LOW_MARKUP * cost));
 else
 return (cost + (HIGH_MARKUP * cost));
}

The complete program is shown in Display 4.9.

P R O G R A M TE S T I N G

An important technique in testing a program is to test all kinds of input. There is no
precise definition of what we mean by a “kind” of input, but in practice, it is often
easy to decide what kinds of input data a program deals with. In the case of our
supermarket program, there are two main kinds of input: input that uses the low
markup of 5% and input that uses the high markup of 10%. Thus, we should test at
least one case in which the item is expected to remain on the shelf for less than 7
days and at least one case in which the item is expected to remain on the shelf for
more than 7 days.

Another testing strategy is to test boundary values. Unfortunately, boundary
value is another vague concept. An input (test) value is a boundary value if it is a
value at which the program changes behavior. For example, in our supermarket pro-
gram, the program’s behavior changes at an expected shelf stay of 7 days. Thus, 7 is
a boundary value; the program behaves differently for a number of days that is less
than or equal to 7 than it does for a number of days that is greater than 7. Hence, we

test all kinds
of input

test boundary
values

CH04.fm Page 205 Thursday, July 24, 2003 3:18 PM

206 4 FUNCTIONS FOR ALL SUBTASKS

Display 4.9 Supermarket Pricing (part 1 of 3)

//Determines the retail price of an item according to
//the pricing policies of the Quick-Shop supermarket chain.
#include <iostream>

const double LOW_MARKUP = 0.05; //5%
const double HIGH_MARKUP = 0.10; //10%
const int THRESHOLD = 7; //Use HIGH_MARKUP if do not
 //expect to sell in 7 days or less.

void introduction();
//Postcondition: Description of program is written on the screen.

void get_input(double& cost, int& turnover);
//Precondition: User is ready to enter values correctly.
//Postcondition: The value of cost has been set to the
//wholesale cost of one item. The value of turnover has been
//set to the expected number of days until the item is sold.

double price(double cost, int turnover);
//Precondition: cost is the wholesale cost of one item.
//turnover is the expected number of days until sale of the item.
//Returns the retail price of the item.

void give_output(double cost, int turnover, double price);
//Precondition: cost is the wholesale cost of one item; turnover is the
//expected time until sale of the item; price is the retail price of the item.
//Postcondition: The values of cost, turnover, and price have been
//written to the screen.

int main()
{
 double wholesale_cost, retail_price;
 int shelf_time;

 introduction();
get_input(wholesale_cost, shelf_time);

 retail_price = price(wholesale_cost, shelf_time);
 give_output(wholesale_cost, shelf_time, retail_price);
 return 0;
}

CH04.fm Page 206 Thursday, July 24, 2003 3:18 PM

code206.html

4.3 Using Procedural Abstraction 207

Display 4.9 Supermarket Pricing (part 2 of 3)

//Uses iostream:
void introduction()
{
 using namespace std;
 cout << "This program determines the retail price for\n"
 << "an item at a Quick-Shop supermarket store.\n";
}

//Uses iostream:
void get_input(double& cost, int& turnover)
{
 using namespace std;
 cout << "Enter the wholesale cost of item: $";
 cin >> cost;
 cout << "Enter the expected number of days until sold: ";
 cin >> turnover;
}

//Uses iostream:
void give_output(double cost, int turnover, double price)
{
 using namespace std;
 cout.setf(ios::fixed);
 cout.setf(ios::showpoint);
 cout.precision(2);
 cout << "Wholesale cost = $" << cost << endl
 << "Expected time until sold = "
 << turnover << " days" << endl
 << "Retail price = $" << price << endl;
}

//Uses defined constants LOW_MARKUP, HIGH_MARKUP, and THRESHOLD:
double price(double cost, int turnover)
{
 if (turnover <= THRESHOLD)
 return (cost + (LOW_MARKUP * cost));
 else
 return (cost + (HIGH_MARKUP * cost));

}

CH04.fm Page 207 Thursday, July 24, 2003 3:18 PM

208 4 FUNCTIONS FOR ALL SUBTASKS

should test the program on at least one case in which the item is expected to remain
on the shelf for exactly 7 days. Normally, you should also test input that is one step
away from the boundary value as well, since you can easily be off by one in deciding
where the boundary is. Hence, we should test our program on input for an item that
is expected to remain on the shelf for 6 days, an item that is expected to remain on
the shelf for 7 days, and an item that is expected to remain on the shelf for 8 days.
(This is in addition to the test inputs described in the previous paragraph, which
should be well below and well above 7 days.)

SELF-TEST EXERCISES

13 Can a function definition appear inside the body of another function definition?

14 Can a function definition contain a call to another function?

15 Rewrite the function declaration comment for the function order shown in
Display 4.8 so that it is expressed in terms of preconditions and postconditions.

16 Give a precondition and a postcondition for the predefined function sqrt,
which returns the square root of its argument.

4.4 Testing and Debugging Functions

“I beheld the wretch—the miserable monster
whom I had created.”

MARY WOLLSTONECRAFT SHELLEY, FRANKENSTEIN

Display 4.9 Supermarket Pricing (part 3 of 3)

Sample Dialogue

This program determines the retail price for
an item at a Quick-Shop supermarket store.
Enter the wholesale cost of item: $1.21
Enter the expected number of days until sold: 5
Wholesale cost = $1.21
Expected time until sold = 5 days
Retail price = $1.27

CH04.fm Page 208 Thursday, July 24, 2003 3:18 PM

4.4 Testing and Debugging Functions 209

Stubs and Drivers

Each function should be designed, coded, and tested as a separate unit from the rest
of the program. This is the essence of the top-down design strategy. When you treat
each function as a separate unit, you transform one big task into a series of smaller,
more manageable tasks. But how do you test a function outside of the program for
which it is intended? You write a special program to do the testing. For example,
Display 4.10 shows a program to test the function get_input, which was used in the
program in Display 4.9. Programs like this one are called driver programs. These
driver programs are temporary tools, and can be quite minimal. They need not have
fancy input routines. They need not perform all the calculations the final program
will perform. All they need do is obtain reasonable values for the function arguments
in as simple a way as possible—typically from the user—then execute the function
and show the result. A loop, as in the program shown in Display 4.10, will allow you
to retest the function on different arguments without having to rerun the program.

If you test each function separately, you will find most of the mistakes in your
program. Moreover, you will find out which functions contain the mistakes. If you
were to test only the entire program, you would probably find out if there were a
mistake, but may have no idea where the mistake is. Even worse, you may think you
know where the mistake is, but be wrong.

Once you have fully tested a function, you can use it in the driver program for
some other function. Each function should be tested in a program in which it is the
only untested function. However, it’s fine to use a fully tested function when testing
some other function. If a bug is found, you know the bug is in the untested function.
For example, after fully testing the function get_input with the driver program in
Display 4.10, you can use get_input as the input routine in driver programs to test
the remaining functions.

It is sometimes impossible or inconvenient to test a function without using some
other function that has not yet been written or has not yet been tested. In this case,
you can use a simplified version of the missing or untested function. These simpli-
fied functions are called stubs. These stubs will not necessarily perform the correct
calculation, but they will deliver values that suffice for testing, and they are simple
enough that you can have confidence in their performance. For example, the pro-
gram in Display 4.11 is designed to test the function give_output from Display 4.9
as well as the basic layout of the program. This program uses the function
get_input, which we already fully tested using the driver program shown in Dis-
play 4.10. This program also includes the function initialize_screen, which we
assume has been tested in a driver program of its own, even though we have not
bothered to show that simple driver program. Since we have not yet tested the func-
tion price, we have used a stub to stand in for it. Notice that we could use this pro-
gram before we have even written the function price. This way we can test the
basic program layout before we fill in the details of all the function definitions.

Using a program outline with stubs allows you to test and then “flesh out” the
basic program outline, rather than write a completely new program to test each

drivers

stubs

price

CH04.fm Page 209 Thursday, July 24, 2003 3:18 PM

210 4 FUNCTIONS FOR ALL SUBTASKS

Display 4.10 Driver Program (part 1 of 2)

//Driver program for the function get_input.
#include <iostream>

void get_input(double& cost, int& turnover);
//Precondition: User is ready to enter values correctly.
//Postcondition: The value of cost has been set to the
//wholesale cost of one item. The value of turnover has been
//set to the expected number of days until the item is sold.

int main()
{
 using namespace std;
 double wholesale_cost;
 int shelf_time;
 char ans;

 cout.setf(ios::fixed);
 cout.setf(ios::showpoint);
 cout.precision(2);
 do
 {
 get_input(wholesale_cost, shelf_time);

 cout << "Wholesale cost is now $"
 << wholesale_cost << endl;
 cout << "Days until sold is now "
 << shelf_time << endl;

 cout << "Test again?"
 << " (Type y for yes or n for no): ";
 cin >> ans;
 cout << endl;
 } while (ans == ’y’ || ans == ’Y’);

 return 0;
}

CH04.fm Page 210 Thursday, July 24, 2003 3:18 PM

code210.html

4.4 Testing and Debugging Functions 211

function. For this reason, a program outline with stubs is usually the most efficient
method of testing. A common approach is to use driver programs to test some basic
functions, like the input and output functions, and then use a program with stubs to
test the remaining functions. The stubs are replaced by functions one at a time: One
stub is replaced by a complete function and tested; once that function is fully tested,
another stub is replaced by a full function definition, and so forth until the final pro-
gram is produced.

Display 4.10 Driver Program (part 2 of 2)

//Uses iostream:
void get_input(double& cost, int& turnover)
{
 using namespace std;
 cout << "Enter the wholesale cost of item: $";
 cin >> cost;
 cout << "Enter the expected number of days until sold: ";
 cin >> turnover;
}

Sample Dialogue

Enter the wholesale cost of item: $123.45
Enter the expected number of days until sold: 67
Wholesale cost is now $123.45
Days until sold is now 67
Test again? (Type y for yes or n for no): y

Enter the wholesale cost of item: $9.05
Enter the expected number of days until sold: 3
Wholesale cost is now $9.05
Days until sold is now 3
Test again? (Type y for yes or n for no): n

The Fundamental Rule for Testing Functions
Every function should be tested in a program in which every other function in that
program has already been fully tested and debugged.

CH04.fm Page 211 Thursday, July 24, 2003 3:18 PM

212 4 FUNCTIONS FOR ALL SUBTASKS

Display 4.11 Program with a Stub (part 1 of 2)

//Determines the retail price of an item according to
//the pricing policies of the Quick-Shop supermarket chain.
#include <iostream>

void introduction();
//Postcondition: Description of program is written on the screen.

void get_input(double& cost, int& turnover);
//Precondition: User is ready to enter values correctly.
//Postcondition: The value of cost has been set to the
//wholesale cost of one item. The value of turnover has been
//set to the expected number of days until the item is sold.

double price(double cost, int turnover);
//Precondition: cost is the wholesale cost of one item.
//turnover is the expected number of days until sale of the item.
//Returns the retail price of the item.

void give_output(double cost, int turnover, double price);
//Precondition: cost is the wholesale cost of one item; turnover is the
//expected time until sale of the item; price is the retail price of the item.
//Postcondition: The values of cost, turnover, and price have been
//written to the screen.

int main()
{
 double wholesale_cost, retail_price;
 int shelf_time;

 introduction();
get_input(wholesale_cost, shelf_time);

 retail_price = price(wholesale_cost, shelf_time);
 give_output(wholesale_cost, shelf_time, retail_price);
 return 0;
}

//Uses iostream:
void introduction()
{
 using namespace std;
 cout << "This program determines the retail price for\n"
 << "an item at a Quick-Shop supermarket store.\n";
}

fully tested
function

CH04.fm Page 212 Thursday, July 24, 2003 3:18 PM

code212.html

4.4 Testing and Debugging Functions 213

Display 4.11 Program with a Stub (part 2 of 2)

//Uses iostream:
void get_input(double& cost, int& turnover)
{
 using namespace std;
 cout << "Enter the wholesale cost of item: $";
 cin >> cost;
 cout << "Enter the expected number of days until sold: ";
 cin >> turnover;
}

//Uses iostream:
void give_output(double cost, int turnover, double price)
{
 using namespace std;
 cout.setf(ios::fixed);
 cout.setf(ios::showpoint);
 cout.precision(2);
 cout << "Wholesale cost = $" << cost << endl
 << "Expected time until sold = "
 << turnover << " days" << endl
 << "Retail price= $" << price << endl;
}

//This is only a stub:
double price(double cost, int turnover)
{
 return 9.99; //Not correct, but good enough for some testing.
}

Sample Dialogue

This program determines the retail price for
an item at a Quick-Shop supermarket store.
Enter the wholesale cost of item: $1.21
Enter the expected number of days until sold: 5
Wholesale cost = $1.21
Expected time until sold = 5 days
Retail price = $9.99

fully tested
function

function
being tested

stub

CH04.fm Page 213 Thursday, July 24, 2003 3:18 PM

214 4 FUNCTIONS FOR ALL SUBTASKS

SELF-TEST EXERCISES

17 What is the fundamental rule for testing functions? Why is this a good way to
test functions?

18 What is a driver program?

19 Write a driver program for the function introduction shown in Display
4.11.

20 Write a driver program for the function add_tax from Self-Test Exercise 11.

21 What is a stub?

22 Write a stub for the function whose function declaration is given below. Do
not write a whole program, only the stub that would go in a program. Hint: It
will be very short.

C H A P T E R S U M M A R Y

■ All subtasks in a program can be implemented as functions, either as func-
tions that return a value or as void functions.

■ A formal parameter is a kind of placeholder that is filled in with a function
argument when the function is called. There are two methods of performing
this substitution, call-by-value and call-by-reference.

■ In the call-by-value substitution mechanism, the value of an argument is sub-
stituted for its corresponding formal parameter. In the call-by-reference sub-
stitution mechanism, the argument should be a variable and the entire variable is
substituted for the corresponding argument.

double rain_prob(double pressure, double humidity, double temp);
//Precondition: pressure is the barometric pressure in inches of mercury,
//humidity is the relative humidity as a percent, and
//temp is the temperature in degrees Fahrenheit.
//Returns the probability of rain, which is a number between 0 and 1.
//0 means no chance of rain. 1 means rain is 100% certain.

CH04.fm Page 214 Thursday, July 24, 2003 3:18 PM

Answers to Self-Test Exercises 215

■ The way to indicate a call-by-reference parameter in a function definition is to
attach the ampersand sign, &, to the type of the formal parameter.

■ An argument corresponding to a call-by-value parameter cannot be changed by
a function call. An argument corresponding to a call-by-reference parameter can
be changed by a function call. If you want a function to change the value of a
variable, then you must use a call-by-reference parameter.

■ A good way to write a function declaration comment is to use a precondition
and a postcondition. The precondition states what is assumed to be true when
the function is called. The postcondition describes the effect of the function
call; that is, the postcondition tells what will be true after the function is exe-
cuted in a situation in which the precondition holds.

■ Every function should be tested in a program in which every other function in
that program has already been fully tested and debugged.

■ A driver program is a program that does nothing but test a function.

■ A simplified version of a function is called a stub. A stub is used in place of a
function definition that has not yet been tested (or possibly not even written) so
that the rest of the program can be tested.

Answers to Self-Test Exercises

1

2 No, a void function definition need not contain a return statement. A void
function definition may contain a return statement, but one is not required.

3 Omitting the return statement in the function definition for initialize_screen
in Display 4.2 would have absolutely no effect on how the program behaves.
The program will compile, run, and behave exactly the same. Similarly,
omitting the return statement in the function definition for show_results
also will have no effect on how the program behaves. However, if you omit
the return statement in the function definition for celsius, that will be a
serious error that will keep the program from running. The difference is that
the functions initialize_screen and show_results are void functions,
but celsius is not a void function.

Hello
Goodbye
One more time:
Hello
End of program.

CH04.fm Page 215 Thursday, July 24, 2003 3:18 PM

216 4 FUNCTIONS FOR ALL SUBTASKS

4 #include <iostream>
void product_out(int n1, int n2, int n3);
int main()
{
 using namespace std;
 int num1, num2, num3;
 cout << "Enter three integers: ";
 cin >> num1 >> num2 >> num3;
 product_out(num1, num2, num3);
 return 0;
}

void product_out(int n1, int n2, int n3)
{
 using namespace std;
 cout << "The product of the three numbers "
 << n1 << ", " << n2 << ", and "
 << n3 << " is " << (n1*n2*n3) << endl;
}

5 These answers are system dependent.

6 A call to a void function followed by a semicolon is a statement. A call to a
function that returns a value is an expression.

7

8

9

10 20 30
1 2 3
1 20 3

Enter two integers: 5 10
In reverse order the numbers are: 5 5 different

par1_value in function call = 111
par2_ref in function call = 222
n1 after function call = 1
n2 after function call = 2 different

CH04.fm Page 216 Thursday, July 24, 2003 3:18 PM

Answers to Self-Test Exercises 217

10 void zero_both(int& n1, int& n2)
{
 n1 = 0;
 n2 = 0;
}

11 void add_tax(double tax_rate, double& cost)
{
 cost = cost + (tax_rate/100.0)*cost;
}

The division by 100 is to convert a percent to a fraction. For example, 10% is
10/100.0 or 1/10th of the cost.

12 Yes, a function that returns a value can have a call-by reference parameter. Yes,
a function can have a combination of call-by-value and a call-by-reference
parameters.

13 No, a function definition cannot appear inside the body of another function
definition.

14 Yes, a function definition can contain a call to another function.

15 void order(int& n1, int& n2);
//Precondition: The variables n1 and n2 have values.
//Postcondition: The values in n1 and n2 have been ordered
//so that n1 <= n2.

16 double sqrt(double n);
//Precondition: n >= 0.
//Returns the squareroot of n.

You can rewrite the second comment line to the following if you prefer, but
the version above is the usual form used for a function that returns a value:

//Postcondition: Returns the squareroot of n.

17 The fundamental rule for testing functions is that every function should be
tested in a program in which every other function in that program has already
been fully tested and debugged. This is a good way to test a function because
if you follow this rule, then when you find a bug, you will know which func-
tion contains the bug.

18 A driver program is a program written for the sole purpose of testing a
function.

CH04.fm Page 217 Thursday, July 24, 2003 3:18 PM

218 4 FUNCTIONS FOR ALL SUBTASKS

19

#include <iostream>

void introduction();
//Postcondition: Description of program is written on
//the screen.
int main()
{
 using namespace std;
 introduction();
 cout << "End of test.\n";
 return 0;
}
//Uses iostream:
void introduction()
{
 using namespace std;
 cout << "This program determines the retail price for\n"
 << "an item at a Quick-Shop supermarket store.\n";
}

20

//Driver program for the function add_tax.
#include <iostream>

void add_tax(double tax_rate, double& cost);
//Preconditon: tax_rate is the amount of sales tax as a
//percentage and cost is the cost of an item before tax.
//Postcondition: cost has been changed to the cost of the
//item after adding sales tax.

int main()
{
 using namespace std;
 double cost, tax_rate;
 char ans;

 cout.setf(ios::fixed);
 cout.setf(ios::showpoint);

CH04.fm Page 218 Thursday, July 24, 2003 3:18 PM

Programming Projects 219

 cout.precision(2);
 do
 {
 cout << "Enter cost and tax rate:\n";
 cin >> cost >> tax_rate;
 add_tax(tax_rate, cost);

 cout << "After call to add_tax\n"
 << "tax_rate is " << tax_rate << endl
 << "cost is " << cost << endl;

 cout << "Test again?"
 << " (Type y for yes or n for no): ";
 cin >> ans;
 cout << endl;
 } while (ans == ’y’ || ans == ’Y’);

 return 0;
}

void add_tax(double tax_rate, double& cost)
{
 cost = cost + (tax_rate/100.0)*cost;
}

21 A stub is a simplified version of a function that is used in place of the func-
tion so that other functions can be tested.

22

//THIS IS JUST A STUB.
double rain_prob(double pressure, double humidity, double temp)
{
 return 0.25; //Not correct, but good enough for some testing.
}

Programming Projects

1 Write a program that converts from 24-hour notation to 12-hour notation. For
example, it should convert 14:25 to 2:25 PM. The input is given as two inte-
gers. There should be at least three functions, one for input, one to do the

CH04.fm Page 219 Thursday, July 24, 2003 3:18 PM

project219.html

220 4 FUNCTIONS FOR ALL SUBTASKS

conversion, and one for output. Record the AM/PM information as a value of
type char, ’A’ for AM and ’P’ for PM. Thus, the function for doing the con-
versions will have a call-by-reference formal parameter of type char to
record whether it is AM or PM. (The function will have other parameters as
well.) Include a loop that lets the user repeat this computation for new input
values again and again until the user says he or she wants to end the program.

2 Write a function that computes the average and standard deviation of four
scores. The standard deviation is defined to be the square root of the average
of the four values: (si − a)2 where a is average of the four scores s1, s2, s3,
and s4. The function will have six parameters and will call two other func-
tions. Embed the function in a driver program that allows you to test the
function again and again until you tell the program you are finished.

3 Write a program that tells what coins to give out for any amount of change
from 1 cent to 99 cents. For example, if the amount is 86 cents, the output
would be something like the following:

Use coin denominations of 25 cents (quarters), 10 cents (dimes), and 1 cent
(pennies). Do not use nickel and half-dollar coins. Your program will use the
following function (among others):

For example, suppose the value of the variable amount_left is 86. Then,
after the following call, the value of number will be 3 and the value of
amount_left will be 11 (because if you take 3 quarters from 86 cents, that
leaves 11 cents):

compute_coins(25, number, amount_left);

Include a loop that lets the user repeat this computation for new input values
until the user says he or she wants to end the program. Hint: Use integer
division and the % operator to implement this function.

86 cents can be given as
3 quarter(s) 1 dime(s) and 1 penny(pennies)

void compute_coin(int coin_value, int& number, int& amount_left);
//Precondition: 0 < coin_value < 100; 0 <= amount_left < 100.
//Postcondition: number has been set equal to the maximum number of coins of
//denomination coin_value cents that can be obtained from amount_left cents.
//amount_left has been decreased by the value of the coins, that is,
//decreased by number*coin_value.

CH04.fm Page 220 Thursday, July 24, 2003 3:18 PM

project220.html

Programming Projects 221

4 Write a program that will read in a length in feet and inches and will output
the equivalent length in meters and centimeters. Use at least three functions:
one for input, one or more for calculating, and one for output. Include a loop
that lets the user repeat this computation for new input values until the user
says he or she wants to end the program. There are 0.3048 meters in a foot,
100 centimeters in a meter, and 12 inches in a foot.

5 Write a program like that of the previous exercise that converts from meters
and centimeters into feet and inches. Use functions for the subtasks.

6 (You should do the previous two programming projects before doing this
one.) Write a program that combines the functions in the previous two pro-
gramming projects. The program asks the user if he or she wants to convert
from feet and inches to meters and centimeters or from meters and centime-
ters to feet and inches. The program then performs the desired conversion.
Have the user respond by typing the integer 1 for one type of conversion and
2 for the other conversion. The program reads the user’s answer and then
executes an if-else statement. Each branch of the if-else statements will
be a function call. The two functions called in the if-else statement will
have function definitions that are very similar to the programs for the previ-
ous two programming projects. Thus, they will be fairly complicated func-
tion definitions that call other functions in their function bodies. Include a
loop that lets the user repeat this computation for new input values until the
user says he or she wants to end the program.

7 Write a program that will read in a weight in pounds and ounces and will out-
put the equivalent weight in kilograms and grams. Use at least three func-
tions: one for input, one or more for calculating, and one for output. Include
a loop that lets the user repeat this computation for new input values until the
user says he or she wants to end the program. There are 2.2046 pounds in a
kilogram, 1,000 grams in a kilogram, and 16 ounces in a pound.

8 Write a program like that of the previous exercise that converts from kilo-
grams and grams into pounds and ounces. Use functions for the subtasks.

9 (You should do the previous two programming projects before doing this one.)
Write a program that combines the functions of the previous two programming
projects. The program asks the user if he or she wants to convert from pounds
and ounces to kilograms and grams or from kilograms and grams to pounds
and ounces. The program then performs the desired conversion. Have the user
respond by typing the integer 1 for one type of conversion and 2 for the other.
The program reads the user’s answer and then executes an if-else statement.
Each branch of the if-else statement will be a function call. The two func-
tions called in the if-else statement will have function definitions that are
very similar to the programs for the previous two programming projects. Thus,

CH04.fm Page 221 Thursday, July 24, 2003 3:18 PM

project221a.html
project221b.html

222 4 FUNCTIONS FOR ALL SUBTASKS

they will be fairly complicated function definitions that call other functions in
their function bodies. Include a loop that lets the user repeat this computation
for new input values until the user says he or she wants to end the program.

10 (You need to do programming projects 6 and 9 before doing this program-
ming project.) Write a program that combines the functions of programming
projects 6 and 9. The program asks the user if he or she wants to convert
lengths or weights. If the user chooses lengths, then the program asks the user
if he or she wants to convert from feet and inches to meters and centimeters or
from meters and centimeters to feet and inches. If the user chooses weights, a
similar question about pounds, ounces, kilograms, and grams is asked. The
program then performs the desired conversion. Have the user respond by typ-
ing the integer 1 for one type of conversion and 2 for the other. The program
reads the user’s answer and then executes an if-else statement. Each
branch of the if-else statement will be a function call. The two functions
called in the if-else statement will have function definitions that are very
similar to the programs for programming projects 6 and 9. Thus, these func-
tions will be fairly complicated function definitions that call other functions
in their function bodies; however, they will be very easy to write by adapting
the programs you wrote for programming projects 6 and 9. Notice that your
program will have if-else statements embedded inside of if-else state-
ments, but only in an indirect way. The outer if-else statement will include
two function calls as its two branches. These two function calls will each in
turn include an if-else statement, but you need not think about that. They
are just function calls and the details are in a black box that you create when
you define these functions. If you try to create a four-way branch, you are
probably on the wrong track. You should only need to think about two-way
branches (even though the entire program does ultimately branch into four
cases). Include a loop that lets the user repeat this computation for new input
values until the user says he or she wants to end the program.

11 The area of an arbitrary triangle can be computed using the formula

where a, b, and c are the lengths of the sides, and s is the semiperimeter.

Write a void function that uses five parameters: three value parameters that
provide the lengths of the edges, and computes the area and perimeter (not
the semiperimeter) via reference parameters. Make your function robust.
Note that not all combinations of a, b, and c produce a triangle. Your function

area s s a–() s b–() s c–()=

s a b c+ +() 2⁄=

CH04.fm Page 222 Thursday, July 24, 2003 3:18 PM

Programming Projects 223

should produce correct results for legal data and reasonable results for illegal
combinations.

In cold weather, meteorologists report an index called the windchill factor,
that takes into account the wind speed and the temperature. The index
provides a measure of the chilling effect of wind at a given air temperature.
Windchill may be approximated by the formula:

W = 13.12 + 0.6215 *t − 11.37*v0.16 + 0.3965*t*v0.016

where

v = wind speed in m/sec
t = temperature in degrees Celsius: t <= 10

W = windchill index (in degrees Celsius)

Write a function that returns the windchill index. Your code should ensure
that the restriction on the temperature is not violated. Look up some weather
reports in back issues of a newspaper in your university library and compare
the windchill index you calculate with the result reported in the newspaper.

CH04.fm Page 223 Thursday, July 24, 2003 3:18 PM

	code links 1:
	code links 2:
	code links 3:
	code links 4:
	code links 5:
	code links 7:
	code links 6:
	code links 8:
	program projects 4:
	1:
	4:
	8:
	2:

