

3

Procedural
Abstraction and
Functions That
Return a Value

3.1 Top-Down Design 110

3.2 Predefined Functions 111

Using Predefined Functions 111
Type Casting 117
Older Form of Type Casting 118

Pitfall:

Integer Division Drops the
Fractional Part 119

3.3 Programmer-Defined Functions 120

Function Definitions 121
Alternate Form for Function Declarations 125

Pitfall:

Arguments in the Wrong Order 128
Function Definition-Syntax Summary 128
More about Placement of Function Definitions 131

3.4 Procedural Abstraction 132

The Black Box Analogy 132

Programming Tip:

Choosing Formal Parameter
Names 135

Case Study:

Buying Pizza 135

Programming Tip:

Use Pseudocode 142

3.5 Local Variables 143

The Small Program Analogy 144

Programming Example:

Experimental Pea Patch 147
Global Constants and Global Variables 147
Call-by-Value Formal Parameters Are Local Variables 148
Namespaces Revisited 152

Programming Example:

The Factorial Function 155

3.6 Overloading Function Names 157

Introduction to Overloading 157

Programming Example:

Revised Pizza-Buying Program 160
Automatic Type Conversion 161

Chapter Summary 166
Answers to Self-Test Exercises 166
Programming Projects 170

CH03.fm Page 109 Thursday, July 24, 2003 3:12 PM

3

Procedural Abstraction
and Functions That Return
a Value

There was a most ingenious Architect who had contrived a new method for building
Houses, by beginning at the Roof, and working downward to the Foundation.

J

ONATHAN

 S

WIFT

,

G

ULLIVER

’

S

 T

RAVELS

Introduction

A program can be thought of as consisting of subparts, such as obtaining the input
data, calculating the output data, and displaying the output data. C++, like most
programming languages, has facilities to name and code each of these subparts
separately. In C++ these subparts are called

functions.

 In this chapter we present the
basic syntax for one of the two main kinds of C++ functions—namely those
designed to compute a single value. We also discuss how these functions can aid in
program design. We begin with a discussion of a fundamental design principle.

Prerequisites

You should read Chapter 2 and at least look through Chapter 1 before reading this
chapter.

3.1 Top-Down Design

Remember that the way to write a program is to first design the method that the
program will use and to write out this method in English, as if the instructions were
to be followed by a human clerk. As we noted in Chapter 1, this set of instructions is
called an

algorithm

. A good plan of attack for designing the algorithm is to break
down the task to be accomplished into a few subtasks, decompose each of these
subtasks into smaller subtasks, and so forth. Eventually the subtasks become so
small that they are trivial to implement in C++. This method is called

top-down
design.

 (The method is also sometimes called

stepwise refinement,

 or more
graphically,

divide and conquer.

)
Using the top-down method, you design a program by breaking the program’s

task into subtasks and solving these subtasks by subalgorithms. Preserving this top-
down structure in your C++ program would make the program easier to understand,

CH03.fm Page 110 Thursday, July 24, 2003 3:12 PM

3.2 Predefined Functions

111

easier to change if need be, and as will become apparent, easier to write, test, and
debug. C++, like most programming languages, has facilities to include separate
subparts inside of a program. In other programming languages these subparts are
called

subprograms

 or

procedures

. In C++ these subparts are called

functions

.
One of the advantages of using functions to divide a programming task into sub-

tasks is that different people can work on the different subtasks. When producing a
very large program, such as a compiler or office-management system, this sort of
teamwork is needed if the program is to be produced in a reasonable amount of time.
We will begin our discussion of functions by showing you how to use functions that
were written by somebody else.

3.2 Predefined Functions

C++ comes with libraries of predefined functions that you can use in your programs.
Before we show you how to define functions, we will first show you how to use these
functions that are already defined for you.

Using Predefined Functions

We will use the

sqrt

 function to illustrate how you use predefined functions. The

sqrt

 function calculates the square root of a number. (The square root of a number
is that number which, when multiplied by itself, will produce the number you started
out with. For example, the square root of 9 is 3 because 3

2

is equal to 9.) The
function

sqrt

 starts with a number, such as 9.0, and computes its square root, in this
case 3.0. The value the function starts out with is called its

argument.

 The value it
computes is called the

value returned.

 Some functions may have more than one
argument, but no function has more than one value returned. If you think of the
function as being similar to a small program, then the arguments are analogous to
the input and the value returned is analogous to the output.

The syntax for using functions in your program is simple. To set a variable
named

the_root

 equal to the square root of

9.0

, you can use the following assign-
ment statement:

the_root = sqrt(9.0);

The expression

sqrt(9.0)

 is called a

function call

 (or if you want to be fancy
you can also call it a

function invocation

). An argument in a function call can be a
constant, such as

9.0

, or a variable, or a more complicated expression. A function
call is an expression that can be used like any other expression. You can use a func-
tion call wherever it is legal to use an expression of the type specified for the value

functions for
teamwork

argument
value returned

function call

CH03.fm Page 111 Thursday, July 24, 2003 3:12 PM

112

3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

returned by the function. For example, the value returned by

sqrt

 is of type

double

.
Thus, the following is legal (although perhaps stingy):

bonus = sqrt(sales)/10;

sales

 and

bonus

 are variables that would normally be of type

double

. The
function call

sqrt(sales)

 is a single item, just as if it were enclosed in parentheses.
Thus, the above assignment statement is equivalent to:

bonus = (sqrt(sales))/10;

You can also use a function call directly in a

cout

 statement, as in the following:

cout << "The side of a square with area " << area
 << " is " << sqrt(area);

Display 3.1 contains a complete program that uses the predefined function

sqrt

.
The program computes the size of the largest square dog house that can be built for
the amount of money the user is willing to spend. The program asks the user for an
amount of money, and then determines how many square feet of floor space can be
purchased for that amount of money. That calculation yields an area in square feet
for the floor area of the dog house. The function

sqrt

 yields the length of one side of
the dog house floor.

Notice that there is another new element in the program in Display 3.1:

#include <cmath>

Function Call
A function call is an expression consisting of the function name followed by
arguments enclosed in parentheses. If there is more than one argument, the
arguments are separated by commas. A function call is an expression that can be
used like any other expression of the type specified for the value returned by the
function.
Syntax

Function_Name(Argument_List)
where the Argument_List is a comma-separated list of arguments:

Argument_1, Argument_2, . . . , Argument_Last

Examples

side = sqrt(area);
cout << "2.5 to the power 3.0 is "
 << pow(2.5, 3.0);

CH03.fm Page 112 Thursday, July 24, 2003 3:12 PM

3.2 Predefined Functions

113

Display 3.1 A Function Call

//Computes the size of a dog house that can be purchased
//given the user’s budget.
#include <iostream>
#include <cmath>
using namespace std;

int main()
{
 const double COST_PER_SQ_FT = 10.50;
 double budget, area, length_side;

 cout << "Enter the amount budgeted for your dog house $";
 cin >> budget;

 area = budget/COST_PER_SQ_FT;
 length_side = sqrt(area);

 cout.setf(ios::fixed);
 cout.setf(ios::showpoint);
 cout.precision(2);
 cout << "For a price of $" << budget << endl
 << "I can build you a luxurious square dog house\n"
 << "that is " << length_side
 << " feet on each side.\n";

 return 0;
}

Sample Dialogue

Enter the amount budgeted for your dog house $25.00
For a price of $25.00
I can build you a luxurious square dog house
that is 1.54 feet on each side.

CH03.fm Page 113 Thursday, July 24, 2003 3:12 PM

code113.html

114 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

That line looks very much like the line

#include <iostream>

and, in fact, these two lines are the same sort of thing. As we noted in Chapter 2,
such lines are called include directives. The name inside the angular brackets < >
is the name of a file known as a header file. A header file for a library provides the
compiler with certain basic information about the library, and an include directive
delivers this information to the compiler. This enables the linker to find object code
for the functions in the library so that it can correctly link the library to your
program. For example, the library iostream contains the definitions of cin and cout,
and the header file for the iostream library is called iostream. The math library
contains the definition of the function sqrt and a number of other mathematical
functions, and the header file for this library is cmath. If your program uses a
predefined function from some library, then it must contain a directive that names
the header file for that library, such as the following:

#include <cmath>

Be sure to follow the syntax illustrated in our examples. Do not forget the sym-
bols < and >; they are the same symbols as the less-than and greater-than symbols.
There should be no space between the < and the filename, nor between the filename
and the >. Also, some compilers require that directives have no spaces around the #,
so it is always safest to place the # at the very start of the line and not to put any
space between the # and the word include. These #include directives are nor-
mally placed at the beginning of the file containing your program.

As we noted before, the directive

#include <iostream>

requires that you also use the following using directive:

using namespace std;

This is because the definitions of names like cin and cout, which are given in
iostream, define those names to be part of the std namespace. This is true of most
standard libraries. If you have an include directive for a standard library such as

#include <cmath>

then you probably need the using directive:

using namespace std;

There is no need to use multiple copes of this using directive when you have
multiple include directives.

Usually, all you need to do to use a library is to place an include directive and
a using directive for that library in the file with your program. If things work with

#include directive
and header file

#include may
not be enough

CH03.fm Page 114 Thursday, July 24, 2003 3:12 PM

3.2 Predefined Functions 115

just the include directive and the using directive, you need not worry about doing
anything else. However, for some libraries on some systems you may need to give
additional instructions to the compiler or to explicitly run a linker program to link in
the library. Early C and C++ compilers did not automatically search all libraries for
linking. The details vary from one system to another, so you will have to check your
manual or a local expert to see exactly what is necessary.

Some people will tell you that include directives are not processed by the com-
piler but are processed by a preprocessor. They’re right, but the difference is more
of a word game than anything that need concern you. On almost all compilers the
preprocessor is called automatically when you compile your program.

A few predefined functions are described in Display 3.2. More predefined func-
tions are described in Appendix 4. Notice that the absolute value functions abs and
labs are in the library with header file cstdlib, so any program that uses either of
these functions must contain the following directive:

#include <cstdlib>

All the other functions listed are in the library with header file cmath, just like sqrt.
Also notice that there are three absolute value functions. If you want to produce

the absolute value of a number of type int, you use abs; if you want to produce the
absolute value of a number of type long, you use labs; and if you want to produce
the absolute value of a number of type double, you use fabs. To complicate things
even more, abs and labs are in the library with header file cstdlib, while fabs is
in the library with header file cmath. fabs is an abbreviation for floating-point abso-
lute value. Recall that numbers with a fraction after the decimal point, such as num-
bers of type double, are often called floating-point numbers.

Another example of a predefined function is pow, which is in the library with
header file cmath. The function pow can be used to do exponentiation in C++. For
example, if you want to set a variable result equal to xy, you can use the following:

result = pow(x, y);

Hence, the following three lines of program code will output the number 9.0 to the
screen, because (3.0)2.0 is 9.0:

double result, x = 3.0, y = 2.0;
result = pow(x, y);
cout << result;

Notice that the above call to pow returns 9.0, not 9. The function pow always
returns a value of type double, not of type int. Also notice that the function pow
requires two arguments. A function can have any number of arguments. Moreover,
every argument position has a specified type and the argument used in a function call

preprocessor

abs and labs

fabs

pow

arguments have a type

CH03.fm Page 115 Thursday, July 24, 2003 3:12 PM

116 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

should be of that type. In many cases, if you use an argument of the wrong type, then
some automatic type conversion will be done for you by C++. However, the results
may not be what you intended. When you call a function, you should use arguments
of the type specified for that function. One exception to this caution is the automatic
conversion of arguments from type int to type double. In many situations, includ-
ing calls to the function pow, you can safely use an argument of type int when an
argument of type double is specified.

Many implementations of pow have a restriction on what arguments can be used.
In these implementations, if the first argument to pow is negative, then the second
argument must be a whole number. Since you probably have enough other things to
worry about when learning to program, it might be easiest and safest to use pow only
when the first argument is nonnegative.

Display 3.2 Some Predefined Functions

Name Description Type of
Arguments

Type of
Value
Returned

Example Value Library
Header

sqrt square root double double sqrt(4.0) 2.0 cmath

pow powers double double pow(2.0,3.0) 8.0 cmath

abs absolute value
for int

int int abs(-7)
abs(7)

7
7

cstdlib

labs absolute value
for long

long long labs(-70000)
labs(70000)

70000
70000

cstdlib

fabs absolute value
for double

double double fabs(-7.5)
fabs(7.5)

7.5
7.5

cmath

ceil ceiling
(round up)

double double ceil(3.2)
ceil(3.9)

4.0
4.0

cmath

floor floor
(round down)

double double floor(3.2)
floor(3.9)

3.0
3.0

cmath

restrictions
on pow

CH03.fm Page 116 Thursday, July 24, 2003 3:12 PM

3.2 Predefined Functions 117

Type Casting

Recall that 9/2 is integer division, and evaluates to 4, not 4.5. If you want division
to produce an answer of type double (that is, including the fractional part after the
decimal point), then at least one of the two numbers in the division must be of type
double. For example, 9/2.0 evaluates to 4.5. If one of the two numbers is given
as a constant, you can simply add a decimal point and a zero to one (or both)
numbers, and the division will then produce a value that includes the digits after
the decimal point.

But what if both of the operands in a division are variables, as in the following?

int total_candy, number_of_people;
double candy_per_person;
<The program somehow sets the value of total_candy to 9

and the value of number_of_people to 2.
It does not matter how the program does this.>

candy_per_person = total_candy/number_of_people;

Unless you convert the value in one of the variables total_candy or number_of_people
to a value of type double, then the result of the division will be 4, not 4.5 as it should
be. The fact that the variable candy_per_person is of type double does not help.
The value of 4 obtained by division will be converted to a value of type double before
it is stored in the variable candy_per_person, but that will be too late. The 4 will be
converted to 4.0 and the final value of candy_per_person will be 4.0, not 4.5. If
one of the quantities in the division were a constant, you could add a decimal point and
a zero to convert the constant to type double, but in this case both quantities are
variables. Fortunately, there is a way to convert from type int to type double that you
can use with either a constant or a variable.

In C++ you can tell the computer to convert a value of type int to a value
of type double. The way that you write “Convert the value 9 to a value of type
double” is

static_cast<double>(9)

The notation static_cast<double> is a kind of predefined function that converts a
value of some other type, such as 9, to a value of type double, in this case 9.0. An
expression such as static_cast<double>(9) is called a type cast. You can use a
variable or other expression in place of the 9. You can use other type names besides
double to obtain a type cast to some type other than double, but we will postpone
that topic until later.

For example, in the following we use a type cast to change the type of 9 from
int to double and so the value of answer is set to 4.5:

double answer;
answer = static_cast<double>(9)/2;

Division may
require the
type double

type casting

CH03.fm Page 117 Thursday, July 24, 2003 3:12 PM

118 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

Type casting applied to a constant, such as 9, can make your code easier to read,
since it makes your intended meaning clearer. But type casting applied to constants
of type int does not give you any additional power. You can use 9.0 instead of
static_cast<double>(9) when you want to convert 9 to a value of type double.
However, if the division involves only variables, then type casting may be your only
sensible alternative. Using type casting, we can rewrite our earlier example so that
the variable candy_per_person receives the correct value of 4.5, instead of 4.0; in
order to do this, the only change we need is the replacement of total_candy with
static_cast<double>(total_candy), as shown in what follows:

int total_candy, number_of_people;
double candy_per_person;
<The program somehow sets the value of total_candy to 9

and the value of number_of_people to 2.
It does not matter how the program does this.>

candy_per_person =
 static_cast<double>(total_candy)/number_of_people;

Notice the placement of parentheses in the type casting used in the above code.
You want to do the type casting before the division so that the division operator is
working on a value of type double. If you wait until after the division is completed,
then the digits after the decimal point are already lost. If you mistakenly use the fol-
lowing for the last line of the above code, then the value of candy_per_person will
be 4.0, not 4.5.

Older Form of Type Casting

The use of static_cast<double>, as we discussed in the previous section, is the
preferred way to perform a type cast. However, older versions of C++ used a
different notation for type casting. This older notation simply uses the type name as
if it were a function name, so double(9) returns 9.0. Thus, if candy_per_person
is a variable of type double, and if both total_candy and number_of_people are
variables of type int, then the following two assignment statements are equivalent:

candy_per_person =
 static_cast<double>(total_candy)/number_of_people;

and

candy_per_person =
 double(total_candy)/number_of_people;

Warning!

candy_per_person =

static_cast<double>(total_candy/number_of_people); //WRONG!

double used
as a function

CH03.fm Page 118 Thursday, July 24, 2003 3:12 PM

3.2 Predefined Functions 119

Although static_cast<double>(total_candy) and double(total_candy)
are more or less equivalent, you should use the static_cast<double> form, since the
form double(total_candy) may be discontinued in later versions of C++.

PITFALL Integer Division Drops the Fractional Part

In integer division, such as computing 11/2, it is easy to forget that 11/2 gives 5,
not 5.5. The result is the next lower integer, regardless of the subsequent use of this
result. For example,

double d;
d = 11/2;

Here, the division is done using integer divide; the result of the division is 5, which
is converted to double, then assigned to d. The fractional part is not generated.
Observe that the fact that d is of type double does not change the division result.
The variable d receives the value 5.0, not 5.5.

A Function to Convert from int to double
The notation static_cast<double> can be used as a predefined function and
will convert a value of some other type to a value of type double. For example,
static_cast<double>(2) returns 2.0. This is called type casting. (Type casting
can be done with types other than double, but until later in this book, we will only
do type casting with the type double.)
Syntax

static_cast<double>(Expression_of_Type_int)

Example

int total_pot, number_of_winners;
double your_winnings;
 . . .
your_winnings =
 static_cast<double>(total_pot)/number_of_winners;

CH03.fm Page 119 Thursday, July 24, 2003 3:12 PM

120 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

SELF-TEST EXERCISES

1 Determine the value of each of the following arithmetic expressions:

2 Convert each of the following mathematical expressions to a C++ arithmetic
expression:

3 Write a complete C++ program to compute and output the square root of PI;
PI is approximately 3.14159. The const double PI is predefined in cmath.
You are encouraged to use this predefined constant.

4 Write and compile short programs to test the following issues:

a. Determine if your compiler will allow the #include <iostream> anywhere
on the line, or if the # needs to be flush with the left margin.

b. Determine whether your compiler will allow space between the # and the
include.

3.3 Programmer-Defined Functions

A custom tailored suit always fits better than one off the rack.

MY UNCLE, THE TAILOR

In the previous section we told you how to use predefined functions. In this section
we tell you how to define your own functions.

sqrt(16.0) sqrt(16) pow(2.0, 3.0)

pow(2, 3) pow(2.0, 3) pow(1.1, 2)

abs(3) abs(−3) abs(0)

fabs(−3.0) fabs(−3.5) fabs(3.5)

ceil(5.1) ceil(5.8) floor(5.1)

floor(5.8) pow(3.0, 2)/2.0 pow(3.0, 2)/2

7/abs(−2) (7 + sqrt(4.0))/3.0 sqrt(pow(3, 2))

x y+ xy 7+ area fudge+

time tide+
nobody

-------------------------------- b b2 4ac–+–
2a

------------------------------------- x y–

CH03.fm Page 120 Thursday, July 24, 2003 3:12 PM

3.3 Programmer-Defined Functions 121

Function Definitions

You can define your own functions, either in the same file as the main part of your
program or in a separate file so that the functions can be used by several different
programs. The definition is the same in either case, but for now, we will assume that
the function definition will be in the same file as the main part of your program.

Display 3.3 contains a sample function definition in a complete program that
demonstrates a call to the function. The function is called total_cost. The function
takes two arguments—the price for one item and number of items for a purchase.
The function returns the total cost, including sales tax, for that many items at the
specified price. The function is called in the same way a predefined function is
called. The description of the function, which the programmer must write, is a bit
more complicated.

The description of the function is given in two parts that are called the function
declaration and the function definition. The function declaration (also known as the
function prototype) describes how the function is called. C++ requires that either
the complete function definition or the function declaration appears in the code
before the function is called. The function declaration for the function total_cost
is in color at the top of Display 3.3 and is reproduced below:

double total_cost(int number_par, double price_par);

The function declaration tells you everything you need to know in order to write a
call to the function. It tells you the name of the function, in this case total_cost. It
tells you how many arguments the function needs and what type the arguments
should be; in this case, the function total_cost takes two arguments, the first one
of type int and the second one of type double. The identifiers number_par and
price_par are called formal parameters. A formal parameter is used as a kind of
blank, or placeholder, to stand in for the argument. When you write a function
declaration you do not know what the arguments will be, so you use the formal
parameters in place of the arguments. The names of the formal parameters can be
any valid identifiers, but for a while we will end our formal parameter names with
_par so that it will be easier for us to distinguish them from other items in a
program. Notice that a function declaration ends with a semicolon.

The first word in a function declaration specifies the type of the value returned
by the function. Thus, for the function total_cost, the type of the value returned is
double.

As you can see, the function call in Display 3.3 satisfies all the requirements
given by its function declaration. Let’s take a look. The function call is in the
following line:

bill = total_cost(number, price);

function declaration

formal parameter

type for
value returned

CH03.fm Page 121 Thursday, July 24, 2003 3:12 PM

122 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

Display 3.3 A Function Definition (part 1 of 2)

#include <iostream>
using namespace std;

double total_cost(int number_par, double price_par);
//Computes the total cost, including 5% sales tax,
//on number_par items at a cost of price_par each.

int main()
{
 double price, bill;
 int number;

 cout << "Enter the number of items purchased: ";
 cin >> number;
 cout << "Enter the price per item $";
 cin >> price;

 bill = total_cost(number, price);

 cout.setf(ios::fixed);
 cout.setf(ios::showpoint);
 cout.precision(2);
 cout << number << " items at "
 << "$" << price << " each.\n"
 << "Final bill, including tax, is $" << bill
 << endl;

 return 0;
}

double total_cost(int number_par, double price_par)
{
 const double TAX_RATE = 0.05; //5% sales tax
 double subtotal;

 subtotal = price_par * number_par;
 return (subtotal + subtotal*TAX_RATE);
}

function declaration

function call

function
body

function
definition

function
heading

CH03.fm Page 122 Thursday, July 24, 2003 3:12 PM

code122.html

3.3 Programmer-Defined Functions 123

The function call is the expression on the right-hand side of the equal sign. The
function name is total_cost, and there are two arguments: The first argument is of
type int, the second argument is of type double, and since the variable bill is of
type double, it looks like the function returns a value of type double (which it
does). All that detail is determined by the function declaration.

The compiler does not care whether there’s a comment along with the function
declaration, but you should always include a comment that explains what value is
returned by the function.

Display 3.3 A Function Definition (part 2 of 2)

Sample Dialogue

Function Declaration
A function declaration tells you all you need to know to write a call to the function. A
function declaration is required to appear in your code prior to a call to a function
whose definition has not yet appeared. Function declarations are normally placed
before the main part of your program.
Syntax

Type_Returned Function_Name(Parameter_List);
Function_Declaration_Comment

where the Parameter_List is a comma-separated list of parameters:
 Type_1 Formal_Parameter_1, Type_2 Formal_Parameter_2,...

..., Type_Last Formal_Parameter_Last

Example

double total_weight(int number, double weight_of_one);
//Returns the total weight of number items that
//each weigh weight_of_one.

Enter the number of items purchased: 2
Enter the price per item: $10.10
2 items at $10.10 each.
Final bill, including tax, is $21.21

function declaration
comment

Do not forget
this semicolon.

CH03.fm Page 123 Thursday, July 24, 2003 3:12 PM

124 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

In Display 3.3 the function definition is in color at the bottom of the display. A
function definition describes how the function computes the value it returns. If you
think of a function as a small program within your program, then the function defini-
tion is like the code for this small program. In fact, the syntax for the definition of a
function is very much like the syntax for the main part of a program. A function defini-
tion consists of a function header followed by a function body. The function header
is written the same way as the function declaration, except that the header does not
have a semicolon at the end. This makes the header a bit repetitious, but that’s OK.

Although the function declaration tells you all you need to know to write a func-
tion call, it does not tell you what value will be returned. The value returned is deter-
mined by the statements in the function body. The function body follows the
function header and completes the function definition. The function body consists of
declarations and executable statements enclosed within a pair of braces. Thus, the
function body is just like the body of the main part of a program. When the function
is called, the argument values are plugged in for the formal parameters and then the
statements in the body are executed. The value returned by the function is determined
when the function executes a return statement. (The details of this “plugging in”
will be discussed in a later section.)

A return statement consists of the keyword return followed by an expres-
sion. The function definition in Display 3.3 contains the following return state-
ment:

return (subtotal + subtotal*TAX_RATE);

When this return statement is executed, the value of the following expression is
returned as the value of the function call:

(subtotal + subtotal*TAX_RATE)

The parentheses are not needed. The program will run exactly the same if the
return statement is written as follows:

return subtotal + subtotal*TAX_RATE;

However, on larger expressions, the parentheses make the return statement easier
to read. For consistency, some programmers advocate using these parentheses even
on simple expressions. In the function definition in Display 3.3 there are no
statements after the return statement, but if there were, they would not be executed.
When a return statement is executed, the function call ends.

Let’s see exactly what happens when the following function call is executed in
the program shown in Display 3.3:

bill = total_cost(number, price);

function definition

function header

function body

return statement

anatomy of a
function call

CH03.fm Page 124 Thursday, July 24, 2003 3:12 PM

3.3 Programmer-Defined Functions 125

First, the values of the arguments number and price are plugged in for the formal
parameters; that is, the values of the arguments number and price are substituted in for
number_par and price_par. In the Sample Dialogue, number receives the value 2 and
price receives the value 10.10. So 2 and 10.10 are substituted for number_par
and price_par, respectively. This substitution process is known as the call-by-value
mechanism, and the formal parameters are often referred to as call-by-value formal
parameters, or simply as call-by-value parameters. There are three things that you
should note about this substitution process:

1. It is the values of the arguments that are plugged in for the formal param-
eters. If the arguments are variables, the values of the variables, not the
variables themselves, are plugged in.

2. The first argument is plugged in for the first formal parameter in the
parameter list, the second argument is plugged in for the second formal
parameter in the list, and so forth.

3. When an argument is plugged in for a formal parameter (for instance
when 2 is plugged in for number_par), the argument is plugged in for all
instances of the formal parameter that occur in the function body (for
instance 2 is plugged in for number_par each time it appears in the func-
tion body).

The entire process involved in the function call shown in Display 3.3 is
described in detail in Display 3.4.

Alternate Form for Function Declarations

You are not required to list formal parameter names in a function declaration. The
following two function declarations are equivalent:

double total_cost(int number_par, double price_par);

and the equivalent

double total_cost(int, double);

We will always use the first form so that we can refer to the formal parameters in
the comment that accompanies the function declaration. However, you will often see
the second form in manuals that describe functions.1

This alternate form applies only to function declarations. Function headers must
always list the formal parameter names.

1 All C++ needs to be able to enable your program to link to the library or your function is the
function name and sequence of types of the formal parameters. The formal parameter names are
important only to the function definition. However, programs should communicate to programmers
as well as to compilers. It is frequently very helpful in understanding a function to use the name
that the programmer attaches to the function’s data.

call-by-value

CH03.fm Page 125 Thursday, July 24, 2003 3:12 PM

126 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

Display 3.4 Details of a Function Call (part 1 of 2)

Anatomy of the Function Call in Display 3.3

0 Before the function is called, the values of the variables number and price
 are set to 2 and 10.10, by cin statements (as you can see in the Sample
 Dialogue in Display 3.3).

1 The following statement, which includes a function call, begins executing:

bill = total_cost(number, price);

2 The value of number (which is 2) is plugged in for number_par and the value
 of price (which is 10.10) is plugged in for price_par:

double total_cost(int number_par, double price_par)
{
 const double TAX_RATE = 0.05; //5% sales tax
 double subtotal;

 subtotal = price_par * number_par;
 return (subtotal + subtotal*TAX_RATE);
}

 producing the following:

double total_cost(int 2, double 10.10)
{
 const double TAX_RATE = 0.05; //5% sales tax
 double subtotal;

 subtotal = 10.10 * 2;
 return (subtotal + subtotal*TAX_RATE);
}

plug in
value of
price

plug in
value of
number

CH03.fm Page 126 Thursday, July 24, 2003 3:12 PM

3.3 Programmer-Defined Functions 127

A Function Is Like a Small Program
To understand functions, keep the following three points in mind:

■ A function definition is like a small program and calling the function is the
same thing as running this “small program.”

■ A function uses formal parameters, rather than cin, for input. The arguments
to the function are the input and they are plugged in for the formal parameters.

■ A function (of the kind discussed in this chapter) does not normally send
any output to the screen, but it does send a kind of “output” back to the
program. The function returns a value, which is like the “output” for the
function. The function uses a return statement instead of a cout state-
ment for this “output.”

Display 3.4 Details of a Function Call (part 2 of 2)

Anatomy of the Function Call in Display 3.3 (concluded)

3 The body of the function is executed, that is, the following is executed:

{
 const double TAX_RATE = 0.05; //5% sales tax
 double subtotal;

 subtotal = 10.10 * 2;
 return (subtotal + subtotal*TAX_RATE);
}

4 When the return statement is executed, the value of the expression after
 return is the value returned by the function. In this case when

 return (subtotal + subtotal*TAX_RATE);

 is executed, the value of (subtotal + subtotal*TAX_RATE), which is
 21.21, is returned by the function call

 total_cost(number, price)

 and so the value of bill (on the left-hand side of the equal sign) is set equal to
 21.21 when the following statement finally ends:

 bill = total_cost(number, price);

CH03.fm Page 127 Thursday, July 24, 2003 3:12 PM

128 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

PITFALL Arguments in the Wrong Order

When a function is called, the computer substitutes the first argument for the first
formal parameter, the second argument for the second formal parameter, and so
forth. It does not check for reasonableness. If you confuse the order of the arguments
in a function call, the program will not do what you want it to do. In order to see
what can go wrong, consider the program in Display 3.5. The programmer who
wrote that program carelessly reversed the order of the arguments in the call to the
function grade. The function call should have been

letter_grade = grade(score, need_to_pass);

This is the only mistake in the program. Yet, some poor student has been mistakenly
failed in a course because of this careless mistake. The function grade is so simple
that you might expect this mistake to be discovered by the programmer when the
program is tested. However, if grade were a more complicated function, the mistake
might easily go unnoticed.

If the type of an argument does not match the formal parameter, then the com-
piler may give you a warning message. Unfortunately, not all compilers will give
such warning messages. Moreover, in a situation like the one in Display 3.5, no com-
piler will complain about the ordering of the arguments, because the function argu-
ment types will match the formal parameter types no matter what order the
arguments are in.

Function Definition-Syntax Summary

Function declarations are normally placed before the main part of your program and
function definitions are normally placed after the main part of your program (or, as we
will see later in this book, in a separate file). Display 3.6 gives a summary of the syntax
for a function declaration and definition. There is actually a bit more freedom than that
display indicates. The declarations and executable statements in the function definition
can be intermixed, as long as each variable is declared before it is used. The rules about
intermixing declarations and executable statements in a function definition are the
same as they are for the main part of a program. However, unless you have reason to do
otherwise, it is best to place the declarations first, as indicated in Display 3.6.

Since a function does not return a value until it executes a return statement, a
function must contain one or more return statements in the body of the function. A
function definition may contain more than one return statement. For example, the
body of the code might contain an if-else statement, and each branch of the if-else
statement might contain a different return statement, as illustrated in Display 3.5.

return
statement

CH03.fm Page 128 Thursday, July 24, 2003 3:12 PM

3.3 Programmer-Defined Functions 129

Display 3.5 Incorrectly Ordered Arguments (part 1 of 2)

//Determines user’s grade. Grades are Pass or Fail.
#include <iostream>
using namespace std;

char grade(int received_par, int min_score_par);
//Returns ’P’ for passing, if received_par is
//min_score_par or higher. Otherwise returns ’F’ for failing.

int main()
{
 int score, need_to_pass;
 char letter_grade;

 cout << "Enter your score"
 << " and the minimum needed to pass:\n";
 cin >> score >> need_to_pass;

 letter_grade = grade(need_to_pass, score);

 cout << "You received a score of " << score << endl
 << "Minimum to pass is " << need_to_pass << endl;

 if (letter_grade == ’P’)
 cout << "You Passed. Congratulations!\n";
 else
 cout << "Sorry. You failed.\n";

 cout << letter_grade
 << " will be entered in your record.\n";

 return 0;
}

char grade(int received_par, int min_score_par)
{
 if (received_par >= min_score_par)
 return ’P’;
 else
 return ’F’;
}

CH03.fm Page 129 Thursday, July 24, 2003 3:12 PM

code129.html

130 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

Any reasonable pattern of spaces and line breaks in a function definition will be
accepted by the compiler. However, you should use the same rules for indenting and
laying out a function definition as you use for the main part of a program. In particu-
lar, notice the placement of braces {} in our function definitions and in Display 3.6.

Display 3.6 Syntax for a Function That Returns a Value

Display 3.5 Incorrectly Ordered Arguments (part 2 of 2)

Sample Dialogue

Enter your score and the minimum needed to pass:
98 60
You received a score of 98
Minimum to pass is 60
Sorry. You failed.
F will be entered in your record.

Function Declaration

Type_Returned Function_Name(Parameter_List);
Function_Declaration_Comment

Function Definition

Type_Returned Function_Name(Parameter_List)
{
 Declaration_1
 Declaration_2
 . . .
 Declaration_Last
 Executable_Statement_1
 Executable_Statement_2
 . . .
 Executable_Statement_Last
}

Must include
one or more
return statements.

function header

body

spacing and
line breaks

CH03.fm Page 130 Thursday, July 24, 2003 3:12 PM

3.3 Programmer-Defined Functions 131

The opening and closing braces that mark the ends of the function body are each
placed on a line by themselves. This sets off the function body.

More about Placement of Function Definitions

We have discussed where function definitions and function declarations are normally
placed. Under normal circumstances these are the best locations for the function
declarations and function definitions. However, the compiler will accept programs
with the function definitions and function declarations in certain other locations. A
more precise statement of the rules is as follows: Each function call must be
preceded by either a function declaration for that function or the definition of the
function. For example, if you place all of your function definitions before the main
part of the program, then you need not include any function declarations. Knowing
this more general rule will help you to understand C++ programs you see in some
other books, but you should follow the example of the programs in this book. The
style we are using sets the stage for learning how to build your own libraries of
functions, which is the style that most C++ programmers use.

SELF-TEST EXERCISES

5 What is the output produced by the following program?

#include <iostream>
using namespace std;
char mystery(int first_par, int second_par);
int main()
{
 cout << mystery(10, 9) << "ow\n";
 return 0;
}

char mystery(int first_par, int second_par)
{
 if (first_par >= second_par)
 return ’W’;
 else
 return ’H’;
}

6 Write a function declaration and a function definition for a function that
takes three arguments, all of type int, and that returns the sum of its three
arguments.

CH03.fm Page 131 Thursday, July 24, 2003 3:12 PM

132 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

7 Write a function declaration and a function definition for a function that
takes one argument of type int and one argument of type double, and that
returns a value of type double that is the average of the two arguments.

8 Write a function declaration and a function definition for a function that takes
one argument of type double. The function returns the character value ’P’ if
its argument is positive and returns ’N’ if its argument is zero or negative.

9 Carefully describe the call-by-value parameter mechanism.

10 List the similarities and differences between use of a predefined (that is,
library) function and a user-defined function.

3.4 Procedural Abstraction

The cause is hidden, but the result is well known.

OVID, METAMORPHOSES IV

The Black Box Analogy

A person who uses a program should not need to know the details of how the
program is coded. Imagine how miserable your life would be if you had to know and
remember the code for the compiler you use. A program has a job to do, such as
compile your program or check the spelling of words in your paper. You need to
know what the program’s job is so that you can use the program, but you do not (or
at least should not) need to know how the program does its job. A function is like a
small program and should be used in a similar way. A programmer who uses a
function in a program needs to know what the function does (such as calculate a
square root or convert a temperature from degrees Fahrenheit to degrees Celsius),
but should not need to know how the function accomplishes its task. This is often
referred to as treating the function like a black box.

Calling something a black box is a figure of speech intended to convey the
image of a physical device that you know how to use but whose method of operation
is a mystery, because it is enclosed in a black box and you cannot see inside the box
(and cannot pry it open!). If a function is well designed, the programmer can use the
function as if it were a black box. All the programmer needs to know is that if he or
she puts appropriate arguments into the black box, then an appropriate returned
value will come out of the black box. Designing a function so that it can be used as a
black box is sometimes called information hiding to emphasize the fact that the
programmer acts as if the body of the function were hidden from view.

black box

information hiding

CH03.fm Page 132 Thursday, July 24, 2003 3:12 PM

3.4 Procedural Abstraction 133

Display 3.7 contains the function declaration and two different definitions for a
function named new_balance. As the function declaration comment explains, the
function new_balance calculates the new balance in a bank account when simple
interest is added. For instance, if an account starts with $100, and 4.5% interest is
posted to the account, then the new balance is $104.50. Hence, the following code
will change the value of vacation_fund from 100.00 to 104.50:

vacation_fund = 100.00;
vacation_fund = new_balance(vacation_fund, 4.5);

Display 3.7 Definitions That Are Black-Box Equivalent

Function Declaration

double new_balance(double balance_par, double rate_par);
//Returns the balance in a bank account after
//posting simple interest. The formal parameter balance_par is
//the old balance. The formal parameter rate_par is the interest rate.
//For example, if rate_par is 5.0, then the interest rate is 5%
//and so new_balance(100, 5.0) returns 105.00.

Definition 1

double new_balance(double balance_par, double rate_par)

{
 double interest_fraction, interest;

 interest_fraction = rate_par/100;
 interest = interest_fraction*balance_par;
 return (balance_par + interest);
}

Definition 2

double new_balance(double balance_par, double rate_par)

{
 double interest_fraction, updated_balance;

 interest_fraction = rate_par/100;
 updated_balance = balance_par*(1 + interest_fraction);
 return updated_balance;
}

CH03.fm Page 133 Thursday, July 24, 2003 3:12 PM

134 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

It does not matter which of the implementations of new_balance shown in Display
3.7 that a programmer uses. The two definitions produce functions that return
exactly the same values. We may as well place a black box over the body of the
function definition so that the programmer does not know which implementation is
being used. In order to use the function new_balance, all the programmer needs to
read is the function declaration and the accompanying comment.

Writing and using functions as if they were black boxes is also called proce-
dural abstraction. When programming in C++ it might make more sense to call it
functional abstraction. However, procedure is a more general term than function.
Computer scientists use the term procedure for all “function-like” sets of instruc-
tions, and so they use the term procedural abstraction. The term abstraction is
intended to convey the idea that, when you use a function as a black box, you are
abstracting away the details of the code contained in the function body. You can call
this technique the black box principle or the principle of procedural abstraction or
information hiding. The three terms mean the same thing. Whatever you call this
principle, the important point is that you should use it when designing and writing
your function definitions.

Procedural Abstraction
When applied to a function definition, the principle of procedural abstraction means
that your function should be written so that it can be used like a black box. This means
that the programmer who uses the function should not need to look at the body of
the function definition to see how the function works. The function declaration and
the accompanying comment should be all the programmer needs to know in order
to use the function. To ensure that your function definitions have this important
property, you should strictly adhere to the following rules:

How to Write a Black-Box Function Definition (That Returns a Value)

■ The function declaration comment should tell the programmer any and all
conditions that are required of the arguments to the function and should
describe the value that is returned by the function when called with these
arguments.

■ All variables used in the function body should be declared in the function
body. (The formal parameters do not need to be declared, because they are
listed in the function declaration.)

procedural abstraction

CH03.fm Page 134 Thursday, July 24, 2003 3:12 PM

3.4 Procedural Abstraction 135

Programming TIP
Choosing Formal Parameter Names

The principle of procedural abstraction says that functions should be self-contained
modules that are designed separately from the rest of the program. On large pro-
gramming projects a different programmer may be assigned to write each function.
The programmer should choose the most meaningful names he or she can find for
formal parameters. The arguments that will be substituted for the formal parameters
may well be variables in the main part of the program. These variables should also be
given meaningful names, often chosen by someone other than the programmer who
writes the function definition. This makes it likely that some or all arguments will have
the same names as some of the formal parameters. This is perfectly acceptable. No
matter what names are chosen for the variables that will be used as arguments, these
names will not produce any confusion with the names used for formal parameters.
After all, the functions will use only the values of the arguments. When you use a
variable as a function argument, the function takes only the value of the variable and
disregards the variable name.

Now that you know you have complete freedom in choosing formal parameter
names, we will stop placing a “_par” at the end of each formal parameter name. For
example, in Display 3.8 we have rewritten the definition for the function total_cost
from Display 3.3 so that the formal parameters are named number and price rather
than number_par and price_par. If you replace the function declaration and defini-
tion of the function total_cost that appear in Display 3.3 with the versions in Dis-
play 3.8, then the program will perform in exactly the same way, even though there
will be formal parameters named number and price and there will be variables in the
main part of the program that are also named number and price.

CASE STUDY Buying Pizza

The large “economy” size of an item is not always a better buy than the smaller size.
This is particularly true when buying pizzas. Pizza sizes are given as the diameter of
the pizza in inches. However, the quantity of pizza is determined by the area of the
pizza and the area is not proportional to the diameter. Most people cannot easily
estimate the difference in area between a ten-inch pizza and a twelve-inch pizza, and
so cannot easily determine which size is the best buy—that is, which size has the
lowest price per square inch. In this case study we will design a program that
compares two sizes of pizza to determine which is the better buy.

CH03.fm Page 135 Thursday, July 24, 2003 3:12 PM

136 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

P R O B L E M D E F I N I T I O N

The precise specification of the program input and output are as follows:
I NPUT

The input will consist of the diameter in inches and the price for each of two sizes of
pizza.
OUTPUT

The output will give the cost per square inch for each of the two sizes of pizza and
will tell which is the better buy, that is, which has the lowest cost per square inch. (If
they are the same cost per square inch, we will consider the smaller one to be the
better buy.)

A N A L Y S I S O F T H E P R O B L E M

We will use top-down design to divide the task to be solved by our program into the
following subtasks:

Subtask 1: Get the input data for both the small and large pizzas.
Subtask 2: Compute the price per square inch for the small pizza.
Subtask 3: Compute the price per square inch for the large pizza.
Subtask 4: Determine which is the better buy.
Subtask 5: Output the results.

Notice subtasks 2 and 3. They have two important properties:

Display 3.8 Simpler Formal Parameter Names

Function Declaration

double total_cost(int number, double price);
//Computes the total cost, including 5% sales tax, on
//number items at a cost of price each.

Function Definition

double total_cost(int number, double price)
{
 const double TAX_RATE = 0.05; //5% sales tax
 double subtotal;

 subtotal = price * number;
 return (subtotal + subtotal*TAX_RATE);
}

subtasks 2 and 3

CH03.fm Page 136 Thursday, July 24, 2003 3:12 PM

3.4 Procedural Abstraction 137

i. They are exactly the same task. The only difference is that they use different
data to do the computation. The only things that change between subtask 2
and subtask 3 are the size of the pizza and its price.

ii. The result of subtask 2 and the result of subtask 3 are each a single value,
the price per square inch of the pizza.

Whenever a subtask takes some values, such as some numbers, and returns a sin-
gle value, it is natural to implement the subtask as a function. Whenever two or more
such subtasks perform the same computation, they can be implemented as the same
function called with different arguments each time it is used. We therefore decide to
use a function called unitprice to compute the price per square inch of a pizza. The
function declaration and explanatory comment for this function will be as follows:

double unitprice(int diameter, double price);
//Returns the price per square inch of a pizza. The formal
//parameter named diameter is the diameter of the pizza in
//inches. The formal parameter named price is the price of
//the pizza.

A L G O R I T H M D E S I G N

Subtask 1 is straightforward. The program will simply ask for the input values and
store them in four variables, which we will call diameter_small, diameter_large,
price_small, and price_large.

Subtask 4 is routine. To determine which pizza is the best buy, we just compare
the cost per square inch of the two pizzas using the less-than operator. Subtask 5 is a
routine output of the results.

Subtasks 2 and 3 are implemented as calls to the function unitprice. Next, we
design the algorithm for this function. The hard part of the algorithm is determining
the area of the pizza. Once we know the area, we can easily determine the price per
square inch using division, as follows:

price/area

where area is a variable that holds the area of the pizza. The above expression will
be the value returned by the function unitprice. But we still need to formulate a
method for computing the area of the pizza.

A pizza is basically a circle (made up of bread, cheese, sauce, and so forth). The
area of a circle (and hence of a pizza) is πr2, where r is the radius of the circle, and π
is the number called “pi,” which is approximately equal to 3.14159. The radius is
one half of the diameter.

when to define
a function

subtask 1

subtasks 4 and 5

subtasks 2 and 3

CH03.fm Page 137 Thursday, July 24, 2003 3:12 PM

138 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

The algorithm for the function unitprice can be outlined as follows:

Algorithm Outline for the Function unitprice

1. Compute the radius of the pizza.
2. Compute the area of the pizza using the formula πr2.

3. Return the value of the expression (price/area).

We will give this outline a bit more detail before translating it into C++ code.
We will express this more detailed version of our algorithm in pseudocode.
Pseudocode is a mixture of C++ and ordinary English. Pseudocode allows us to
make our algorithm precise without worrying about the details of C++ syntax. We
can then easily translate our pseudocode into C++ code. In our pseudocode, radius
and area will be variables for holding the values indicated by their names.

Pseudocode for the Function unitprice

radius = one half of diameter;
area = π * radius * radius;
return (price/area);

That completes our algorithm for unitprice. We are now ready to convert our
solutions to subtasks 1 through 5 into a complete C++ program.

C O D I N G

Coding subtask 1 is routine, so we next consider subtasks 2 and 3. Our program can
implement subtasks 2 and 3 by the following two calls to the function unitprice:

unitprice_small = unitprice(diameter_small, price_small);
unitprice_large = unitprice(diameter_large, price_large);

where unitprice_small and unitprice_large are two variables of type
double. One of the benefits of a function definition is that you can have multiple
calls to the function in your program. This saves you the trouble of repeating the
same (or almost the same) code. But we still must write the code for the function
unitprice.

When we translate our pseudocode into C++ code, we obtain the following for
the body of the function unitprice:

{//First draft of the function body for unitprice
 const double PI = 3.14159;
 double radius, area;

 radius = diameter/2;
 area = PI * radius * radius;
 return (price/area);
}

pseudocode

CH03.fm Page 138 Thursday, July 24, 2003 3:12 PM

3.4 Procedural Abstraction 139

Notice that we made PI a named constant using the modifier const. Also,
notice the following line from the above code:

radius = diameter/2;

This is just a simple division by two, and you might think that nothing could be
more routine. Yet, as written, this line contains a serious mistake. We want the
division to produce the radius of the pizza including any fraction. For example, if
we are considering buying the “bad luck special,” which is a 13-inch pizza, then
the radius is 6.5 inches. But the variable diameter is of type int. The constant 2
is also of type int. Thus, as we saw in Chapter 2, this line would perform integer
division and would compute the radius 13/2 to be 6 instead of the correct value of
6.5, and we would have disregarded a half inch of pizza radius. In all likelihood
this would go unnoticed, but the result could be that millions of subscribers to the
Pizza Consumers Union could be wasting their money by buying the wrong size
pizza. This is not likely to produce a major worldwide recession, but the program
would be failing to accomplish its goal of helping consumers find the best buy. In
a more important program, the result of such a simple mistake could be disastrous.

How do we fix this mistake? We want the division by two to be regular division
that includes any fractional part in the answer. That form of division requires that at
least one of the arguments to the division operator / must be of type double. We can
use type casting to convert the constant 2 to a value of type double. Recall that
static_cast<double>(2), which is called a type casting, converts the int value 2
to a value of type double. Thus, if we replace 2 by static_cast<double>(2), that
will change the second argument in the division from type int to type double and the
division will then produce the result we want. The rewritten assignment statement is:

radius = diameter/static_cast<double>(2);

The complete corrected code for the function definition of unitprice, along with
the rest of the program, is shown in Display 3.9.

The type cast static_cast<double>(2) returns the value 2.0 so we could have
used the constant 2.0 in place of static_cast<double>(2). Either way, the function
unitprice will return the same value. However, by using static_cast<double>(2)
we make it conspicuously obvious that we want to do the version of division that
includes the fractional part in its answer. If we instead used 2.0, then when revising
or copying the code, we can easily make the mistake of changing 2.0 to 2, and that
would produce a subtle problem.

We need to make one more remark about the coding of our program. As you can
see in Display 3.9, when we coded tasks 4 and 5, we combined these two tasks into a
single section of code consisting of a sequence of cout statements followed by an
if-else statement. When two tasks are very simple and are closely related, it some-
times makes sense to combine them into a single task.

static_cast
<double>

CH03.fm Page 139 Thursday, July 24, 2003 3:12 PM

140 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

Display 3.9 Buying Pizza (part 1 of 2)

//Determines which of two pizza sizes is the best buy.
#include <iostream>
using namespace std;

double unitprice(int diameter, double price);
//Returns the price per square inch of a pizza. The formal
//parameter named diameter is the diameter of the pizza in inches.
//The formal parameter named price is the price of the pizza.

int main()
{
 int diameter_small, diameter_large;
 double price_small, unitprice_small,
 price_large, unitprice_large;

 cout << "Welcome to the Pizza Consumers Union.\n";
 cout << "Enter diameter of a small pizza (in inches): ";
 cin >> diameter_small;
 cout << "Enter the price of a small pizza: $";
 cin >> price_small;
 cout << "Enter diameter of a large pizza (in inches): ";
 cin >> diameter_large;
 cout << "Enter the price of a large pizza: $";
 cin >> price_large;

 unitprice_small = unitprice(diameter_small, price_small);
 unitprice_large = unitprice(diameter_large, price_large);

 cout.setf(ios::fixed);
 cout.setf(ios::showpoint);
 cout.precision(2);
 cout << "Small pizza:\n"
 << "Diameter = " << diameter_small << " inches\n"
 << "Price = $" << price_small
 << " Per square inch = $" << unitprice_small << endl
 << "Large pizza:\n"
 << "Diameter = " << diameter_large << " inches\n"
 << "Price = $" << price_large
 << " Per square inch = $" << unitprice_large << endl;

CH03.fm Page 140 Thursday, July 24, 2003 3:12 PM

code140.html

3.4 Procedural Abstraction 141

Display 3.9 Buying Pizza (part 2 of 2)

 if (unitprice_large < unitprice_small)
 cout << "The large one is the better buy.\n";
 else
 cout << "The small one is the better buy.\n";
 cout << "Buon Appetito!\n";

 return 0;
}

double unitprice(int diameter, double price)
{
 const double PI = 3.14159;
 double radius, area;

 radius = diameter/static_cast<double>(2);
 area = PI * radius * radius;
 return (price/area);
}

Sample Dialogue

Welcome to the Pizza Consumers Union.
Enter diameter of a small pizza (in inches): 10
Enter the price of a small pizza: $7.50
Enter diameter of a large pizza (in inches): 13
Enter the price of a large pizza: $14.75
Small pizza:
Diameter = 10 inches
Price = $7.50 Per square inch = $0.10
Large pizza:
Diameter = 13 inches
Price = $14.75 Per square inch = $0.11
The small one is the better buy.
Buon Appetito!

CH03.fm Page 141 Thursday, July 24, 2003 3:12 PM

142 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

P R O G R A M TE S T I N G

Just because a program compiles and produces answers that look right does not
mean the program is correct. In order to increase your confidence in your program
you should test it on some input values for which you know the correct answer by
some other means, such as working out the answer with paper and pencil or by using
a handheld calculator. For example, it does not make sense to buy a two-inch pizza,
but it can still be used as an easy test case for this program. It is an easy test case
because it is easy to compute the answer by hand. Let’s calculate the cost per square
inch of a two-inch pizza that sells for $3.14. Since the diameter is two inches, the
radius is one inch. The area of a pizza with radius one is 3.14159*12 which is
3.14159. If we divide this into the price of $3.14, we find that the price per square
inch is 3.14/3.14159, which is approximately $1.00. Of course, this is an absurd
size for a pizza and an absurd price for such a small pizza, but it is easy to determine
the value that the function unitprice should return for these arguments.

Having checked your program on this one case, you can have more confidence
in your program, but you still cannot be certain your program is correct. An incorrect
program can sometimes give the correct answer, even though it will give incorrect
answers on some other inputs. You may have tested an incorrect program on one of
the cases for which the program happens to give the correct output. For example,
suppose we had not caught the mistake we discovered when coding the function
unitprice. Suppose we mistakenly used 2 instead of static_cast<double>(2)
in the following line:

radius = diameter/static_cast<double>(2);

So that line reads as follows:

radius = diameter/2;

As long as the pizza diameter is an even number, like 2, 8, 10, or 12, the program gives
the same answer whether we divide by 2 or by static_cast<double>(2). It is
unlikely that it would occur to you to be sure to check both even and odd size pizzas.
However, if you test your program on several different pizza sizes, then there is a better
chance that your test cases will contain samples of the relevant kinds of data.

Programming TIP
Use Pseudocode

Algorithms are typically expressed in pseudocode. Pseudocode is a mixture of C++
(or whatever programming language you are using) and ordinary English (or

pseudocode

CH03.fm Page 142 Thursday, July 24, 2003 3:12 PM

3.5 Local Variables 143

whatever human language you are using). Pseudocode allows you to state your
algorithm precisely without having to worrying about all the details of C++ syntax.
When the C++ code for a step in your algorithm is obvious, there is little point in
stating it in English. When a step is difficult to express in C++, the algorithm will be
clearer if the step is expressed in English. You can see an example of pseudocode in
the previous case study, where we expressed our algorithm for the function
unitprice in pseudocode.

SELF-TEST EXERCISES

11 What is the purpose of the comment that accompanies a function declaration?

12 What is the principle of procedural abstraction as applied to function definitions?

13 What does it mean when we say the programmer who uses a function should
be able to treat the function like a black box? (Hint: This question is very
closely related to the previous question.)

14 Carefully describe the process of program testing.

15 Consider two possible definitions for the function unitprice. One is the
definition given in Display 3.9. The other definition is the same except that
the type cast static_cast<double>(2) is replaced with the constant 2.0,
in other words, the line

radius = diameter/static_cast<double>(2);

is replaced with the line

radius = diameter/2.0;

Are these two possible function definitions black-box equivalent?

3.5 Local Variables

He was a local boy,
not known outside his home town.

COMMON SAYING

In the last section we advocated using functions as if they were black boxes. In order
to define a function so that it can be used as a black box, you often need to give the
function variables of its own that do not interfere with the rest of your program.

CH03.fm Page 143 Thursday, July 24, 2003 3:12 PM

144 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

These variables that “belong to” a function are called local variables. In this section
we describe local variables and tell you how to use them.

The Small Program Analogy

Look back at the program in Display 3.1. It includes a call to the predefined function
sqrt. We did not need to know anything about the details of the function definition for
sqrt in order to use this function. In particular, we did not need to know what variables
were declared in the definition of sqrt. A function that you define is no different.
Variable declarations in function definitions that you write are as separate as those in the
function definitions for the predefined functions. Variable declarations within a function
definition are the same as if they were variable declarations in another program. If you
declare a variable in a function definition and then declare another variable of the same
name in the main part of your program (or in the body of some other function
definition), then these two variables are two different variables, even though they have
the same name. Let’s look at a program that does have a variable in a function definition
with the same name as another variable in the program.

The program in Display 3.10 has two variables named average_pea; one is
declared and used in the function definition for the function est_total, and the other
is declared and used in the main part of the program. The variable average_pea in
the function definition for est_total and the variable average_pea in the main part
of the program are two different variables. It is the same as if the function est_total
were a predefined function. The two variables named average_pea will not interfere
with each other any more than two variables in two completely different programs
would. When the variable average_pea is given a value in the function call to
est_total, this does not change the value of the variable in the main part of the pro-
gram that is also named average_pea. (The details of the program in Display 3.10,
other than this coincidence of names, are explained in the Programming Example sec-
tion that follows this section.)

Variables that are declared within the body of a function definition are said to be
local to that function or to have that function as their scope. Variables that are
defined within the main body of the program are said to be local to the main part of
the program or to have the main part of the program as their scope. There are other
kinds of variables that are not local to any function or to the main part of the pro-
gram, but we will have no use for such variable. Every variable we will use is either
local to a function definition or local to the main part of the program. When we say
that a variable is a local variable without any mention of a function and without any
mention of the main part of the program, we mean that the variable is local to some
function definition.

local to a function

scope

local variable

CH03.fm Page 144 Thursday, July 24, 2003 3:12 PM

3.5 Local Variables 145

Display 3.10 Local Variables (part 1 of 2)

//Computes the average yield on an experimental pea growing patch.
#include <iostream>
using namespace std;

double est_total(int min_peas, int max_peas, int pod_count);
//Returns an estimate of the total number of peas harvested.
//The formal parameter pod_count is the number of pods.
//The formal parameters min_peas and max_peas are the minimum
//and maximum number of peas in a pod.

int main()
{
 int max_count, min_count, pod_count;
 double average_pea, yield;

 cout << "Enter minimum and maximum number of peas in a pod: ";
 cin >> min_count >> max_count;
 cout << "Enter the number of pods: ";
 cin >> pod_count;
 cout << "Enter the weight of an average pea (in ounces): ";
 cin >> average_pea;

 yield =
 est_total(min_count, max_count, pod_count) * average_pea;

 cout.setf(ios::fixed);
 cout.setf(ios::showpoint);
 cout.precision(3);
 cout << "Min number of peas per pod = " << min_count << endl
 << "Max number of peas per pod = " << max_count << endl
 << "Pod count = " << pod_count << endl
 << "Average pea weight = "
 << average_pea << " ounces" << endl
 << "Estimated average yield = " << yield << " ounces"
 << endl;

 return 0;
}

This variable named
average_pea is local to the
main part of the program.

CH03.fm Page 145 Thursday, July 24, 2003 3:12 PM

code145.html

146 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

Local Variables
Variables that are declared within the body of a function definition are said to be
local to that function or to have that function as their scope. Variables that are declared
within the main part of the program are said to be local to the main part of the program
or to have the main part of the program as their scope. When we say that a
variable is a local variable without any mention of a function and without any
mention of the main part of the program, we mean that the variable is local to
some function definition. If a variable is local to a function, then you can have
another variable with the same name that is declared in the main part of the
program or in another function definition, and these will be two different variables,
even though they have the same name.

Display 3.10 Local Variables (part 2 of 2)

double est_total(int min_peas, int max_peas, int pod_count)
{
 double average_pea;

 average_pea = (max_peas + min_peas)/2.0;
 return (pod_count * average_pea);
}

Sample Dialogue

Enter minimum and maximum number of peas in a pod: 4 6
Enter the number of pods: 10
Enter the weight of an average pea (in ounces): 0.5
Min number of peas per pod = 4
Max number of peas per pod = 6
Pod count = 10
Average pea weight = 0.500 ounces
Estimated average yield = 25.000 ounces

This variable named
average_pea is local to
the function est_total.

CH03.fm Page 146 Thursday, July 24, 2003 3:12 PM

3.5 Local Variables 147

Programming EXAMPLE
Experimental Pea Patch

The program in Display 3.10 gives an estimate for the total yield on a small garden
plot used to raise an experimental variety of peas. The function est_total returns
an estimate of the total number of peas harvested. The function est_total takes
three arguments. One argument is the number of pea pods that were harvested. The
other two arguments are used to estimate the average number of peas in a pod.
Different pea pods contain differing numbers of peas so the other two arguments to
the function are the smallest and the largest number of peas that were found in any
one pod. The function est_total averages these two numbers and uses this average
as an estimate for the average number of peas in a pod.

Global Constants and Global Variables

As we noted in Chapter 2, you can and should name constant values using the const
modifier. For example, in Display 3.9 we used the following declaration to give the
name PI to the constant 3.14159:

const double PI = 3.14159;

In Display 3.3, we used the const modifier to give a name to the rate of sales tax
with the following declaration:

const double TAX_RATE = 0.05; //5% sales tax

As with our variable declarations, we placed these declarations for naming con-
stants inside the body of the functions that used them. This worked out fine because
each named constant was used by only one function. However, it can easily happen
that more than one function uses a named constant. In that case you can place the
declaration for naming a constant at the beginning of your program, outside of the
body of all the functions and outside the body of the main part of your program. The
named constant is then said to be a global named constant and the named constant
can be used in any function definition that follows the constant declaration.

Display 3.11 shows a program with an example of a global named constant. The
program asks for a radius and then computes both the area of a circle and the volume
of a sphere with that radius. The programmer who wrote that program looked up the
formulas for computing those quantities and found the following:

area = π � (radius)2

volume = (4/3) � π � (radius)3

Both formulas include the constant π, which is approximately equal to 3.14159.
The symbol π is the Greek letter called “pi.” In previous programs we have used the
following declaration to produce a named constant called PI to use when we convert
such formulas to C++ code:

const double PI = 3.14159;

CH03.fm Page 147 Thursday, July 24, 2003 3:12 PM

148 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

In the program in Display 3.11 we use the same declaration but place it near the
beginning of the file, so that it defines a global named constant that can be used in all
the function bodies.

The compiler allows you wide latitude in where you place the declarations for
your global named constants, but to aid readability you should place all your
include directives together, all your global named constant declarations together in
another group, and all your function declarations together. We will follow standard
practice and place all our global named constant declarations after our include
directives and before our function declarations.

Placing all named constant declarations at the start of your program can aid
readability even if the named constant is used by only one function. If the named
constant might need to be changed in a future version of your program, it will be
easier to find if it is at the beginning of your program. For example, placing the con-
stant declaration for the sales tax rate at the beginning of an accounting program will
make it easy to revise the program should the tax rate increase.

It is possible to declare ordinary variables, without the const modifier, as global
variables, which are accessible to all function definitions in the file. This is done the
same way that it is done for global named constants, except that the modifier const is
not used in the variable declaration. However, there is seldom any need to use such
global variables. Moreover, global variables can make a program harder to understand
and maintain, so we will not use any global variables. Once you have had more experi-
ence designing programs, you may choose to occasionally use global variables.

Call-by-Value Formal Parameters Are Local Variables

Formal parameters are more than just blanks that are filled in with the argument
values for the function. Formal parameters are actually variables that are local to the
function definition, so they can be used just like a local variable that is declared in
the function definition. Earlier in this chapter we described the call-by-value
mechanism which handles the arguments in a function call. We can now define this
mechanism for “plugging in arguments” in more detail. When a function is called,
the formal parameters for the function (which are local variables) are initialized to
the values of the arguments. This is the precise meaning of the phrase “plugged in
for the formal parameters” which we have been using. Typically, a formal parameter
is used only as a kind of blank, or placeholder, that is filled in by the value of its
corresponding argument; occasionally, however, a formal parameter is used as a
variable whose value is changed. In this section we will give one example of a
formal parameter used as a local variable.

global variables

CH03.fm Page 148 Thursday, July 24, 2003 3:12 PM

3.5 Local Variables 149

Display 3.11 A Global Named Constant (part 1 of 2)

//Computes the area of a circle and the volume of a sphere.
//Uses the same radius for both calculations.
#include <iostream>
#include <cmath>
using namespace std;

const double PI = 3.14159;

double area(double radius);
//Returns the area of a circle with the specified radius.

double volume(double radius);
//Returns the volume of a sphere with the specified radius.

int main()
{
 double radius_of_both, area_of_circle, volume_of_sphere;

 cout << "Enter a radius to use for both a circle\n"
 << "and a sphere (in inches): ";
 cin >> radius_of_both;

 area_of_circle = area(radius_of_both);
 volume_of_sphere = volume(radius_of_both);

 cout << "Radius = " << radius_of_both << " inches\n"
 << "Area of circle = " << area_of_circle
 << " square inches\n"
 << "Volume of sphere = " << volume_of_sphere
 << " cubic inches\n";

 return 0;
}

CH03.fm Page 149 Thursday, July 24, 2003 3:12 PM

code149.html

150 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

The program in Display 3.12 is the billing program for the law offices of Dewey,
Cheatham, and Howe. Notice that, unlike other law firms, the firm of Dewey,
Cheatham, and Howe does not charge for any time less than a quarter of an hour.
That is why it’s called “the law office with a heart.” If they work for one hour and
fourteen minutes, they only charge for four quarter hours, not five quarter hours as
other firms do; so you would pay only $600 for the consultation.

Notice the formal parameter minutes_worked in the definition of the function
fee. It is used as a variable and has its value changed by the following line, which
occurs within the function definition:

minutes_worked = hours_worked*60 + minutes_worked;

Formal parameters are local variables just like the variables you declare within
the body of a function. However, you should not add a variable declaration for the
formal parameters. Listing the formal parameter minutes_worked in the function
declaration also serves as the variable declaration. The following is the wrong way
to start the function definition for fee as it declares minutes_worked twice:

Display 3.11 A Global Named Constant (part 2 of 2)

double area(double radius)
{
 return (PI * pow(radius, 2));
}

double volume(double radius)
{
 return ((4.0/3.0) * PI * pow(radius, 3));
}

Sample Dialogue

Enter a radius to use for both a circle
and a sphere (in inches): 2
Radius = 2 inches
Area of circle = 12.5664 square inches
Volume of sphere = 33.5103 cubic inches

Do not add a
declaration for a
formal parameter.

double fee(int hours_worked, int minutes_worked)
{
 int quarter_hours;
 int minutes_worked;

. . .

Do NOT do this!

CH03.fm Page 150 Thursday, July 24, 2003 3:12 PM

3.5 Local Variables 151

Display 3.12 Formal Parameter Used as a Local Variable (part 1 of 2)

//Law office billing program.
#include <iostream>
using namespace std;

const double RATE = 150.00; //Dollars per quarter hour.

double fee(int hours_worked, int minutes_worked);
//Returns the charges for hours_worked hours and
//minutes_worked minutes of legal services.

int main()
{

int hours, minutes;
 double bill;

cout << "Welcome to the offices of\n"
 << "Dewey, Cheatham, and Howe.\n"
 << "The law office with a heart.\n"
 << "Enter the hours and minutes"
 << " of your consultation:\n";

cin >> hours >> minutes;

bill = fee(hours, minutes);

cout.setf(ios::fixed);
 cout.setf(ios::showpoint);
 cout.precision(2);

cout << "For " << hours << " hours and " << minutes
 << " minutes, your bill is $" << bill << endl;

 return 0;
}

double fee(int hours_worked, int minutes_worked)
{
 int quarter_hours;

 minutes_worked = hours_worked*60 + minutes_worked;
 quarter_hours = minutes_worked/15;
 return (quarter_hours*RATE);
}

The value of minutes
is not changed by the
call to fee.

minutes_worked is
a local variable
initialized to the
value of minutes.

CH03.fm Page 151 Thursday, July 24, 2003 3:12 PM

code151.html

152 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

Namespaces Revisited

Thus far, we have started all of our programs with the following two lines:

#include <iostream>
using namespace std;

However, the start of the file is not always the best location for the line

using namespace std;

We will eventually be using more namespaces than just std. In fact, we may be
using different namespaces in different function definitions. If you place the directive

using namespace std;

inside the brace { that starts the body of a function definition, then the using
directive applies to only that function definition. This will allow you to use two
different namespaces in two different function definitions, even if the two function
definitions are in the same file and even if the two namespaces have some name(s)
with different meanings in the two different namespaces.

Placing a using directive inside a function definition is analogous to placing a
variable declaration inside a function definition. If you place a variable definition
inside a function definition, the variable is local to the function; that is, the meaning
of the variable declaration is confined to the function definition. If you place a using
directive inside a function definition, the using directive is local to the function def-
inition; in other words, the meaning of the using directive is confined to the func-
tion definition.

Display 3.12 Formal Parameter Used as a Local Variable (part 2 of 2)

Sample Dialogue

Welcome to the offices of
Dewey, Cheatham, and Howe.
The law office with a heart.
Enter the hours and minutes of your consultation:
2 45
For 2 hours and 45 minutes, your bill is $1650.00

CH03.fm Page 152 Thursday, July 24, 2003 3:12 PM

3.5 Local Variables 153

It will be some time before we use any namespace other than std in a using
directive, but it will be good practice to start placing these using directives where
they should go.

In Display 3.13 we have rewritten the program in Display 3.11 with the using
directives where they should be placed. The program in Display 3.13 will behave
exactly the same as the one in Display 3.11. In this particular case, the difference is
only one of style, but when you start to use more namespaces, the difference will
affect how your programs perform.

SELF-TEST EXERCISES

16 If you use a variable in a function definition, where should you declare the
variable? In the function definition? In the main part of the program? Any-
place that is convenient?

17 Suppose a function named Function1 has a variable named Sam declared
within the definition of Function1, and a function named Function2 also
has a variable named Sam declared within the definition of Function2. Will
the program compile (assuming everything else is correct)? If the program
will compile, will it run (assuming that everything else is correct)? If it runs,
will it generate an error message when run (assuming everything else is cor-
rect)? If it runs and does not produce an error message when run, will it give
the correct output (assuming everything else is correct)?

18 The following function is supposed to take as arguments a length expressed
in feet and inches and return the total number of inches in that many feet and
inches. For example, total_inches(1, 2) is supposed to return 14, because
1 foot and 2 inches is the same as 14 inches. Will the following function per-
form correctly? If not, why not?

double total_inches(int feet, int inches)
{
 inches = 12*feet + inches;
 return inches;
}

19 Write a function declaration and function definition for a function called
read_filter that has no parameters and that returns a value of type double.
The function read_filter prompts the user for a value of type double and
reads the value into a local variable. The function returns the value read in
provided this value is greater than or equal to zero and returns zero if the
value read in is negative.

CH03.fm Page 153 Thursday, July 24, 2003 3:12 PM

154 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

Display 3.13 Using Namespaces (part 1 of 2)

//Computes the area of a circle and the volume of a sphere.
//Uses the same radius for both calculations.
#include <iostream>
#include <cmath>

const double PI = 3.14159;

double area(double radius);
//Returns the area of a circle with the specified radius.

double volume(double radius);
//Returns the volume of a sphere with the specified radius.

int main()
{
 using namespace std;

 double radius_of_both, area_of_circle, volume_of_sphere;

 cout << "Enter a radius to use for both a circle\n"
 << "and a sphere (in inches): ";
 cin >> radius_of_both;

 area_of_circle = area(radius_of_both);
 volume_of_sphere = volume(radius_of_both);

 cout << "Radius = " << radius_of_both << " inches\n"
 << "Area of circle = " << area_of_circle
 << " square inches\n"
 << "Volume of sphere = " << volume_of_sphere
 << " cubic inches\n";

 return 0;
}

CH03.fm Page 154 Thursday, July 24, 2003 3:12 PM

code154.html

3.5 Local Variables 155

Programming EXAMPLE
The Factorial Function

Display 3.14 contains the function declaration and definition for a commonly used
mathematical function known as the factorial function. In mathematics texts, the
factorial function is usually written n! and is defined to be the product of all the
integers from 1 to n. In traditional mathematical notation, you can define n! as
follows:

n! = 1 × 2 × 3 × ...× n

In the function definition we perform the multiplication with a while loop. Note that
the multiplication is performed in the reverse order to what you might expect. The
program multiplies by n, then n−1, then n−2, and so forth.

The function definition for factorial uses two local variables: product,
which is declared at the start of the function body, and the formal parameter n. Since
a formal parameter is a local variable, we can change its value. In this case we
change the value of the formal parameter n with the decrement operator n--. (The
decrement operator was discussed in Chapter 2.)

Display 3.13 Using Namespaces (part 2 of 2)

double area(double radius)
{
 using namespace std;

 return (PI * pow(radius, 2));
}

double volume(double radius)
{
 using namespace std;

 return ((4.0/3.0) * PI * pow(radius, 3));
}

The sample dialogue for this program would be
the same as the one for the program in Display 3.11.

formal parameter used
as a local variable

CH03.fm Page 155 Thursday, July 24, 2003 3:12 PM

156 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

Each time the body of the loop is executed, the value of the variable product is
multiplied by the value of n, and then the value of n is decreased by one using n--. If
the function factorial is called with 3 as its argument, then the first time the loop
body is executed the value of product is 3, the next time the loop body is executed the
value of product is 3*2, the next time the value of product is 3*2*1, and then the
while loop ends. Thus, the following will set the variable x equal to 6 which is 3*2*1:

x = factorial(3);

Notice that the local variable product is initialized to the value 1 when the vari-
able is declared. (This way of initializing a variable when it is declared was intro-
duced in Chapter 2.) It is easy to see that 1 is the correct initial value for the variable
product. To see that this is the correct initial value for product note that, after exe-
cuting the body of the while loop the first time, we want the value of product to be
equal to the (original) value of the formal parameter n; if product is initialized to 1,
then this will be what happens.

Display 3.14 Factorial Function

Function Declaration

int factorial(int n);
//Returns factorial of n.
//The argument n should be nonnegative.

Function Definition

int factorial(int n)
{
 int product = 1;
 while (n > 0)
 {
 product = n * product;
 n--;
 }

 return product;
}

formal parameter n
used as a local variable

CH03.fm Page 156 Thursday, July 24, 2003 3:12 PM

3.6 Overloading Function Names 157

3.6 Overloading Function Names

“...—and that shows that there are three hundred and sixty-four days when you
might get un-birthday presents—”

“Certainly,” said Alice.
“And only one for birthday presents, you know. There’s glory for you!”
“I don’t know what you mean by ‘glory,’ ” Alice said.
Humpty Dumpty smiled contemptuously, “Of course you don’t—till I tell you. I

mean ‘there’s a nice knock-down argument for you!’ ”
“But ‘glory’ doesn’t mean ‘a nice knock-down argument,’ ” Alice objected.
“When I use a word,” Humpty Dumpty said, in rather a scornful tone, “it means just

what I choose it to mean—neither more nor less.”
“The question is,” said Alice, “whether you can make words mean so many different

things.”
“The question is,” said Humpty Dumpty, “which is to be master—that’s all.”

LEWIS CARROLL, THROUGH THE LOOKING-GLASS

C++ allows you to give two or more different definitions to the same function name,
which means you can reuse names that have strong intuitive appeal across a variety
of situations. For example, you could have three functions called max: one that
computes the largest of two numbers, another that computes the largest of three
numbers, and yet another that computes the largest of four numbers. When you give
two (or more) function definitions for the same function name, that is called
overloading the function name. Overloading does require some extra care in
defining your functions, and should not be used unless it will add greatly to your
program’s readability. But when it is appropriate, overloading can be very effective.

Introduction to Overloading

Suppose you are writing a program that requires you to compute the average of two
numbers. You might use the following function definition:

double ave(double n1, double n2)
{
 return ((n1 + n2)/2.0);
}

Now suppose your program also requires a function to compute the average of
three numbers. You might define a new function called ave3 as follows:

double ave3(double n1, double n2, double n3)
{
 return ((n1 + n2 + n3)/3.0);
}

CH03.fm Page 157 Thursday, July 24, 2003 3:12 PM

158 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

This will work, and in many programming languages you have no choice but to do
something like this. Fortunately, C++ allows for a more elegant solution. In C++ you
can simply use the same function name ave for both functions. In C++ you can use
the following function definition in place of the function definition ave3:

double ave(double n1, double n2, double n3)
{
 return ((n1 + n2 + n3)/3.0);
}

so that the function name ave then has two definitions. This is an example of
overloading. In this case we have overloaded the function name ave. In Display 3.15 we
have embedded these two function definitions for ave into a complete sample program.
Be sure to notice that each function definition has its own function declaration.

Overloading is a great idea. It makes a program easier to read. It saves you from
going crazy trying to think up a new name for a function just because you already
used the most natural name in some other function definition. But how does the
compiler know which function definition to use when it encounters a call to a func-
tion name that has two or more definitions? The compiler cannot read a program-
mer’s mind. In order to tell which function definition to use, the compiler checks the
number of arguments and the types of the arguments in the function call. In the pro-
gram in Display 3.15, one of the functions called ave has two arguments and the
other has three arguments. To tell which definition to use, the compiler simply
counts the number of arguments in the function call. If there are two arguments, it
uses the first definition. If there are three arguments, it uses the second definition.

Whenever you give two or more definitions to the same function name, the various
function definitions must have different specifications for their arguments; that is, any
two function definitions that have the same function name must use different numbers
of formal parameters or use formal parameters of different types (or both). Notice that
when you overload a function name, the function declarations for the two different def-
initions must differ in their formal parameters. You cannot overload a function name by
giving two definitions that differ only in the type of the value returned.

determining which
definition applies

Overloading a Function Name
If you have two or more function definitions for the same function name, that is
called overloading. When you overload a function name, the function definitions must
have different numbers of formal parameters or some formal parameters of different
types. When there is a function call, the compiler uses the function definition whose
number of formal parameters and types of formal parameters match the arguments
in the function call.

CH03.fm Page 158 Thursday, July 24, 2003 3:12 PM

3.6 Overloading Function Names 159

Display 3.15 Overloading a Function Name

//Illustrates overloading the function name ave.
#include <iostream>

double ave(double n1, double n2);
//Returns the average of the two numbers n1 and n2.

double ave(double n1, double n2, double n3);
//Returns the average of the three numbers n1, n2, and n3.

int main()
{
 using namespace std;
 cout << "The average of 2.0, 2.5, and 3.0 is "
 << ave(2.0, 2.5, 3.0) << endl;

 cout << "The average of 4.5 and 5.5 is "
 << ave(4.5, 5.5) << endl;

 return 0;
}

double ave(double n1, double n2)
{
 return ((n1 + n2)/2.0);
}

double ave(double n1, double n2, double n3)
{
 return ((n1 + n2 + n3)/3.0);
}

Output

The average of 2.0, 2.5, and 3.0 is 2.50000
The average of 4.5 and 5.5 is 5.00000

two arguments

three arguments

CH03.fm Page 159 Thursday, July 24, 2003 3:12 PM

code159.html

160 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

Overloading is not really new to you. You saw a kind of overloading in Chapter 2
with the division operator /. If both operands are of type int, as in 13/2, then the value
returned is the result of integer division, in this case 6. On the other hand, if one or both
operands are of type double, then the value returned is the result of regular division; for
example, 13/2.0 returned the value 6.5. There are two definitions for the division
operator /, and the two definitions are distinguished not by having different numbers of
operands, but rather by requiring operands of different types. The difference between
overloading of / and overloading function names is that the compiler has already done
the overloading of / and we program the overloading of the function name. We will see
in a later chapter how to overload operators such as +, –, and so on.

Programming EXAMPLE
Revised Pizza-Buying Program

The Pizza Consumers Union has been very successful with the program that we
wrote for it in Display 3.9. In fact, now everybody always buys the pizza that is the
best buy. One disreputable pizza parlor used to make money by fooling consumers
into buying the more expensive pizza, but our program has put an end to their evil
practices. However, the owners wish to continue their despicable behavior and have
come up with a new way to fool consumers. They now offer both round pizzas and
rectangular pizzas. They know that the program we wrote cannot deal with
rectangularly shaped pizzas, so they hope they can again confuse consumers. We
need to update our program so that we can foil their nefarious scheme. We want to
change the program so that it can compare a round pizza and a rectangular pizza.

The changes we need to make to our pizza evaluation program are clear: We
need to change the input and output a bit so that it deals with two different shapes of
pizzas. We also need to add a new function that can compute the cost per square inch
of a rectangular pizza. We could use the following function definition in our program
so that we can compute the unit price for a rectangular pizza:

double unitprice_rectangular
(int length, int width, double price)

{
 double area = length * width;
 return (price/area);
}

However, this is a rather long name for a function; in fact, it’s so long that we needed
to put the function heading on two lines. That is legal, but it would be nicer to use the

CH03.fm Page 160 Thursday, July 24, 2003 3:12 PM

3.6 Overloading Function Names 161

same name, unitprice, for both the function that computes the unit price for a
round pizza and for the function that computes the unit price for a rectangular pizza.
Since C++ allows overloading of function names, we can do this. Having two
definitions for the function unitprice will pose no problems to the compiler
because the two functions will have different numbers of arguments. Display 3.16
shows the program we obtained when we modified our pizza evaluation program to
allow us to compare round pizzas with rectangular pizzas.

Automatic Type Conversion

Suppose that the following function definition occurs in your program, and that you
have not overloaded the function name mpg (so this is the only definition of a
function called mpg).

double mpg(double miles, double gallons)
//Returns miles per gallon.
{
 return (miles/gallons);
}

If you call the function mpg with arguments of type int, then C++ will automatically
convert any argument of type int to a value of type double. Hence, the following
will output 22.5 miles per gallon to the screen:

cout << mpg(45, 2) << " miles per gallon";

C++ converts the 45 to 45.0 and the 2 to 2.0, then performs the division 45.0/2.0
to obtain the value returned, which is 22.5.

If a function requires an argument of type double and you give it an argument of
type int, C++ will automatically convert the int argument to a value of type double.
This is so useful and natural that we hardly give it a thought. However, overloading
can interfere with this automatic type conversion. Let’s look at an example.

Suppose you had (foolishly) overloaded the function name mpg so that your pro-
gram also contained the following definition of mpg (as well as the one above):

int mpg(int goals, int misses)
//Returns the Measure of Perfect Goals
//which is computed as (goals - misses).
{
 return (goals − misses);
}

interaction of
overloading and
type conversion

CH03.fm Page 161 Thursday, July 24, 2003 3:12 PM

162 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

Display 3.16 Overloading a Function Name (part 1 of 3)

//Determines whether a round pizza or a rectangular pizza is the best buy.
#include <iostream>

double unitprice(int diameter, double price);
//Returns the price per square inch of a round pizza.
//The formal parameter named diameter is the diameter of the pizza
//in inches. The formal parameter named price is the price of the pizza.

double unitprice(int length, int width, double price);
//Returns the price per square inch of a rectangular pizza
//with dimensions length by width inches.
//The formal parameter price is the price of the pizza.

int main()
{
 using namespace std;

int diameter, length, width;
double price_round, unit_price_round,

price_rectangular, unitprice_rectangular;

 cout << "Welcome to the Pizza Consumers Union.\n";
 cout << "Enter the diameter in inches"
 << " of a round pizza: ";
 cin >> diameter;
 cout << "Enter the price of a round pizza: $";
 cin >> price_round;
 cout << "Enter length and width in inches\n"
 << "of a rectangular pizza: ";
 cin >> length >> width;
 cout << "Enter the price of a rectangular pizza: $";
 cin >> price_rectangular;

 unitprice_rectangular =
 unitprice(length, width, price_rectangular);
 unit_price_round = unitprice(diameter, price_round);

 cout.setf(ios::fixed);
 cout.setf(ios::showpoint);
 cout.precision(2);

CH03.fm Page 162 Thursday, July 24, 2003 3:12 PM

code162.html

3.6 Overloading Function Names 163

Display 3.16 Overloading a Function Name (part 2 of 3)

 cout << endl
 << "Round pizza: Diameter = "
 << diameter << " inches\n"
 << "Price = $" << price_round
 << " Per square inch = $" << unit_price_round
 << endl
 << "Rectangular pizza: Length = "
 << length << " inches\n"
 << "Rectangular pizza: Width = "
 << width << " inches\n"
 << "Price = $" << price_rectangular
 << " Per square inch = $" << unitprice_rectangular
 << endl;

 if (unit_price_round < unitprice_rectangular)
 cout << "The round one is the better buy.\n";
 else
 cout << "The rectangular one is the better buy.\n";
 cout << "Buon Appetito!\n";

 return 0;
}

double unitprice(int diameter, double price)
{
 const double PI = 3.14159;
 double radius, area;

 radius = diameter/static_cast<double>(2);
 area = PI * radius * radius;
 return (price/area);
}

double unitprice(int length, int width, double price)
{
 double area = length * width;
 return (price/area);
}

CH03.fm Page 163 Thursday, July 24, 2003 3:12 PM

164 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

In a program that contains both of these definitions for the function name mpg, the
following will (unfortunately) output 43 miles per gallon (since 43 is 45 – 2):

cout << mpg(45, 2) << " miles per gallon";

When C++ sees the function call mpg(45, 2), which has two arguments of type
int, C++ first looks for a function definition of mpg that has two formal parameters
of type int. If it finds such a function definition, C++ uses that function definition.
C++ does not convert an int argument to a value of type double unless that is the
only way it can find a matching function definition.

The mpg example illustrates one more point about overloading. You should not
use the same function name for two unrelated functions. Such careless use of func-
tion names is certain to eventually produce confusion.

SELF-TEST EXERCISES

20 Suppose you have two function definitions with the following function
declarations:

double score(double time, double distance);
int score(double points);

Display 3.16 Overloading a Function Name (part 3 of 3)

Sample Dialogue

Welcome to the Pizza Consumers Union.
Enter the diameter in inches of a round pizza: 10
Enter the price of a round pizza: $8.50
Enter length and width in inches
of a rectangular pizza: 6 4
Enter the price of a rectangular pizza: $7.55

Round pizza: Diameter = 10 inches
Price = $8.50 Per square inch = $0.11
Rectangular pizza: Length = 6 inches
Rectangular pizza: Width = 4 inches
Price = $7.55 Per square inch = $0.31
The round one is the better buy.
Buon Appetito!

CH03.fm Page 164 Thursday, July 24, 2003 3:12 PM

3.6 Overloading Function Names 165

Which function definition would be used in the following function call and
why would it be the one used? (x is of type double.)

final_score = score(x);

21 Suppose you have two function definitions with the following function
declarations:

double the_answer(double data1, double data2);
double the_answer(double time, int count);

Which function definition would be used in the following function call and
why would it be the one used? (x and y are of type double.)

x = the_answer(y, 6.0);

22 Suppose you have two function definitions with the function declarations
given in Self-Test Exercise 21.Which function definition would be used in
the following function call and why would it be the one used?

x = the_answer(5, 6);

23 Suppose you have two function definitions with the function declarations
given in Self-Test Exercise 21.Which function definition would be used in
the following function call and why would it be the one used?

x = the_answer(5, 6.0);

24 This question has to do with the Programming Example “Revised Pizza-Buying
Program.” Suppose the evil pizza parlor that is always trying to fool custom-
ers introduces a square pizza. Can you overload the function unitprice so
that it can compute the price per square inch of a square pizza as well as the
price per square inch of a round pizza? Why or why not?

25 Look at the program in Display 3.16. The main function contains the using
directive:

using namespace std;

Why doesn’t the method unitprice contain this using directive?

CH03.fm Page 165 Thursday, July 24, 2003 3:12 PM

166 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

C H A P T E R S U M M A R Y

■ A good plan of attack for designing the algorithm for a program is to break
down the task to be accomplished into a few subtasks, then decompose each
subtask into smaller subtasks, and so forth until the subtasks are simple
enough that they can easily be implemented as C++ code. This approach is
called top-down design.

■ A function that returns a value is like a small program. The arguments to the
function serve as the input to this “small program” and the value returned is like
the output of the “small program.”

■ When a subtask for a program takes some values as input and produces a single
value as its only result, then that subtask can be implemented as a function.

■ A function should be defined so that it can be used as a black box. The program-
mer who uses the function should not need to know any details about how the
function is coded. All the programmer should need to know is the function dec-
laration and the accompanying comment that describes the value returned. This
rule is sometimes called the principle of procedural abstraction.

■ A variable that is declared in a function definition is said to be local to the
function.

■ Global named constants are declared using the const modifier. Declarations
for global named constants are normally placed at the start of a program after
the include directives and before the function declarations.

■ Call-by-value formal parameters (which are the only kind of formal parameter
discussed in this chapter) are variables that are local to the function. Occasion-
ally, it is useful to use a formal parameter as a local variable.

■ When you have two or more function definitions for the same function name,
that is called overloading the function name. When you overload a function
name, the function definitions must have different numbers of formal parame-
ters or some formal parameters of different types.

Answers to Self-Test Exercises

1 4.0 4.0 8.0
8.0 8.0 1.21
3 3 0
3.0 3.5 3.5
6.0 6.0 5.0
5.0 4.5 4.5
3 3.0 3.0

CH03.fm Page 166 Thursday, July 24, 2003 3:12 PM

Answers to Self-Test Exercises 167

2

3 //Computes the square root of 3.14159.
#include <iostream>
#include <cmath>//provides sqrt and PI.
using namespace std;
int main()
{
 cout << "The square root of " >> PI
 << sqrt(PI) << endl;
 return 0;
}

4 a. //To determine whether the compiler will tolerate
//spaces before the # in the #include:
 #include <iostream>
int main()
{

cout << "hello world" << endl;
 return 0;
}

b. //To determine if the compiler will allow spaces
//between the # and include in the #include:
include<iostream>
using namespace std;
//The rest of the program can be identical to the above.

5

6 The function declaration is:

int sum(int n1, int n2, int n3);
//Returns the sum of n1, n2, and n3.

The function definition is:

int sum(int n1, int n2, int n3)
{
 return (n1 + n2 + n3);
}

sqrt(x + y), pow(x, y + 7), sqrt(area + fudge),

sqrt(time+tide)/nobody, (−b + sqrt(b*b − 4*a*c))/(2*a), abs(x − y) or
 labs(x − y) or
 fabs(x − y)

 Wow

CH03.fm Page 167 Thursday, July 24, 2003 3:12 PM

168 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

7 The function declaration is:

double ave(int n1, double n2);
//Returns the average of n1 and n2.

The function definition is:

double ave(int n1, double n2)
{
 return ((n1 + n2)/2.0);
}

8 The function declaration is:

char positive_test(double number);
//Returns ’P’ if number is positive.
//Returns ’N’ if number is negative or zero.

The function definition is:

char positive_test(double number)
{
 if (number > 0)
 return ’P’;
 else
 return ’N’;
}

9 Suppose the function is defined with arguments, say param1 and param2.
The function is then called with corresponding arguments arg1 and arg2.
The values of the arguments are “plugged in” for the corresponding formal
parameters, arg1 into param1, arg2 into param2. The formal parameters are
then used in the function.

10 Predefined (library) functions usually require that you #include a header
file. For a programmer-defined function, the programmer puts the code for
the function either into the file with the main part of the program or in
another file to be compiled and linked to the main program.

11 The comment explains what value the function returns and gives any other
information that you need to know in order to use the function.

12 The principle of procedural abstraction says that a function should be written
so that it can be used like a black box. This means that the programmer who
uses the function need not look at the body of the function definition to see
how the function works. The function declaration and accompanying com-
ment should be all the programmer needs to know in order to use the function.

CH03.fm Page 168 Thursday, July 24, 2003 3:12 PM

Answers to Self-Test Exercises 169

13 When we say that the programmer who uses a function should be able to
treat the function like a black box, we mean the programmer should not need
to look at the body of the function definition to see how the function works.
The function declaration and accompanying comment should be all the pro-
grammer needs to know in order to use the function.

14 In order to increase your confidence in your program, you should test it on input
values for which you know the correct answers. Perhaps you can calculate the
answers by some other means, such as pencil and paper or hand calculator.

15 Yes, the function would return the same value in either case, so the two defi-
nitions are black-box equivalent.

16 If you use a variable in a function definition, you should declare the variable
in the body of the function definition.

17 Everything will be fine. The program will compile (assuming everything else
is correct). The program will run (assuming that everything else is correct).
The program will not generate an error message when run (assuming every-
thing else is correct). The program will give the correct output (assuming
everything else is correct).

18 The function will work fine. That is the entire answer, but here is some addi-
tional information: The formal parameter inches is a call-by-value parame-
ter and, as discussed in the text, it is therefore a local variable. Thus, the
value of the argument will not be changed.

19 The function declaration is:

double read_filter();
//Reads a number from the keyboard. Returns the number
//read provides it is >= 0; otherwise returns zero.

The function definition is:

//uses iostream
double read_filter()
{
 using namespace std;
 double value_read;
 cout << "Enter a number:\n";
 cin >> value_read;

 if (value_read >= 0)
 return value_read;
 else
 return 0.0;
}

CH03.fm Page 169 Thursday, July 24, 2003 3:12 PM

170 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

20 The function call has only one argument, so it would use the function defini-
tion that has only one formal parameter.

21 The function call has two arguments of type double, so it would use the
function corresponding to the function declaration with two arguments of
type double (that is, the first function declaration).

22 The second argument is of type int and the first argument would be auto-
matically converted to type double by C++ if needed, so it would use the
function corresponding to the function declaration with the first arguments of
type double and the second argument of type int (that is, the second func-
tion declaration).

23 The second argument is of type double and the first argument would be
automatically converted to type double by C++ if needed, so it would use
the function corresponding to the function declaration with two arguments of
type double (that is, the first function declaration).

24 This cannot be done (at least not in any nice way). The natural ways to repre-
sent a square and a round pizza are the same. Each is naturally represented as
one number, which is the diameter for a round pizza and the length of a side
for a square pizza. In either case the function unitprice would need to have
one formal parameter of type double for the price and one formal parameter
of type int for the size (either radius or side). Thus, the two function declara-
tions would have the same number and types of formal parameters. (Specifi-
cally, they would both have one formal parameter of type double and one
formal parameter of type int.) Thus, the compiler would not be able to decide
which definition to use. You can still defeat this evil pizza parlor’s strategy by
defining two functions, but they will need to have different names.

25 The definition of unitprice does not do any input or output and so does not
use the library iostream. In main we needed the using directive because
cin and cout are defined in iostream and those definitions place cin and
cout in the std namespace.

Programming Projects

1 A liter is 0.264179 gallons. Write a program that will read in the number of
liters of gasoline consumed by the user’s car and the number of miles trav-
eled by the car, and will then output the number of miles per gallon the car
delivered. Your program should allow the user to repeat this calculation as
often as the user wishes. Define a function to compute the number of miles
per gallon. Your program should use a globally defined constant for the num-
ber of liters per gallon.

CH03.fm Page 170 Thursday, July 24, 2003 3:12 PM

project170.html

Programming Projects 171

2 The price of stocks is sometimes given to the nearest eighth of a dollar; for
example, 297/8 or 891/2. Write a program that computes the value of the
user’s holding of one stock. The program asks for the number of shares of
stock owned, the whole dollar portion of the price and the fraction portion.
The fraction portion is to be input as two int values, one for the numerator
and one for the denominator. The program then outputs the value of the
user’s holdings. Your program should allow the user to repeat this calcula-
tion as often as the user wishes. Your program will include a function defini-
tion that has three int arguments consisting of the whole dollar portion of
the price and the two integers that make up the fraction part. The function
returns the price of one share of stock as a single number of type double.

3 Write a program to gauge the rate of inflation for the past year. The program
asks for the price of an item (such as a hot dog or a one carat diamond) both
one year ago and today. It estimates the inflation rate as the difference in
price divided by the year ago price. Your program should allow the user to
repeat this calculation as often as the user wishes. Define a function to com-
pute the rate of inflation. The inflation rate should be a value of type double
giving the rate as a percent, for example 5.3 for 5.3%.

4 Enhance your program from the previous exercise by having it also print out
the estimated price of the item in one and in two years from the time of the
calculation. The increase in cost over one year is estimated as the inflation
rate times the price at the start of the year. Define a second function to deter-
mine the estimated cost of an item in one year, given the current price of the
item and the inflation rate as arguments.

5 Write a function declaration for a function that computes interest on a credit
card account balance. The function takes arguments for the initial balance,
the monthly interest rate, and the number of months for which interest must
be paid. The value returned is the interest due. Do not forget to compound
the interest—that is, to charge interest on the interest due. The interest due is
added into the balance due, and the interest for the next month is computed
using this larger balance. Use a while loop that is similar to (but need not be
identical to) the one shown in Display 2.14. Embed the function in a program
that reads the values for the interest rate, initial account balance, and number
of months, then outputs the interest due. Embed your function definition in a
program that lets the user compute interest due on a credit account balance.
The program should allow the user to repeat the calculation until the user
said he or she wants to end the program.

CH03.fm Page 171 Thursday, July 24, 2003 3:12 PM

172 3 PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE

6 The gravitational attractive force between two bodies with masses m1 and m2
separated by a distance d is given by:

where G is the universal gravitational constant:

G = 6.673 � 10-8 cm3/(g • sec2)

Write a function definition that takes arguments for the masses of two bodies
and the distance between them, and that returns the gravitational force
between them. Since you will use the above formula, the gravitational force
will be in dynes. One dyne equals a

g • cm/sec2

You should use a globally defined constant for the universal gravitational
constant. Embed your function definition in a complete program that
computes the gravitational force between two objects given suitable inputs.
Your program should allow the user to repeat this calculation as often as the
user wishes.

7 Write a program that computes the annual after-tax cost of a new house for
the first year of ownership. The cost is computed as the annual mortgage cost
minus the tax savings. The input should be the price of the house and the
down payment. The annual mortgage cost can be estimated as 3% of the ini-
tial loan balance credited toward paying off the loan principal plus 8% of the
initial loan balance in interest. The initial loan balance is the price minus the
down payment. Assume a 35% marginal tax rate and assume that interest
payments are tax deductible. So, the tax savings is 35% of the interest pay-
ment. Your program should use at least two function definitions. Your pro-
gram should allow the user to repeat this calculation as often as the user
wishes.

8 Write a program that asks for the user’s height, weight, and age, and then
computes clothing sizes according to the formulas:

• Hat size = weight in pounds divided by height in inches and all that
multiplied by 2.9.

• Jacket size (chest in inches) = height times weight divided by 288 and then
adjusted by adding 1/8 of an inch for each 10 years over age 30. (Note that

F
Gm1m2

d2
-------------------=

CH03.fm Page 172 Thursday, July 24, 2003 3:12 PM

project172a.html
project172b.html

Programming Projects 173

the adjustment only takes place after a full 10 years. So, there is no adjust-
ment for ages 30 through 39, but 1/8 of an inch is added for age 40.)

• Waist in inches = weight divided by 5.7 and then adjusted by adding 1/10 of
an inch for each 2 years over age 28. (Note that the adjustment only takes
place after a full 2 years. So, there is no adjustment for age 29, but 1/10 of an
inch is added for age 30.)

Use functions for each calculation. Your program should allow the user to
repeat this calculation as often as the user wishes.

9 That we are “blessed” with several absolute value functions is an accident of
history. C libraries were already available when C++ arrived; they could be
easily used, so they were not rewritten using function overloading. You are
to find all the absolute value functions you can, and rewrite all of them over-
loading the abs function name. At a minimum you should have the int,
long, float, and double types represented.

CH03.fm Page 173 Thursday, July 24, 2003 3:12 PM

project173.html

	program projects 3:
	1:
	6:
	8:

	code links 1:
	code links 2:
	code links 3:
	code links 4:
	code links 5:
	code links 6:
	code links 8:
	code links 7:
	code links 9:
	code links 10:
	Text: For additional online Programming Projects, click the CodeMate icons below.
	Text 2: 3.11
	program project 3:
	11:

