

2

C++ Basics

2.1 Variables and Assignments 40

Variables 40
Names: Identifiers 41
Variable Declarations 44
Assignment Statements 46

Pitfall:

Uninitialized Variables 48

Programming Tip:

Use Meaningful Names 49

2.2 Input and Output 50

Output Using

cout

 51
Include Directives and Namespaces 52
Escape Sequences 54

Programming Tip:

End Each Program with
a

\n

 or

endl

 55
Formatting for Numbers with a Decimal Point 55
Input Using

cin

 57
Designing Input and Output 59

Programming Tip:

Line Breaks in I/O 59

2.3 Data Types and Expressions 61

The Types

int

 and

double

 61
Other Number Types 62
The Type

char

 64
The Type

bool

 65
Type Compatibilities 65
Arithmetic Operators and Expressions 68

Pitfall:

Whole Numbers in Division 71
More Assignment Statements 72

2.4 Simple Flow of Control 73

A Simple Branching Mechanism 73

Pitfall:

Strings of Inequalities 79

Pitfall:

Using

=

 in place of

==

 80
Compound Statements 81
Simple Loop Mechanisms 83
Increment and Decrement Operators 87

Programming Example:

Charge Card Balance 89

Pitfall:

Infinite Loops 90

2.5 Program Style 93

Indenting 93
Comments 94
Naming Constants 95

Chapter Summary 98
Answers to Self-Test Exercises 99
Programming Projects 105

CH02.fm Page 39 Thursday, July 24, 2003 3:08 PM

2

C++ Basics

Don’t imagine you know what a computer terminal is. A computer terminal is not
some clunky old television with a typewriter in front of it. It is an interface where
the mind and the body can connect with the universe and move bits of it about.

D

OUGLAS

 A

DAMS

,

M

OSTLY

 H

ARMLESS

(

the fifth volume in

T

HE

 H

ITCHHIKER

’

S

 T

RILOGY

)

Introduction

In this chapter we explain some additional sample C++ programs and present
enough details of the C++ language to allow you to write simple C++ programs.

Prerequisites

In Chapter 1 we gave a brief description of one sample C++ program. (If you have
not read the description of that program, you may find it helpful to do so before
reading this chapter.)

2.1 Variables and Assignments

Once a person has understood the way variables are used in programming, he has
understood the quintessence of programming.

E. W. D

IJKSTRA

,

N

OTES

ON

 S

TRUCTURED

 P

ROGRAMMING

Programs manipulate data such as numbers and letters. C++ and most other common
programming languages use programming constructs known as

variables

 to name
and store data. Variables are at the very heart of a programming language like C++,
so that is where we start our description of C++. We will use the program in
Display 2.1 for our discussion and will explain all the items in that program. While
the general idea of that program should be clear, some of the details are new and will
require some explanation.

Variables

A C++ variable can hold a number or data of other types. For the moment, we will
confine our attention to variables that hold only numbers. These variables are like

CH02.fm Page 40 Thursday, July 24, 2003 3:08 PM

2.1 Variables and Assignments

41

small blackboards on which the numbers can be written. Just as the numbers written
on a blackboard can be changed, so too can the number held by a C++ variable be
changed. Unlike a blackboard that might possibly contain no number at all, a C++
variable is guaranteed to have some value in it, if only a garbage number left in the
computer’s memory by some previously run program. The number or other type of
data held in a variable is called its

value;

 that is, the value of a variable is the item
written on the figurative blackboard. In the program in Display 2.1,

number_of_bars

,

one_weight

, and

total_weight

 are variables. For example, when this program is
run with the input shown in the sample dialogue,

number_of_bars

has its value set
equal to the number 11 with the statement

cin >> number_of_bars;

Later, the value of the variable

number_of_bars

is changed to

12

 when a second
copy of the same statement is executed. We will discuss exactly how this happens a
little later in this chapter.

 Of course, variables are not blackboards. In programming languages, variables
are implemented as memory locations. The compiler assigns a memory location (of
the kind discussed in Chapter 1) to each variable name in the program. The value of
the variable, in a coded form consisting of zeros and ones, is kept in the memory
location assigned to that variable. For example, the three variables in the program
shown in Display 2.1 might be assigned the memory locations with addresses 1001,
1003, and 1007. The exact numbers will depend on your computer, your compiler,
and a number of other factors. We do not know, or even care, what addresses the
compiler will choose for the variables in our program. We can think as though the
memory locations were actually labeled with the variable names.

Names: Identifiers

The first thing you might notice about the names of the variables in our sample
programs is that they are longer than the names normally used for variables in
mathematics classes. To make your program easy to understand, you should always
use meaningful names for variables. The name of a variable (or other item you might
define in a program) is called an

identifier.

 An identifier must start with either a
letter or the underscore symbol, and all the rest of the characters must be letters,
digits, or the underscore symbol. For example, the following are all valid identifiers:

x x1 x_1 _abc ABC123z7 sum RATE count data2 Big_Bonus

value of
a variable

variables are
memory locations

Cannot Get Programs to Run?
If you cannot get your C++ programs to compile and run, read the Pitfall section of
Chapter 1 entitled “Getting Your Program to Run.” This section has tips for dealing
with variations in C++ compilers and C++ environments.

CH02.fm Page 41 Thursday, July 24, 2003 3:08 PM

42

2 C++ BASICS

Display 2.1 A C++ Program (part 1 of 2)

#include <iostream>
using namespace std;
int main()
{
 int number_of_bars;
 double one_weight, total_weight;

 cout << "Enter the number of candy bars in a package\n";
 cout << "and the weight in ounces of one candy bar.\n";
 cout << "Then press return.\n";
 cin >> number_of_bars;
 cin >> one_weight;

 total_weight = one_weight * number_of_bars;

 cout << number_of_bars << " candy bars\n";
 cout << one_weight << " ounces each\n";
 cout << "Total weight is " << total_weight << " ounces.\n";

 cout << "Try another brand.\n";
 cout << "Enter the number of candy bars in a package\n";
 cout << "and the weight in ounces of one candy bar.\n";
 cout << "Then press return.\n";
 cin >> number_of_bars;
 cin >> one_weight;

 total_weight = one_weight * number_of_bars;

 cout << number_of_bars << " candy bars\n";
 cout << one_weight << " ounces each\n";
 cout << "Total weight is " << total_weight << " ounces.\n";

 cout << "Perhaps an apple would be healthier.\n";

 return 0;
}

CH02.fm Page 42 Thursday, July 24, 2003 3:08 PM

code42.html

2.1 Variables and Assignments

43

All of the previously mentioned names are legal and would be accepted by the
compiler, but the first five are poor choices for identifiers, since they are not
descriptive of the identifier’s use. None of the following are legal identifiers and all
would be rejected by the compiler:

12 3X %change data-1 myfirst.c PROG.CPP

The first three are not allowed because they do not start with a letter or an
underscore. The remaining three are not identifiers because they contain symbols
other than letters, digits, and the underscore symbol.

C++ is a case-sensitive language; that is, it distinguishes between uppercase and
lowercase letters in the spelling of identifiers. Hence the following are three distinct
identifiers and could be used to name three distinct variables:

rate RATE Rate

Display 2.1 A C++ Program (part 2 of 2)

Sample Dialogue

Enter the number of candy bars in a package
and the weight in ounces of one candy bar.
Then press return.
11 2.1
11 candy bars
2.1 ounces each
Total weight is 23.1 ounces.
Try another brand.
Enter the number of candy bars in a package
and the weight in ounces of one candy bar.
Then press return.
12 1.8
12 candy bars
1.8 ounces each
Total weight is 21.6 ounces.
Perhaps an apple would be healthier.

uppercase and
lowercase

CH02.fm Page 43 Thursday, July 24, 2003 3:08 PM

44

2 C++ BASICS

However, it is not a good idea to use two such variants in the same program, since
that might be confusing. Although it is not required by C++, variables are often
spelled with all lowercase letters. The predefined identifiers, such as main, cin,
cout, and so forth, must be spelled in all lowercase letters. We will see uses for
identifiers spelled with uppercase letters later in this chapter.

 A C++ identifier can be of any length, although some compilers will ignore all
characters after some specified and typically large number of initial characters.

There is a special class of identifiers, called keywords or reserved words, that
have a predefined meaning in C++ and that you cannot use as names for variables or
anything else. In this book keywords are written in a different type font like so: int,
double. (And now you know why those words were written in a funny way.) A com-
plete list of keywords is given in Appendix 1.

You may wonder why the other words that we defined as part of the C++ lan-
guage are not on the list of keywords. What about words like cin and cout? The
answer is that you are allowed to redefine these words, although it would be confus-
ing to do so. These predefined words are not keywords; however, they are defined in
libraries required by the C++ language standard. We will discuss libraries later in
this book. For now, you need not worry about libraries. Needless to say, using a pre-
defined identifier for anything other than its standard meaning can be confusing and
dangerous, and thus should be avoided. The safest and easiest practice is to treat all
predefined identifiers as if they were keywords.

Variable Declarations

Every variable in a C++ program must be declared. When you declare a variable
you are telling the compiler—and, ultimately, the computer—what kind of data you
will be storing in the variable. For example, the following two declarations from the
program in Display 2.1 declare the three variables used in that program:

int number_of_bars;
double one_weight, total_weight;

When there is more than one variable in a declaration, the variables are separated by
commas. Also, note that each declaration ends with a semicolon.

Identifiers
Identifiers are used as names for variables and other items in a C++ program. An
identifier must start with either a letter or the underscore symbol, and the remaining
characters must all be letters, digits, or the underscore symbol.

keywords

CH02.fm Page 44 Thursday, July 24, 2003 3:08 PM

2.1 Variables and Assignments 45

The word int in the first of these two declarations is an abbreviation of the word
integer. (But in a C++ program you must use the abbreviated form int. Do not write
out the entire word integer.) This line declares the identifier number_of_bars to be
a variable of type int. This means that the value of number_of_bars must be a
whole number, such as 1, 2, –1, 0, 37, or –288.

The word double in the second of these two lines declares the two identifiers
one_weight and total_weight to be variables of type double. A variable of type
double can hold numbers with a fractional part, such as 1.75 or –0.55. The kind of
data that is held in a variable is called its type and the name for the type, such as int
or double, is called a type name.

Every variable in a C++ program must be declared before the variable can be
used. There are two natural places to declare a variable: either just before it is used
or at the start of the main part of your program right after the lines

int main()
{

Do whatever makes your program clearer.
Variable declarations provide information the compiler needs in order to imple-

ment the variables. Recall that the compiler implements variables as memory loca-
tions and that the value of a variable is stored in the memory location assigned to
that variable. The value is coded as a string of zeros and ones. Different types of
variables require different sizes of memory locations and different methods for cod-
ing their values as a string of zeros and ones. The computer uses one code to encode
integers as a string of zeros and ones. It uses a different code to encode numbers that
have a fractional part. It uses yet another code to encode letters as strings of zeros
and ones. The variable declaration tells the compiler—and, ultimately, the computer—
what size memory location to use for the variable and which code to use when repre-
senting the variable’s value as a string of zeros and ones.

Variable Declarations
All variables must be declared before they are used. The syntax for variable
declarations is as follows:
Syntax

Type_Name Variable_Name_1, Variable_Name_2, . . .;

Example

int count, number_of_dragons, number_of_trolls;
double distance;

type

where to place
variable
declarations

CH02.fm Page 45 Thursday, July 24, 2003 3:08 PM

46 2 C++ BASICS

Assignment Statements

The most direct way to change the value of a variable is to use an assignment
statement. An assignment statement is an order to the computer saying, “set the
value of this variable to what I have written down.” The following line from the
program in Display 2.1 is an example of an assignment statement:

total_weight = one_weight * number_of_bars;

This assignment statement tells the computer to set the value of total_weight
equal to the number in the variable one_weight multiplied by the number in
number_of_bars. (As we noted in Chapter 1, * is the sign used for multiplication in
C++.)

An assignment statement always consists of a variable on the left-hand side of
the equal sign and an expression on the right-hand side. An assignment statement
ends with a semicolon. The expression on the right-hand side of the equal sign may
be a variable, a number, or a more complicated expression made up of variables,
numbers, and arithmetic operators such as * and +. An assignment statement
instructs the computer to evaluate (that is, to compute the value of) the expression on
the right-hand side of the equal sign and to set the value of the variable on the left-
hand side equal to the value of that expression. A few more examples may help to
clarify the way these assignment statements work.

You may use any arithmetic operator in place of the multiplication sign. The fol-
lowing, for example, is also a valid assignment statement:

total_weight = one_weight + number_of_bars;

This statement is just like the assignment statements in our sample program, except
that it performs addition rather than multiplication. This statement changes the value
of total_weight to the sum of the values of one_weight and number_of_bars.
Of course, if you made this change in the program in Display 2.1, the program
would give incorrect output, but it would still run.

Syntax
The syntax for a programming language (or any other kind of language) is the set of
grammar rules for that language. For example, when we talk about the syntax for a
variable declaration (as in the box labeled “Variable Declarations”), we are talking
about the rules for writing down a well-formed variable declaration. If you follow all
the syntax rules for C++, then the compiler will accept your program. Of course,
this only guarantees that what you write is legal. It guarantees that your program
will do something, but it does not guarantee that your program will do what you
want it to do.

CH02.fm Page 46 Thursday, July 24, 2003 3:08 PM

2.1 Variables and Assignments 47

In an assignment statement, the expression on the right-hand side of the equal
sign can simply be another variable. The statement

total_weight = one_weight;

changes the value of the variable total_weight so that it is the same as that of the
variable one_weight. If you were to use this in the program in Display 2.1, it would
give out incorrectly low values for the total weight of a package (assuming there is
more than one candy bar in a package), but it might make sense in some other
program.

As another example, the following assignment statement changes the value of
number_of_bars to 37:

number_of_bars = 37;

A number, like the 37 in this example, is called a constant, because unlike a
variable, its value cannot change.

Since variables can change value over time and since the assignment operator is
one vehicle for changing their values, there is an element of time involved in the
meaning of an assignment statement. First, the expression on the right-hand side of
the equal sign is evaluated. After that, the value of the variable on the left side of the
equal sign is changed to the value that was obtained from that expression. This
means that a variable can meaningfully occur on both sides of an assignment opera-
tor. For example, consider the assignment statement

number_of_bars = number_of_bars + 3;

This assignment statement may look strange at first. If you read it as an English
sentence, it seems to say “the number_of_bars is equal to the number_of_bars plus
three.” It may seem to say that, but what it really says is, “Make the new value of
number_of_bars equal to the old value of number_of_bars plus three.” The equal
sign in C++ is not used the same way that it is used in English or in simple mathematics.

Assignment Statements
In an assignment statement, first the expression on the right-hand side of the equal
sign is evaluated, and then the variable on the left-hand side of the equal sign is set
equal to this value.
Syntax

Variable = Expression;

Examples

distance = rate * time;
count = count + 2;

constant

same variable on
both sides of =

CH02.fm Page 47 Thursday, July 24, 2003 3:08 PM

48 2 C++ BASICS

PITFALL Uninitialized Variables

A variable has no meaningful value until a program gives it one. For example, if the
variable minimum_number has not been given a value either as the left-hand side of
an assignment statement or by some other means (such as being given an input value
with a cin statement), then the following is an error:

 desired_number = minimum_number + 10;

This is because minimum_number has no meaningful value, so the entire expression
on the right-hand side of the equal sign has no meaningful value. A variable like
minimum_number that has not been given a value is said to be uninitialized. This
situation is, in fact, worse than it would be if minimum_number had no value at all.
An uninitialized variable, like minimum_number, will simply have some “garbage
value.” The value of an uninitialized variable is determined by whatever pattern of
zeros and ones was left in its memory location by the last program that used that
portion of memory. Thus if the program is run twice, an uninitialized variable may
receive a different value each time the program is run. Whenever a program gives
different output on exactly the same input data and without any changes in the
program itself, you should suspect an uninitialized variable.

One way to avoid an uninitialized variable is to initialize variables at the same time
they are declared. This can be done by adding an equal sign and a value, as follows:

int minimum_number = 3;

This both declares minimum_number to be a variable of type int and sets the value
of the variable minimum_number equal to 3. You can use a more complicated
expression involving operations such as addition or multiplication when you initialize
a variable inside the declaration in this way. However, a simple constant is what is
most often used. You can initialize some, all, or none of the variables in a declaration
that lists more than one variable. For example, the following declares three variables
and initializes two of them:

double rate = 0.07, time, balance = 0.0;

C++ allows an alternative notation for initializing variables when they are declared.
This alternative notation is illustrated by the following, which is equivalent to the
preceding declaration:

double rate(0.07), time, balance(0.0);

Whether you initialize a variable when it is declared or at some later point in the
program depends on the circumstances. Do whatever makes your program the easiest
to understand.

CH02.fm Page 48 Thursday, July 24, 2003 3:08 PM

2.1 Variables and Assignments 49

Programming TIP
Use Meaningful Names

Variable names and other names in a program should at least hint at the meaning or
use of the thing they are naming. It is much easier to understand a program if the
variables have meaningful names. Contrast the following:

x = y * z;

with the more suggestive:

distance = speed * time;

The two statements accomplish the same thing, but the second is easier to
understand.

SELF-TEST EXERCISES

1 Give the declaration for two variables called feet and inches. Both vari-
ables are of type int and both are to be initialized to zero in the declaration.
Use both initialization alternatives.

Initializing Variables in Declarations
You can initialize a variable (that is, give it a value) at the time that you declare the
variable.
Syntax

Type_Name Variable_Name_1 = Expression_ for_Value_1,
Variable_Name_2 = Expresssion_ for_Value_2, . . .;

Examples

int count = 0, limit = 10, fudge_factor = 2;
double distance = 999.99;

Alternative syntax for initializing in Declarations

Type_Name Variable_Name_1 (Expression_ for_Value_1),
Variable_Name_2 (Expression_ for_Value_2), . . .;

Examples

int count(0), limit(10), fudge_factor(2);
double distance(999.99);

CH02.fm Page 49 Thursday, July 24, 2003 3:08 PM

50 2 C++ BASICS

2 Give the declaration for two variables called count and distance. count is
of type int and is initialized to zero. distance is of type double and is ini-
tialized to 1.5.

3 Give a C++ statement that will change the value of the variable sum to the
sum of the values in the variables n1 and n2. The variables are all of type int.

4 Give a C++ statement that will increase the value of the variable length by
8.3. The variable length is of type double.

5 Give a C++ statement that will change the value of the variable product to
its old value multiplied by the value of the variable n. The variables are all of
type int.

6 Write a program that contains statements that output the value of five or six
variables that have been declared, but not initialized. Compile and run the
program. What is the output? Explain.

7 Give good variable names for each of the following:

a. A variable to hold the speed of an automobile

b. A variable to hold the pay rate for an hourly employee
c. A variable to hold the highest score in an exam

2.2 Input and Output

Garbage in means garbage out.

PROGRAMMERS’ SAYING

There are several different ways that a C++ program can perform input and output.
We will describe what are called streams. An input stream is simply the stream of
input that is being fed into the computer for the program to use. The word stream
suggests that the program processes the input in the same way no matter where the
input comes from. The intuition for the word stream is that the program sees only the
stream of input and not the source of the stream, like a mountain stream whose water
flows past you but whose source is unknown to you. In this section we will assume
that the input comes from the keyboard. In Chapter 5 we will discuss how a program
can read its input from a file; as you will see there, you can use the same kinds of
input statements to read input from a file as those that you use for reading input from
the keyboard. Similarly, an output stream is the stream of output generated by the
program. In this section we will assume the output is going to a terminal screen; in
Chapter 5 we will discuss output that goes to a file.

input stream

output stream

CH02.fm Page 50 Thursday, July 24, 2003 3:08 PM

2.2 Input and Output 51

Output Using cout

The values of variables as well as strings of text may be output to the screen using
cout. There may be any combination of variables and strings to be output. For
example, consider the following line from the program in Display 2.1:

cout << number_of_bars << " candy bars\n";

This statement tells the computer to output two items: the value of the variable
number_of_bars and the quoted string " candy bars\n". Notice that you do not
need a separate copy of the word cout for each item output. You can simply list all
the items to be output preceding each item to be output with the arrow symbols <<.
The above single cout statement is equivalent to the following two cout statements:

cout << number_of_bars;
cout << " candy bars\n";

You can include arithmetic expressions in a cout statement as shown by the fol-
lowing example, where price and tax are variables:

cout << "The total cost is $" << (price + tax);

The parentheses around arithmetic expressions, like price + tax, are required by
some compilers, so it is best to include them.

The symbol < is the same as the “less than” symbol. The two < symbols should
be typed without any space between them. The arrow notation << is often called the
insertion operator. The entire cout statement ends with a semicolon.

Whenever you have two cout statements in a row, you can combine them into a
single long cout statement. For example, consider the following lines from
Display 2.1:

 cout << number_of_bars << " candy bars\n";
 cout << one_weight << " ounces each\n";

These two statements can be rewritten as the single statement shown below, and the
program will perform exactly the same:

cout << number_of_bars << " candy bars\n" << one_weight
<< " ounces each\n";

If you want to keep your program lines from running off the screen, you will have to
place such a long cout statement on two or more lines. A better way to write the
above long cout statement is:

cout << number_of_bars << " candy bars\n"
 << one_weight << " ounces each\n";

You should not break a quoted string across two lines, but otherwise you can start a
new line anywhere you can insert a space. Any reasonable pattern of spaces and line

expression in a
cout statement

insertion operator

CH02.fm Page 51 Thursday, July 24, 2003 3:08 PM

52 2 C++ BASICS

breaks will be acceptable to the computer, but the above example and the sample
programs are good models to follow. A good policy is to use one cout for each
group of output that is intuitively considered a unit. Notice that there is just one
semicolon for each cout, even if the cout statement spans several lines.

Pay particular attention to the quoted strings that are output in the program in
Display 2.1. Notice that the strings must be included in double quotes. The double
quote symbol used is a single key on your keyboard; do not type two single quotes.
Also, notice that the same double quote symbol is used at each end of the string;
there are not separate left and right quote symbols.

Also, notice the spaces inside the quotes. The computer does not insert any extra
space before or after the items output by a cout statement. That is why the quoted
strings in the samples often start and/or end with a blank. The blanks keep the vari-
ous strings and numbers from running together. If all you need is a space and there is
no quoted string where you want to insert the space, then use a string that contains
only a space, as in the following:

cout << first_number << " " << second_number;

As we noted in Chapter 1, \n tells the computer to start a new line of output.
Unless you tell the computer to go to the next line, it will put all the output on the
same line. Depending on how your screen is set up, this can produce anything from
arbitrary line breaks to output that runs off the screen. Notice that the \n goes inside
of the quotes. In C++, going to the next line is considered to be a special character
(special symbol) and the way you spell this special character inside a quoted string is
\n, with no space between the two symbols in \n. Although it is typed as two sym-
bols, C++ considers \n to be single character that is called the new-line character.

Include Directives and Namespaces

We have started all of our programs with the following two lines:

#include <iostream>
using namespace std;

These two lines make the library iostream available. This is the library that
includes, among other things, the definitions of cin and cout. So if your program
uses either cin or cout, you should have these two lines at the start of the file that
contains your program.

The following line is known as an include directive. It “includes” the library
iostream in your program so that you have cin and cout available:

#include <iostream>

spaces in output

new lines
in output

new-line character

include
directive

CH02.fm Page 52 Thursday, July 24, 2003 3:08 PM

2.2 Input and Output 53

The operators cin and cout are defined in a file named iostream and the above
include directive is equivalent to copying that named file into your program. The
second line is a bit more complicated to explain.

C++ divides names into namespaces. A namespace is a collection of names,
such as the names cin and cout. A statement that specifies a namespace in the way
illustrated by the following is called a using directive.

using namespace std;

This particular using directive says that your program is using the std (“standard”)
namespace. This means that the names you use will have the meaning defined for
them in the std namespace. In this case, the important thing is that when names such
as cin and cout were defined in iostream, their definitions said they were in the
std namespace. So to use names like cin and cout, you need to tell the compiler
you are using namespace std;.

That is all you need to know (for now) about namespaces, but a brief clarifying
remark will remove some of the mystery that might surround the use of namespace.
The reason that C++ has namespaces at all is because there are so many things to
name. As a result, sometimes two or more items receive the same name; that is, a
single name can get two different definitions. To eliminate these ambiguities, C++
divides items into collections so that no two items in the same collection (the same
namespace) have the same name.

Note that a namespace is not simply a collection of names. It is a body of C++
code that specifies the meaning of some names, such as some definitions and/or dec-
larations. The function of namespaces is to divide all the C++ name specifications
into collections (called namespaces) such that each name in a namespace has only
one specification (one “definition”) in that namespace. A namespace divides up the
names, but it takes a lot of C++ code along with the names.

What if you want to use two items in two different namespaces, such that both
items have the same name? It can be done and is not too complicated, but that is a
topic for later in the book. For now, we do not need to do this.

Some versions of C++ use the following, older form of the include directive
(without any using namespace):

#include <iostream.h>

If your programs do not compile or do not run with

#include <iostream>
using namespace std;

then try using the following line instead of the previous two lines:

#include <iostream.h>

namespace

alternative form

CH02.fm Page 53 Thursday, July 24, 2003 3:08 PM

54 2 C++ BASICS

If your program requires iostream.h instead of iostream, then you have an
old C++ compiler and should obtain a more recent compiler.

Escape Sequences

The \ preceding a character tells the compiler that the character following the \ does
not have the same meaning as the character appearing by itself. Such a sequence is
called an escape sequence. The sequence is typed in as two characters with no space
between the symbols. Several escape sequences are defined in C++.

If you want to put a backslash, \, or a " into a string constant, you must escape
the ability of the " to terminate a string constant by using \", or the ability of the \ to
escape, by using \\. The \\ tells the compiler you mean a real backslash, \, not an
escape sequence, or \" means a real quote, not a string constant end.

A stray \, say \z, in a string constant will on one compiler simply give back a z;
on another it will produce an error. The ANSI Standard provides that the unspecified
escape sequences have undefined behavior. This means a compiler can do anything
its author finds convenient. The consequence is that code that uses undefined escape
sequences is not portable. You should not use any escape sequences other than those
provided. We list a few here.

new-line \n
horizontal tab \t
alert \a
backslash \\
double quote \"

If you wish to insert a blank line in the output, you can output the new-line char-
acter \n by itself:

cout << "\n";

Another way to output a blank line is to use endl, which means essentially the same
thing as "\n". So you can also output a blank line as follows:

cout << endl;

Although "\n" and endl mean the same thing, they are used slightly differently; \n
must always be inside of quotes and endl should not be placed in quotes.

A good rule for deciding whether to use \n or endl is the following: If you can
include the \n at the end of a longer string, then use \n as in the following

cout << "Fuel efficiency is "
 << mpg << " miles per gallon\n";

escape sequence

deciding between
\n and endl

CH02.fm Page 54 Thursday, July 24, 2003 3:08 PM

2.2 Input and Output 55

On the other hand, if the \n would appear by itself as the short string "\n", then use
endl instead:

cout << "You entered " << number << endl;

Programming TIP
End Each Program with a \n or endl

It is a good idea to output a new-line instruction at the end of every program. If the
last item to be output is a string, then include a \n at the end of the string; if not,
output an endl as the last action in your program. This serves two purposes. Some
compilers will not output the last line of your program unless you include a new-line
instruction at the end. On other systems, your program may work fine without this
final new-line instruction, but the next program that is run will have its first line of
output mixed with the last line of the previous program. Even if neither of these
problems occurs on your system, putting a new-line instruction at the end will make
your programs more portable.

Formatting for Numbers with a Decimal Point

When the computer outputs a value of type double, the format may not be what you
would like. For example, the following simple cout statement can produce any of a
wide range of outputs:

cout << "The price is $" << price << endl;

Starting New Lines in Output
To start a new output line, you can include \n in a quoted string, as in the
following example:

cout << "You have definitely won\n"
<< "one of the following prizes:\n";

Recall that \n is typed as two symbols with no space in-between the two symbols.
Alternatively, you can start a new line by outputting endl. An equivalent way

to write the above cout statement is as follows:

cout << "You have definitely won" << endl
<< "one of the following prizes:" << endl;

format for
double values

CH02.fm Page 55 Thursday, July 24, 2003 3:08 PM

56 2 C++ BASICS

If price has the value 78.5, the output might be

The price is $78.500000

or it might be

The price is $78.5

or it might be output in the following notation (which we will explain in section 2.3):

The price is $7.850000e01

But it is extremely unlikely that the output will be the following, even though this is
the format that makes the most sense:

The price is $78.50

To ensure that the output is in the form you want, your program should contain some
sort of instructions that tell the computer how to output the numbers.

There is a “magic formula” that you can insert in your program to cause num-
bers that contain a decimal point, such as numbers of type double, to be output in
everyday notation with the exact number of digits after the decimal point that you
specify. If you want two digits after the decimal point, use the following magic
formula:

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

If you insert the preceding three statements in your program, then any cout
statement that follows these three statements will output values of type double in
ordinary notation, with exactly two digits after the decimal point. For example,
suppose the following cout statement appears somewhere after this magic formula
and suppose the value of price is 78.5:

cout << "The price is $" << price << endl;

The output will then be as follows:

The price is $78.50

You may use any other nonnegative whole number in place of 2 to specify a different
number of digits after the decimal point. You can even use a variable of type int in
place of the 2.

magic formula

outputting
money amounts

CH02.fm Page 56 Thursday, July 24, 2003 3:08 PM

2.2 Input and Output 57

We will explain this magic formula in detail in Chapter 5. For now you should
think of this magic formula as one long instruction that tells the computer how you
want it to output numbers that contain a decimal point.

If you wish to change the number of digits after the decimal point so that differ-
ent values in your program are output with different numbers of digits, you can
repeat the magic formula with some other number in place of 2. However, when you
repeat the magic formula, you only need to repeat the last line of the formula. If the
magic formula has already occurred once in your program, then the following line
will change the number of digits after the decimal point to 5 for all subsequent val-
ues of type double that are output:

cout.precision(5);

Input Using cin

You use cin for input more or less the same way you use cout for output. The
syntax is similar, except that cin is used in place of cout and the arrows point in the
opposite direction. For example, in the program in Display 2.1, the variables
number_of_bars and one_weight were filled by the following cin statements
(shown along with the cout statements that tell the user what to do):

cout << "Enter the number of candy bars in a package\n";
cout << "and the weight in ounces of one candy bar.\n";
cout << "Then press return.\n";
cin >> number_of_bars;
cin >> one_weight;

Outputting Values of Type double
If you insert the following “magic formula” in your program, then all numbers of
type double (or any other type that allows for digits after the decimal point) will be
output in ordinary everyday notation with 2 digits after the decimal point:

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

You can use any other nonnegative whole number in place of the 2 to specify a
different number of digits after the decimal point. You can even use a variable of
type int in place of the 2.

CH02.fm Page 57 Thursday, July 24, 2003 3:08 PM

58 2 C++ BASICS

You can list more than one variable in a single cin statement. So the above lines
could be rewritten to the following:

cout << "Enter the number of candy bars in a package\n";
cout << "and the weight in ounces of one candy bar.\n";
cout << "Then press return.\n";
cin >> number_of_bars >> one_weight;

If you prefer, the above cin statement can be written on two lines as follows:

cin >> number_of_bars
 >> one_weight;

Notice that, as with the cout statement, there is just one semicolon for each
occurrence of cin.

When a program reaches a cin statement, it waits for input to be entered from
the keyboard. It sets the first variable equal to the first value typed at the keyboard,
the second variable equal to the second value typed, and so forth. However, the pro-
gram does not read the input until the user presses the Return key. This allows the
user to backspace and correct mistakes when entering a line of input.

Numbers in the input must be separated by one or more spaces or by a line
break. If, for instance, you want to enter the two numbers 12 and 5 and instead you
enter the numbers without any space between them, then the computer will think
you have entered the single number 125. When you use cin statements, the com-
puter will skip over any number of blanks or line breaks until it finds the next input
value. Thus, it does not matter whether input numbers are separated by one space or
several spaces or even a line break.

cin Statements
A cin statement sets variables equal to values typed in at the keyboard.
Syntax

cin >> Variable_1 >> Variable_2 >> . . . ;

Examples

cin >> number >> size;
cin >> time_to_go
 >> points_needed;

how cin works

separate numbers
with spaces

CH02.fm Page 58 Thursday, July 24, 2003 3:08 PM

2.2 Input and Output 59

Designing Input and Output

Input and output, or as it is often called I/O, is the part of the program that the user
sees, so the user will not be happy with a program unless the program has well-
designed I/O.

When the computer executes a cin statement, it expects some data to be typed
in at the keyboard. If none is typed in, the computer simply waits for it. The program
must tell the user when to type in a number (or other data item). The computer will
not automatically ask the user to enter data. That is why the sample programs con-
tain output statements like the following:

cout << "Enter the number of candy bars in a package\n";
cout << "and the weight in ounces of one candy bar.\n";
cout << "Then press return.\n";

These output statements prompt the user to enter the input. Your programs should
always prompt for input.

When entering input from a terminal, the input appears on the screen as it is
typed in. Nonetheless, the program should always write out the input values some
time before it ends. This is called echoing the input, and it serves as a check to see
that the input was read in correctly. Just because the input looks good on the screen
when it is typed in does not mean that it was read correctly by the computer. There
could be an unnoticed typing mistake or other problem. Echoing input serves as a
test of the integrity of the input data.

Programming TIP
Line Breaks in I/O

It is possible to keep output and input on the same line, and sometimes it can
produce a nicer interface for the user. If you simply omit a \n or endl at the end of
the last prompt line, then the user’s input will appear on the same line as the prompt.
For example, suppose you use the following prompt and input statements:

cout << "Enter the cost per person: $";
cin >> cost_per_person;

When the cout statement is executed, the following will appear on the screen:

When the user types in the input, it will appear on the same line, like this:

I/O

prompt lines

echoing the input

Enter the cost per person: $

Enter the cost per person: $1.25

CH02.fm Page 59 Thursday, July 24, 2003 3:08 PM

60 2 C++ BASICS

SELF-TEST EXERCISES

8 Give an output statement that will produce the following message on the
screen:

9 Give an input statement that will fill the variable the_number (of type int)
with a number typed in at the keyboard. Precede the input statement with a
prompt statement asking the user to enter a whole number.

10 What statements should you include in your program to ensure that, when a
number of type double is output, it will be output in ordinary notation with
three digits after the decimal point?

11 Write a complete C++ program that writes the phrase Hello world to the
screen. The program does nothing else.

12 Write a complete C++ program that reads in two whole numbers and outputs
their sum. Be sure to prompt for input, echo input, and label all output.

13 Give an output statement that produces the new-line character and a tab character.

14 Write a short program that declares and initializes double variables one,
two, three, four, and five to the values 1.000, 1.414, 1.732, 2.000, and
2.236, respectively. Then write output statements to generate the following
legend and table. Use the tab escape sequence \t to line up the columns. If
you are unfamiliar with the tab character, you should experiment with it
while doing this exercise. A tab works like a mechanical stop on a type-
writer. A tab causes output to begin in a next column, usually a multiple of
eight spaces away. Many editors and most word processors will have adjust-
able tab stops. Our output does not.

The output should be:

N Square Root
1 1.000
2 1.414
3 1.732
4 2.000
5 2.236

The answer to the question of
Life, the Universe, and Everything is 42.

CH02.fm Page 60 Thursday, July 24, 2003 3:08 PM

2.3 Data Types and Expressions 61

2.3 Data Types and Expressions

They’ll never be happy together. He’s not her type.

OVERHEARD AT A COCKTAIL PARTY

The Types int and double

Conceptually the numbers 2 and 2.0 are the same number. But C++ considers them
to be of different types. The whole number 2 is of type int; the number 2.0 is of
type double, because it contains a fraction part (even though the fraction is 0). Once
again, the mathematics of computer programming is a bit different from what you
may have learned in mathematics classes. Something about the practicalities of
computers makes a computer’s numbers differ from the abstract definitions of these
numbers. The whole numbers in C++ behave as you would expect them to. The type
int holds no surprises. But values of type double are more troublesome. Because
it can store only a limited number of significant digits, the computer stores numbers
of type double as approximate values. Numbers of type int are stored as exact values.
The precision with which double values are stored varies from one computer to
another, but you can expect them to be stored with 14 or more digits of accuracy. For
most applications this is likely to be sufficient, though subtle problems can occur
even in simple cases. Thus, if you know that the values in some variable will always
be whole numbers in the range allowed by your computer, it is best to declare the
variable to be of type int.

Number constants of type double are written differently from those of type int.
Constants of type int must not contain a decimal point. Constants of type double may
be written in either of two forms. The simple form for double constants is like the
everyday way of writing decimal fractions. When written in this form a double
constant must contain a decimal point. There is, however, one thing that constants of
type double and constants of type int have in common: No number in C++ may
contain a comma.

The more complicated notation for constants of type double is frequently called
scientific notation or floating point notation and is particularly handy for writing
very large numbers and very small fractions. For instance,

3.67 x 1017, which is the same as 367000000000000000.0,

is best expressed in C++ by the constant 3.67e17. The number

5.89 x 10-6, which is the same as 0.00000589,

e notation

CH02.fm Page 61 Thursday, July 24, 2003 3:08 PM

62 2 C++ BASICS

is best expressed in C++ by the constants and 5.89e−6. The e stands for exponent
and means “multiply by 10 to the power that follows.”

This e notation is used because keyboards normally have no way to write expo-
nents as superscripts. Think of the number after the e as telling you the direction and
number of digits to move the decimal point. For example, to change 3.49e4 to a
numeral without an e, you move the decimal point four places to the right to obtain
34900.0 which is another way of writing the same number. If the number after the e
is negative, you move the decimal point the indicated number of spaces to the left,
inserting extra zeros if need be. So, 3.49e−2 is the same as 0.0349.

The number before the e may contain a decimal point, although it is not required.
However, the exponent after the e definitely must not contain a decimal point.

Since computers have size limitations on their memory, numbers are typically
stored in a limited number of bytes (that is, a limited amount of storage). Hence,
there is a limit to how large the magnitude of a number can be, and this limit is dif-
ferent for different number types. The largest allowable number of type double is
always much larger than the largest allowable number of type int. Just about any
implementation of C++ will allow values of type int as large as 32767 and values
of type double up to about 10308.

Other Number Types

C++ has other numeric types besides int and double. Some are described in
Display 2.2. The various number types allow for different size numbers and for
more or less precision (that is, more or fewer digits after the decimal point). In
Display 2.2, the values given for memory used, size range, and precision are only

What is doubled?
Why is the type for numbers with a fraction part called double? Is there a type
called “single” that is half as big? No, but something like that is true. Many
programming languages traditionally used two types for numbers with a fractional
part. One type used less storage and was very imprecise (that is, it did not allow
very many significant digits). The second type used double the amount of storage
and so was much more precise; it also allowed numbers that were larger (although
programmers tend to care more about precision than about size). The kind of
numbers that used twice as much storage were called double precision numbers;
those that used less storage were called single precision . Following this tradition,
the type that (more or less) corresponds to this double precision type was named
double in C++. The type that corresponds to single precision in C++ was called
float. C++ also has a third type for numbers with a fractional part, which is called
long double. These types are described in the subsection entitled “Other Number
Types.” However, we will have no occasion to use the types float and long
double in this book.

CH02.fm Page 62 Thursday, July 24, 2003 3:08 PM

2.3 Data Types and Expressions 63

one sample set of values, intended to give you a general feel for how the types differ.
The values vary from one system to another, and may be different on your system.

Although some of these other numeric types are spelled as two words, you
declare variables of these other types just as you declare variables of types int and
double. For example, the following declares one variable of type long double:

 long double big_number;

The type names long and long int are two names for the same type. Thus, the
following two declarations are equivalent:

long big_total;

and the equivalent
long int big_total;

Of course, in any one program, you should use only one of the above two
declarations for the variable big_total, but it does not matter which one you use.
Also, remember that the type name long by itself means the same thing as long
int, not the same thing as long double.

The types for whole numbers, such an int and similar types, are called integer
types. The type for numbers with a decimal point—such as the type double and
similar types—are called floating-point types. They are called floating-point
because when the computer stores a number written in the usual way, like 392.123,
it first converts the number to something like e notation, in this case something like
3.92123e2. When the computer performs this conversion, the decimal point floats
(that is, moves) to a new position.

You should be aware of the fact that there are other numeric types in C++. How-
ever, in this book, we will use only the types int, double, and occasionally long.
For most simple applications, you should not need any types except int and double.
However, if you are writing a program that uses very large whole numbers, then you
might need to use the type long.

Display 2.2 Some Number Types (part 1 of 2)

Syntax Type
Name

Syntax Memory
Used

Syntax Size Range Syntax
Precision

short
(also called
short int)

2 bytes −32,767 to 32,767 (not applicable)

int 4 bytes −2,147,483,647 to
2,147,483,647

(not applicable)

long double

long

integer types

floating-point
types

CH02.fm Page 63 Thursday, July 24, 2003 3:08 PM

64 2 C++ BASICS

The Type char

We do not want to give you the impression that computers and C++ are used only for
numeric calculations, so we will introduce one nonnumeric type now, though eventu-
ally we will see other more complicated nonnumeric types. Values of the type char,
which is short for character, are single symbols such as a letter, digit, or punctuation
mark. Values of this type are frequently called characters in books and in
conversation, but in a C++ program this type must always be spelled in the
abbreviated fashion char. For example, the variables symbol and letter of type
char are declared as follows:

char symbol, letter;

A variable of type char can hold any single character on the keyboard. So, for
example, the variable symbol could hold an ’A’ or a ’+’ or an ’a’. Note that upper-
case and lowercase versions of a letter are considered different characters.

There is a type for strings of more than one character, but we will not introduce
that type for a while, although you have seen, and even used, values that are strings.

long
(also called
long int)

4 bytes −2,147,483,647 to
2,147,483,647

(not applicable)

float 4 bytes approximately
10–38 to 1038

7 digits

double 8 bytes approximately
10–308 to 10308

15 digits

long double 10 bytes approximately
10–4932 to 104932

19 digits

These are only sample values to give you a general idea of how the types differ.
The values for any of these entries may be different on your system. Precision refers to
the number of meaningful digits, including digits in front of the decimal point. The
ranges for the types float, double, and long double are the ranges for positive
numbers. Negative numbers have a similar range, but with a negative sign in front of
each number.

Display 2.2 Some Number Types (part 2 of 2)

strings and
characters

CH02.fm Page 64 Thursday, July 24, 2003 3:08 PM

2.3 Data Types and Expressions 65

The strings in double quotes that are output using cout are string values. For exam-
ple, the following, which occurs in the program in Display 2.1, is a string:

"Enter the number of candy bars in a package\n"

Be sure to notice that string constants are placed inside of double quotes, while
constants of type char are placed inside of single quotes. The two kinds of quotes
mean different things. In particular, ’A’ and "A" mean different things. ’A’ is a
value of type char and can be stored in a variable of type char. "A" is string of
characters. The fact that the string happens to contain only one character does not
make "A" a value of type char. Also notice that, for both strings and characters, the
left and right quotes are the same.

The use of the type char is illustrated in the program shown in Display 2.3.
Notice that the user types a space between the first and second initials. Yet the pro-
gram skips over the blank and reads the letter B as the second input character. When
you use cin to read input into a variable of type char, the computer skips over all
blanks and line breaks until it gets to the first nonblank character and reads that non-
blank character into the variable. It makes no difference whether there are blanks in
the input or not. The program in Display 2.3 will give the same output whether the
user types in a blank between initials, as shown in the sample dialogue, or the user
types in the two initials without a blank, like so:

JB

The Type bool

The final type we discuss here is the type bool. This type was recently added to the
C++ language by the ISO/ANSI (International Standards Organization/American
National Standards Organization) committee. Expressions of type bool are called
Boolean after the English mathematician George Boole (1815–1864) who formulated
rules for mathematical logic.

Boolean expressions evaluate to one of the two values, true or false. Boolean
expressions are used in branching and looping statements that we study in Section
2.4. We will say more about Boolean expressions and the type bool in that section.

Type Compatibilities

As a general rule, you cannot store a value of one type in a variable of another type.
For example, most compilers will object to the following:

int int_variable;
int_variable = 2.99;

quotes

CH02.fm Page 65 Thursday, July 24, 2003 3:08 PM

66 2 C++ BASICS

The problem is a type mismatch. The constant 2.99 is of type double and the
variable int_variable is of type int. Unfortunately, not all compilers will react
the same way to the above assignment statement. Some will issue an error message,
some will give only a warning message, and some compilers will not object at all.
But even if the compiler does allow you to use the above assignment, it will probably
give int_variable the int value 2, not the value 3. Since you cannot count on
your compiler accepting the above assignment, you should not assign a double
value to a variable of type int.

Display 2.3 The type char

#include <iostream>
using namespace std;
int main()
{
 char symbol1, symbol2, symbol3;

 cout << "Enter two initials, without any periods:\n";
 cin >> symbol1 >> symbol2;

 cout << "The two initials are:\n";
 cout << symbol1 << symbol2 << endl;

 cout << "Once more with a space:\n";
 symbol3 = ’ ’;
 cout << symbol1 << symbol3 << symbol2 << endl;

 cout << "That’s all.";

 return 0;
}

Sample Dialogue

Enter two initials, without any periods:
J B
The two initials are:
JB
Once more with a space:
J B
That’s all.

CH02.fm Page 66 Thursday, July 24, 2003 3:08 PM

code66.html

2.3 Data Types and Expressions 67

The same problem arises if you use a variable of type double instead of the
constant 2.99. Most compilers will also object to the following:

int int_variable;
double double_variable;
double_variable = 2.00;
int_variable = double_variable;

The fact that the value 2.00 “comes out even” makes no difference. The value 2.00 is
of type double, not of type int. As you will see shortly, you can replace 2.00 with 2 in
the above assignment to the variable double_variable, but even that is not enough to
make the above acceptable. The variables int_variable and double_variable are
of different types, and that is the cause of the problem.

Even if the compiler will allow you to mix types in an assignment statement, in
most cases you should not. Doing so makes your program less portable, and it can be
confusing. For example, if your compiler lets you assign 2.99 to a variable of type
int, the variable will receive the value 2, rather than 2.99, which can be confusing
since the program seems to say the value will be 2.99.

There are some special cases where it is permitted to assign a value of one type
to a variable of another type. It is acceptable to assign a value of type int to a vari-
able of type double. For example, the following is both legal and acceptable style:

double double_variable;
double_variable = 2;

The above will set the value of the variable named double_variable equal to 2.0.
Although it is usually a bad idea to do so, you can store an int value such as 65

in a variable of type char and you can store a letter such as ’Z’ in a variable of type
int. For many purposes, the C language considers the characters to be small inte-
gers, and perhaps unfortunately, C++ inherited this from C. The reason for allowing
this is that variables of type char consume less memory than variables of type int
and so doing arithmetic with variables of type char can save some memory. How-
ever, it is clearer to use the type int when you are dealing with integers and to use
the type char when you are dealing with characters.

The general rule is that you cannot place a value of one type in a variable of
another type—though it may seem that there are more exceptions to the rule than
there are cases that follow the rule. Even if the compiler does not enforce this rule
very strictly, it is a good rule to follow. Placing data of one type in a variable of
another type can cause problems, since the value must be changed to a value of the
appropriate type and that value may not be what you would expect.

Values of type bool can be assigned to variables of an integer type (short, int,
long) and integers can be assigned to variables of type bool. However, it is poor
style to do this and you should not use these features. For completeness and to help
you read other people’s code, we do give the details: When assigned to a variable of

assigning
int values to
double variables

mixing types

CH02.fm Page 67 Thursday, July 24, 2003 3:08 PM

68 2 C++ BASICS

type bool, any nonzero integer will be stored as the value true. Zero will be stored
as the value false. When assigning a bool value to an integer variable, true will be
stored as 1 and false will be stored as 0.

Arithmetic Operators and Expressions

In a C++ program, you can combine variables and/or numbers using the arithmetic
operators + for addition, − for subtraction, * for multiplication, and / for division.
For example, the following assignment statement, which appears in the program in
Display 2.1, uses the * operator to multiply the numbers in two variables. (The result
is then placed in the variable on the left-hand side of the equal sign.)

total_weight = one_weight * number_of_bars;

All of the arithmetic operators can be used with numbers of type int, numbers
of type double, and even with one number of each type. However, the type of the
value produced and the exact value of the result depends on the types of the numbers
being combined. If both operands (that is, both numbers) are of type int, then the
result of combining them with an arithmetic operator is of type int. If one, or both,
of the operands is of type double, then the result is of type double. For example, if
the variables base_amount and increase are of type int, then the number pro-
duced by the following expression is of type int:

base_amount + increase

However, if one or both of the two variables is of type double, then the result is of
type double. This is also true if you replace the operator + with any of the operators
−, *, or /.

The type of the result can be more significant than you might suspect. For exam-
ple, 7.0/2 has one operand of type double, namely 7.0. Hence, the result is the
type double number 3.5. However, 7/2 has two operands of type int and so it
yields the type int result 3. Even if the result “comes out even,” there is a differ-
ence. For example, 6.0/2 has one operand of type double, namely 6.0. Hence, the
result is the type double number 3.0, which is only an approximate quantity. How-
ever, 6/2 has two operands of type int; so it yields the result 3, which is of type int
and so is an exact quantity. The division operator is the operator that is affected most
severely by the type of its arguments.

When used with one or both operands of type double, the division operator, /,
behaves as you might expect. However, when used with two operands of type int,
the division operator, /, yields the integer part resulting from division. In other
words, integer division discards the part after the decimal point. So, 10/3 is 3 (not
3.3333…), 5/2 is 2 (not 2.5), and 11/3 is 3 (not 3.6666…). Notice that the

mixing types

division

integer division

CH02.fm Page 68 Thursday, July 24, 2003 3:08 PM

2.3 Data Types and Expressions 69

number is not rounded; the part after the decimal point is discarded no matter how
large it is.

The operator % can be used with operands of type int to recover the information
lost when you use / to do division with numbers of type int. When used with values
of type int, the two operators/ and % yield the two numbers produced when you per-
form the long division algorithm you learned in grade school. For example, 17 divided
by 5 yields 3 with a remainder of 2. The / operation yields the number of times one
number “goes into” another. The % operation gives the remainder. For example, the
statements

cout << "17 divided by 5 is " << (17/5) << endl;
cout << "with a remainder of " << (17%5) << endl;

yield the following output:

Display 2.4 illustrates how / and % work with values of type int.

When used with negative values of type int, the result of the operators / and %
can be different for different implementations of C++. Thus, you should use /and %
with int values only when you know that both values are nonnegative.

Any reasonable spacing will do in arithmetic expressions. You can insert spaces
before and after operations and parentheses, or you can omit them. Do whatever pro-
duces a result that is easy to read.

You can specify the order of operations by inserting parentheses, as illustrated in
the following two expressions:

(x + y) * z
x + (y * z)

the % operator

17 divided by 5 is 3
with a remainder of 2

Display 2.4 Integer Division

4
3 12

12
0

12/3

12%3

4
3 14

12
2

14/3

14%3

negative integers
in division

spacing

parentheses

CH02.fm Page 69 Thursday, July 24, 2003 3:08 PM

70 2 C++ BASICS

To evaluate the first expression, the computer first adds x and y and then multiplies
the result by z. To evaluate the second expression, it multiplies y and z and then adds
the result to x. Although you may be used to using mathematical formulas that
contain square brackets and various other forms of parentheses, that is not allowed in
C++. C++ allows only one kind of parentheses in arithmetic expressions. The other
varieties are reserved for other purposes.

 If you omit parentheses, the computer will follow rules called precedence rules
that determine the order in which the operators, such as + and *, are performed.
These precedence rules are similar to rules used in algebra and other mathematics
classes. For example,

x + y * z

is evaluated by first doing the multiplication and then the addition. Except in some
standard cases, such as a string of additions or a simple multiplication embedded
inside an addition, it is usually best to include the parentheses, even if the intended
order of operations is the one dictated by the precedence rules. The parentheses
make the expression easier to read and less prone to programmer error. A complete
set of C++ precedence rules are given in Appendix 2.

Display 2.5 shows some examples of common kinds of arithmetic expressions
and how they are expressed in C++.

Display 2.5 Arithmetic Expressions

Mathematical
Formula

C++
Expression

b*b − 4*a*c

x*(y + z)

1/(x*x + x + 3)

(a + b)/(c − d)

precedence rules

b2 4ac–

x y z+()

1
x2 x 3+ +

a b+
c d–

CH02.fm Page 70 Thursday, July 24, 2003 3:08 PM

2.3 Data Types and Expressions 71

PITFALL Whole Numbers in Division

When you use the division operator / on two whole numbers, the result is a whole
number. This can be a problem if you expect a fraction. Moreover, the problem can
easily go unnoticed, resulting in a program that looks fine but is producing incorrect
output without your even being aware of the problem. For example, suppose you are
a landscape architect who charges $5,000 per mile to landscape a highway, and
suppose you know the length of the highway you are working on in feet. The price
you charge can easily be calculated by the following C++ statement:

total_price = 5000 * (feet/5280.0);

This works because there are 5,280 feet in a mile. If the stretch of highway you are
landscaping is 15,000 feet long, this formula will tell you that the total price is

5000 * (15000/5280.0)

Your C++ program obtains the final value as follows: 15000/5280.0 is computed as
2.84. Then the program multiplies 5000 by 2.84 to produce the value 14200.00.
With the aid of your C++ program, you know that you should charge $14,200 for the
project.

Now suppose the variable feet is of type int, and you forget to put in the deci-
mal point and the zero, so that the assignment statement in your program reads:

total_price = 5000 * (feet/5280);

It still looks fine, but will cause serious problems. If you use this second form of the
assignment statement, you are dividing two values of type int, so the result of the
division feet/5280 is 15000/5280, which is the int value 2 (instead of the value
2.84, which you think you are getting). So the value assigned to total_cost is
5000*2, or 10000.00. If you forget the decimal point, you will charge $10,000.
However, as we have already seen, the correct value is $14,200. A missing decimal
point has cost you $4,200. Note that this will be true whether the type of total_price
is int or double; the damage is done before the value is assigned to total_price.

SELF-TEST EXERCISES

15 Convert each of the following mathematical formulas to C++ expression:

3x 3x y+ x y+
7

------------ 3x y+
z 2+

CH02.fm Page 71 Thursday, July 24, 2003 3:08 PM

72 2 C++ BASICS

16 What is the output of the following program lines, when embedded in a cor-
rect program that declares all variables to be of type char?

 a = ’b’;
 b = ’c’;
 c = a;
 cout << a << b << c << 'c';

17 What is the output of the following program lines (when embedded in a cor-
rect program that declares number to be of type int)?

 number = (1/3) * 3;
 cout << "(1/3) * 3 is equal to " << number;

18 Write a complete C++ program that reads two whole numbers into two vari-
ables of type int, and then outputs both the whole number part and the
remainder when the first number is divided by the second. This can be done
using the operators / and %.

19 Given the following fragment that purports to convert from degrees Celsius
to degrees Fahrenheit, answer the following questions:

double c = 20;
double f;
f = (9/5) * c + 32.0;

a. What value is assigned to f?

b. Explain what is actually happening, and what the programmer likely

wanted.

c. Rewrite the code as the programmer intended.

More Assignment Statements

There is a shorthand notation that combines the assignment operator (=) and an
arithmetic operator so that a given variable can have its value changed by adding,
subtracting, multiplying by, or dividing by a specified value. The general form is

Variable Op = Expression

which is equivalent to

Variable = Variable Op (Expression)

CH02.fm Page 72 Thursday, July 24, 2003 3:08 PM

2.4 Simple Flow of Control 73

Op is an operator such as +, −, or *. The Expression can be another variable, a
constant, or a more complicated arithmetic expression. Below are examples:

2.4 Simple Flow of Control

“If you think we’re wax-works,” he said, “you ought to pay, you know. Wax-works
weren’t made to be looked at for nothing. Nohow!”

“Contrariwise,” added the one marked “DEE,” “if you think we’re alive, you ought
to speak.”

LEWIS CARROLL, THROUGH THE LOOKING-GLASS

The programs you have seen thus far each consist of a simple list of statements to be
executed in the order given. However, to write more sophisticated programs, you
will also need some way to vary the order in which statements are executed. The
order in which statements are executed is often referred to as flow of control. In this
section we will present two simple ways to add some flow of control to your
programs. We will discuss a branching mechanism that lets your program choose
between two alternative actions, choosing one or the other depending on the values
of variables. We will also present a looping mechanism that lets your program repeat
an action a number of times.

A Simple Branching Mechanism

Sometimes it is necessary to have a program choose one of two alternatives,
depending on the input. For example, suppose you want to design a program to
compute a week’s salary for an hourly employee. Assume the firm pays an overtime

Example: Equivalent to:

count += 2; count = count + 2;

total −= discount; total = total − discount;

bonus *= 2; bonus = bonus * 2;

time /= rush_factor; time = time/rush_factor;

change %= 100; change = change % 100;

amount *= cnt1 + cnt2; amount = amount * (cnt1 + cnt2);

flow of control

CH02.fm Page 73 Thursday, July 24, 2003 3:08 PM

74 2 C++ BASICS

rate of one-and-one-half times the regular rate for all hours after the first 40 hours
worked. As long as the employee works 40 or more hours, the pay is then equal to

rate*40 + 1.5*rate*(hours - 40)

However, if there is a possibility that the employee will work less than 40 hours, this
formula will unfairly pay a negative amount of overtime. (To see this, just substitute
10 for hours, 1 for rate, and do the arithmetic. The poor employee will get a
negative paycheck.) The correct pay formula for an employee who works less than
forty hours is simply:

rate*hours

If both more than 40 hours and less than 40 hours of work are possible, then the
program will need to choose between the two formulas. In order to compute the
employee’s pay, the program action should be

Decide whether or not (hours > 40) is true.

If it is, do the following assignment statement:
 gross_pay = rate*40 + 1.5*rate*(hours - 40);
If it is not, do the following:
 gross_pay = rate*hours;

There is a C++ statement that does exactly this kind of branching action. The
if-else statement chooses between two alternative actions. For example, the wage
calculation we have been discussing can be accomplished with the following C++
statement:

if (hours > 40)
 gross_pay = rate*40 + 1.5*rate*(hours - 40);
else
 gross_pay = rate*hours;

A complete program that uses this statement is given in Display 2.6.
Two forms of an if-else statement are described in Display 2.7. The first is the

simple form of an if-else statement; the second form will be discussed in the sub-
section entitled “Compound Statements.” In the first form shown, the two statements
may be any executable statements. The Boolean_Expression is a test that can be
checked to see if it is true or false, that is, to see if it is satisfied or not. For example,
the Boolean_Expression in the above if-else statement is

hours > 40

CH02.fm Page 74 Thursday, July 24, 2003 3:08 PM

2.4 Simple Flow of Control 75

Display 2.6 An if-else Statement

#include <iostream>
using namespace std;
int main()
{
 int hours;
 double gross_pay, rate;

 cout << "Enter the hourly rate of pay: $";
 cin >> rate;
 cout << "Enter the number of hours worked,\n"
 << "rounded to a whole number of hours: ";
 cin >> hours;

 if (hours > 40)
 gross_pay = rate*40 + 1.5*rate*(hours - 40);
 else
 gross_pay = rate*hours;

 cout.setf(ios::fixed);
 cout.setf(ios::showpoint);
 cout.precision(2);
 cout << "Hours = " << hours << endl;
 cout << "Hourly pay rate = $" << rate << endl;
 cout << "Gross pay = $" << gross_pay << endl;

 return 0;
}

Sample Dialogue 1

Sample Dialogue 2

Enter the hourly rate of pay: $20.00
Enter the number of hours worked,
rounded to a whole number of hours: 30
Hours = 30
Hourly pay rate = $20.00
Gross pay = $600.00

Enter the hourly rate of pay: $10.00
Enter the number of hours worked,
rounded to a whole number of hours: 41
Hours = 41
Hourly pay rate = $10.00
Gross pay = $415.00

CH02.fm Page 75 Thursday, July 24, 2003 3:08 PM

code75.html

76 2 C++ BASICS

When the program reaches the if-else statement, exactly one of the two embedded
statements is executed. If the Boolean_Expression is true (that is, if it is satisfied),
then the Yes_Statement is executed; if the Boolean_Expression is false (that is, if it is
not satisfied), then the No_Statement is executed. Notice that the Boolean_Expression
must be enclosed in parentheses. (This is required by the syntax rules for if-else
statements in C++.) Also notice that an if-else statement has two smaller
statements embedded in it.

A Boolean expression is any expression that is either true or false. An if-else
statement always contains a Boolean_Expression. The simplest form for a
Boolean_Expression consists of two expressions, such as numbers or variables, that
are compared with one of the comparison operators shown in Display 2.8. Notice
that some of the operators are spelled with two symbols, for example, ==, !=, <=, >=.
Be sure to notice that you use a double equal == for the equal sign, and you use the
two symbols != for not equal. Such two-symbol operators should not have any space
between the two symbols. The part of the compiler that separates the characters into
C++ names and symbols will see the !=, for example, and tell the rest of the compiler

Display 2.7 Syntax for an if-else Statement

A Single Statement for Each Alternative:

if (Boolean_Expression)
Yes_Statement

else
No_Statement

A Sequence of Statements for Each Alternative:

if (Boolean_Expression)
{

Yes_Statement_1
Yes_Statement_2
...

Yes_Statement_Last
}
else
{

No_Statement_1
No_Statement_2
...

No_Statement_Last
}

Boolean
expression

CH02.fm Page 76 Thursday, July 24, 2003 3:08 PM

2.4 Simple Flow of Control 77

that the programmer meant to test for INEQUALITY. When an if-else statement is
executed, the two expressions being compared are evaluated and compared using the
operator. If the comparison turns out to be true, then the first statement is performed.
If the comparison fails, then the second statement is executed.

You can combine two comparisons using the “and” operator, which is spelled &&
in C++. For example, the following Boolean expression is true (that is, is satisfied)
provided x is greater than 2 and x is less than 7:

(2 < x) && (x < 7)

When two comparisons are connected using a &&, the entire expression is true,
provided both of the comparisons are true (that is, provided both are satisfied);
otherwise, the entire expression is false.

You can also combine two comparisons using the “or” operator, which is spelled
|| in C++. For example, the following is true provided y is less than 0 or y is greater
than 12:

(y < 0) || (y > 12)

When two comparisons are connected using a ||, the entire expression is true
provided that one or both of the comparisons are true (that is, satisfied); otherwise,
the entire expression is false.

Display 2.8 Comparison Operators

Math
Symbol

English C++
Notation

C++ Sample Math
Equivalent

 = equal to == x + 7 == 2*y x + 7 = 2y

 ≠ not equal to != ans != ’n’ ans ≠ ’n’

 < less than < count < m + 3 count < m + 3

 ≤ less than or
equal to

 <= time <= limit time ≤ limit

 > greater than > time > limit time > limit

 ≥ greater than
or equal to

 >= age >= 21 age ≥ 21

&& means “and”

|| means “or”

CH02.fm Page 77 Thursday, July 24, 2003 3:08 PM

78 2 C++ BASICS

Remember that when you use a Boolean expression in an if-else statement,
the Boolean expression must be enclosed in parentheses. Therefore, an if-else
statement that uses the && operator and two comparisons is parenthesized as follows:

if ((temperature >= 95) && (humidity >= 90))
...

The inner parentheses around the comparisons are not required, but they do make the
meaning clearer, and we will normally include them.

You can negate any Boolean expression using the ! operator. If you want to
negate a Boolean expression, place the expression in parentheses and place the !
operator in front of it. For example, !(x < y) means “x is not less than y.” Since
the Boolean expression in an if-else statement must be enclosed in parentheses,
you should place a second pair of parentheses around the negated expression when
the negated expression is used in an if-else statement. For example, an if-else
statement might begin as follows:

if (!(x < y))
...

The ! operator can usually be avoided. For example, our hypothetical if-else
statement can instead begin with the following, which is equivalent and easier to read:

if (x >= y)
...

The “and” operator &&
You can form a more elaborate Boolean expression by combining two simple tests
using the “and” operator &&.
Syntax (for a Boolean Expression Using &&)

(Comparison_1) && (Comparison_2)

Example (within an if-else statement)

if ((score > 0) && (score < 10))
 cout << "score is between 0 and 10\n";
else
 cout << "score is not between 0 and 10.\n";

If the value of score is greater than 0 and the value of score is also less than 10,
then the first cout statement will be executed; otherwise, the second cout
statement will be executed.

parentheses

CH02.fm Page 78 Thursday, July 24, 2003 3:08 PM

2.4 Simple Flow of Control 79

We will not have much call to use the ! operator until later in this book, so we will
postpone any detailed discussion of the ! operator until then.

Sometimes you want one of the two alternatives in an if-else statement to do
nothing at all. In C++ this can be accomplished by omitting the else part. These sorts
of statements are referred to as if statements to distinguish them from if-else
statements. For example, the first of the following two statements is an if statement:

if (sales >= minimum)
 salary = salary + bonus;
cout << "salary = $" << salary;

If the value of sales is greater than or equal to the value of minimum, the assignment
statement is executed and then the following cout statement is executed. On the other
hand, if the value of sales is less than minimum, then the embedded assignment
statement is not executed, so the if statement causes no change (that is, no bonus is
added to the base salary), and the program proceeds directly to the cout statement.

PITFALL Strings of Inequalities

Do not use a string of inequalities such as the following in your program:

The “or” operator ||
You can form a more elaborate Boolean expression by combining two simple tests
using the “or” operator ||.
Syntax (for a Boolean Expression Using ||)

(Comparison_1) || (Comparison_2)

Example (within an if-else statement)

if ((x == 1) || (x == y))
 cout << "x is 1 or x equals y.\n";
else
 cout << "x is neither 1 nor equal to y.\n";

If the value of x is equal to 1 or the value of x is equal to the value of y (or both),
then the first cout statement will be executed; otherwise, the second cout
statement will be executed.

omitting else

if (x < z < y)
 cout << "z is between x and y.";

Do not do this!

CH02.fm Page 79 Thursday, July 24, 2003 3:08 PM

80 2 C++ BASICS

If you do use the above, your program will probably compile and run, but it will
undoubtedly give incorrect output. We will explain why this happens after we learn
more details about the C++ language. The same problem will occur with a string of
comparisons using any of the comparison operators; the problem is not limited to <
comparisons. The correct way to express a string of inequalities is to use the “and”
operator && as follows:

PITFALL Using = in place of ==

Unfortunately, you can write many things in C++ that you would think are
incorrectly formed C++ statements but turn out to have some obscure meaning. This
means that if you mistakenly write something that you would expect to produce an
error message, you may find out that the program compiles and runs with no error
messages, but gives incorrect output. Since you may not realize you wrote
something incorrectly, this can cause serious problems. By the time you realize
something is wrong, the mistake may be very hard to find. One common mistake is
to use the symbol = when you mean ==. For example, consider an if-else
statement that begins as follows:

if (x = 12)
 Do_Something

else
 Do_Something_Else

Suppose you wanted to test to see if the value of x is equal to 12 so that you really
meant to use == rather than =. You might think the compiler will catch your mistake.
The expression

x = 12

is not something that is satisfied or not. It is an assignment statement, so surely the
compiler will give an error message. Unfortunately, that is not the case. In C++ the
expression x = 12 is an expression that returns (or has) a value, just like x + 12 or
2 + 3. An assignment expression’s value is the value transferred to the variable on
the left. For example, the value of x = 12 is 12. We saw in our discussion of
Boolean value compatibility that int values may be converted to true or false.
Since 12 is not zero, it is converted to true. If you use x = 12 as the Boolean
expression in an if statement, the Boolean expression is always true, so the first
branch (Do_Something) is always executed.

if ((x < z) && (z < y))
 cout << "z is between x and y.";

correct form

CH02.fm Page 80 Thursday, July 24, 2003 3:08 PM

2.4 Simple Flow of Control 81

This error is very hard to find, because it looks right! The compiler can find the
error without any special instructions if you put the 12 on the left side of the compar-
ison, as in:

if (12 == x)
 Do_Something;

else
 Do_Something_Else;

Then, the compiler will give an error message if you mistakenly use = instead of ==.
Remember that dropping one of the = in an == is a common error that is not

caught by many compilers, is very hard to see, and is almost certainly not what you
wanted. In C++, many executable statements can also be used as almost any kind of
expression, including as a Boolean expression for an if-else statement. If you put
an assignment statement where a Boolean expression is expected, the assignment
statement will be interpreted as a Boolean expression. Of course the result of the
“test” will undoubtedly not be what you intended as the Boolean expression. The
above if-else statement looks fine at a quick glance and it will compile and run.
But, in all likelihood, it will produce puzzling results when it is run.

Compound Statements

You will often want the branches of an if-else statement to execute more than one
statement each. To accomplish this, enclose the statements for each branch between
a pair of braces, { and }, as indicated in the second syntax template in Display 2.7.
This is illustrated in Display 2.9. A list of statements enclosed in a pair of braces is
called a compound statement. A compound statement is treated as a single
statement by C++ and may be used anywhere that a single statement may be used.
(Thus, the second syntax template in Display 2.7 is really just a special case of the
first one.) Display 2.9 contains two compound statements, embedded in an if-else
statement. The compound statements are in color.

Display 2.9 Compound Statements Used with if-else

if (my_score > your_score)
{
 cout << "I win!\n";
 wager = wager + 100;
}
else
{
 cout << "I wish these were golf scores.\n";
 wager = 0;
}

if-else with
multiple statements

compound statement

CH02.fm Page 81 Thursday, July 24, 2003 3:08 PM

82 2 C++ BASICS

Syntax rules for if-else demand that the Yes Statement and No Statement be
exactly one statement. If more statements are desired for a branch, the statements
must be enclosed in braces to convert them to one compound statement. If two or
more statements not enclosed by braces are placed between the if and the else,
then the compiler will give an error message.

SELF-TEST EXERCISES

20 Write an if-else statement that outputs the word High if the value of the
variable score is greater than 100 and Low if the value of score is at most
100. The variable score is of type int.

21 Suppose savings and expenses are variables of type double that have been
given values. Write an if-else statement that outputs the word Solvent,
decreases the value of savings by the value of expenses, and sets the value
of expenses to 0, provided that savings is at least as large as expenses. If,
however, savings is less than expenses, the if-else statement simply
outputs the word Bankrupt, and does not change the value of any variables.

22 Write an if-else statement that outputs the word Passed provided the
value of the variable exam is greater than or equal to 60 and the value of the
variable programs_done is greater than or equal to 10. Otherwise, the if-
else statement outputs the word Failed. The variables exam and
programs_done are both of type int.

23 Write an if-else statement that outputs the word Warning provided that
either the value of the variable temperature is greater than or equal to 100,
or the value of the variable pressure is greater than or equal to 200, or
both. Otherwise, the if-else statement outputs the word OK. The variables
temperature and pressure are both of type int.

24 Consider a quadratic expression, say

x2 − x − 2

Describing where this quadratic is positive (that is, greater than 0), involves
describing a set of numbers that are either less than the smaller root (which is
−1) or greater than the larger root (which is +2). Write a C++ Boolean
expression that is true when this formula has positive values.

CH02.fm Page 82 Thursday, July 24, 2003 3:08 PM

2.4 Simple Flow of Control 83

25 Consider the quadratic expression

x2 − 4x + 3

Describing where this quadratic is negative involves describing a set of
numbers that are simultaneously greater than the smaller root (+1) and less
than the larger root (+3). Write a C++ Boolean expression that is true when
the value of this quadratic is negative.

26 What is the output of the following cout statements embedded in these if-
else statements? You are to assume that these are embedded in a complete
correct program. Explain your answer.

a. if(0)
cout << "0 is true";

else
cout << "0 is false";

cout << endl;

b. if(1)
cout << "1 is true";

else
cout << "1 is false";

cout << endl;

c. if(-1)
cout << "-1 is true";

else
cout << "-1 is false";

cout << endl;

Note: This is an exercise only. This is not intended to illustrate programming
style you should follow.

Simple Loop Mechanisms

Most programs include some action that is repeated a number of times. For example,
the program in Display 2.6 computes the gross pay for one worker. If the company
employs 100 workers, then a more complete payroll program would repeat this calcu-
lation 100 times. A portion of a program that repeats a statement or group of statements
is called a loop. The C++ language has a number of ways to create loops. One of
these constructions is called a while statement or while loop. We will first
illustrate its use with a short toy example and then do a more realistic example.

The program in Display 2.10 contains a simple while statement shown in color.
The portion between the braces, { and }, is called the body of the while loop; it is the

while
statement

loop body

CH02.fm Page 83 Thursday, July 24, 2003 3:08 PM

84 2 C++ BASICS

Display 2.10 A while Loop

#include <iostream>
using namespace std;
int main()
{
 int count_down;

 cout << "How many greetings do you want? ";
 cin >> count_down;

 while (count_down > 0)
 {
 cout << "Hello ";
 count_down = count_down - 1;
 }

 cout << endl;
 cout << "That’s all!\n";

 return 0;
}

Sample Dialogue 1

Sample Dialogue 2

Sample Dialogue 3

How many greetings do you want? 3
Hello Hello Hello
That’s all!

How many greetings do you want? 1
Hello
That’s all!

How many greetings do you want? 0

That’s all!

The loop body
is executed
zero times.

CH02.fm Page 84 Thursday, July 24, 2003 3:08 PM

code84.html

2.4 Simple Flow of Control 85

action that is repeated. The statements inside the braces are executed in order, then
they are executed again, then again, and so forth until the while loop ends. In the first
sample dialogue, the body is executed three times before the loop ends, so the program
outputs Hello three times. Each repetition of the loop body is called an iteration of
the loop, and so the first sample dialogue shows three iterations of the loop.

The meaning of a while statement is suggested by the English word while. The
loop is repeated while the Boolean expression in the parentheses is satisfied. In Dis-
play 2.10 this means that the loop body is repeated as long as the value of the vari-
able count_down is greater than 0. Let’s consider the first sample dialogue and see
how the while loop performs. The user types in 3 so the cin statement sets the value
of count_down to 3. Thus, in this case, when the program reaches the while state-
ment, it is certainly true that count_down is greater than 0, so the statements in the
loop body are executed. Every time the loop body is repeated, the following two
statements are executed:

cout << "Hello ";
count_down = count_down − 1;

Therefore, every time the loop body is repeated, "Hello " is output and the value of
the variable count_down is decreased by one. After the computer repeats the loop
body three times, the value of count_down is decreased to 0 and the Boolean
expression in parentheses is no longer satisfied. So, this while statement ends after
repeating the loop body three times.

The syntax for a while statement is given in Display 2.11. The
Boolean_Expressions allowed are exactly the same as the Boolean expressions
allowed in an if-else statement. Just as in if-else statements, the Boolean
expression in a while statement must be enclosed in parentheses. In Display 2.11 we
have given the syntax templates for two cases: the case when there is more than one
statement in the loop body and the case when there is just a single statement in the
loop body. Note that when there is only a single statement in the loop body, you need
not include the braces { and }.

Let’s go over the actions performed by a while statement in greater detail.
When the while statement is executed, the first thing that happens is that the Bool-
ean expression following the word while is checked. It is either true or false. For
example, the comparison

count_down > 0

is true if the value of count_down is positive. If it is false, then no action is taken and
the program proceeds to the next statement after the while statement. If the comparison
is true, then the entire body of the loop is executed. At least one of the expressions being
compared typically contains something that might be changed by the loop body, such as
the value of count_down in the while statement in Display 2.10. After the body of the

iteration

CH02.fm Page 85 Thursday, July 24, 2003 3:08 PM

86 2 C++ BASICS

loop is executed, the comparison is again checked. This process is repeated again and
again as long as the comparison continues to be true. After each iteration of the loop
body, the comparison is again checked and if it is true, then the entire loop body is
executed again. When the comparison is no longer true, the while statement ends.

The first thing that happens when a while statement is executed is that the Bool-
ean expression is checked. If the Boolean expression is not true when the while
statement begins, then the loop body is never executed. That is exactly what happens
in Sample Dialogue 3 of Display 2.10. In many programming situations you want
the possibility of executing the loop body zero times. For example, if your while
loop is reading a list consisting of all the failing scores on an exam and nobody
failed the exam, then you want the loop body to be executed zero times.

 As we just noted, a while loop might execute its loop body zero times, which is
often what you want. If on the other hand you know that under all circumstances
your loop body should be executed at least one time, then you can use a do-while
statement. A do-while statement is similar to a while statement except that the
loop body is always executed at least once. The syntax for a do-while statement is
given in Display 2.12. A program with a sample do-while loop is given in Display
2.13. In that do-while loop, as in any do-while loop, the first thing that happens is
that the statements in the loop body are executed. After that first iteration of the loop
body, the do-while statement behaves the same as a while loop. The Boolean
expression is checked. If the Boolean expression is true, the loop body is executed
again; the Boolean expression is checked again, and so forth.

Display 2.11 Syntax of the while Statement

A Loop Body with Several Statements:

while (Boolean_Expression)
{
 Statement_1
 Statement_2

...
 Statement_Last
}

A Loop Body with a Single Statement:

while (Boolean_Expression)
 Statement

body

body

Do NOT put a
semicolon here.

executing the
loop body
zero times

do-while
statement

CH02.fm Page 86 Thursday, July 24, 2003 3:08 PM

2.4 Simple Flow of Control 87

Increment and Decrement Operators

We discussed binary operators in the section entitled “Arithmetic Operators and
Expressions.” Binary operators have two operands. Unary operators have only one
operand. You already know of two unary operators, + and –, as used in the
expressions +7 and −7. The C++ language has two other very common unary
operators, ++ and --. The ++ operator is called the increment operator and the --
operator is called the decrement operator. They are usually used with variables of
type int. If n is a variable of type int, then n++ increases the value of n by one and
n-- decreases the value of n by one. So n++ and n-- (when followed by a
semicolon) are executable statements. For example, the statements

int n = 1, m = 7;
n++;
cout << "The value of n is changed to " << n << endl;
m--;
cout << "The value of m is changed to " << m << endl;

yield the following output:

Display 2.12 Syntax of the do-while Statement

A Loop Body with Several Statements:

do
{
 Statement_1
 Statement_2

...
 Statement_Last
} while (Boolean_Expression);

A Loop Body with a Single Statement:

do
 Statement
while (Boolean_Expression);

body

body

Do not forget the
final semicolon.

++ and --

The value of n is changed to 2
The value of m is changed to 6

CH02.fm Page 87 Thursday, July 24, 2003 3:08 PM

88 2 C++ BASICS

Display 2.13 A do-while Loop

#include <iostream>
using namespace std;
int main()
{
 char ans;

 do
 {
 cout << "Hello\n";
 cout << "Do you want another greeting?\n"
 << "Press y for yes, n for no,\n"
 << "and then press return: ";
 cin >> ans;
 } while (ans == ’y’ || ans == ’Y’);

 cout << "Good-Bye\n";

 return 0;
}

Sample Dialogue

Hello
Do you want another greeting?
Press y for yes, n for no,
and then press return: y
Hello
Do you want another greeting?
Press y for yes, n for no,
and then press return: Y
Hello
Do you want another greeting?
Press y for yes, n for no,
and then press return: n
Good-Bye

CH02.fm Page 88 Thursday, July 24, 2003 3:08 PM

code88.html

2.4 Simple Flow of Control 89

And now you know where the “++” came from in the name “C++.”
Increment and decrement statements are often used in loops. For example, we

used the following statement in the while loop in Display 2.10:

count_down = count_down − 1;

However, most experienced C++ programmers would use the decrement operator
rather than the assignment statement, so that the entire while loop would read as
follows:

while (count_down > 0)
{
 cout << "Hello ";
 count_down--;
}

Programming EXAMPLE
Charge Card Balance

Suppose you have a bank charge card with a balance owed of $50 and suppose the
bank charges you 2% per month interest. How many months can you let pass
without making any payments before your balance owed will exceed $100? One way
to solve this problem is to simply read each monthly statement and count the number
of months that go by until your balance reaches $100 or more. Better still, you can
calculate the monthly balances with a program rather than waiting for the statements
to arrive. In this way you will obtain an answer without having to wait so long (and
without endangering your credit rating).

After one month the balance would be $50 plus 2% of $50, which is $51. After
two months the balance would be $51 plus 2% of $51, which is $52.02. After three
months the balance would be $52.02 plus 2% of $52.02, and so on. In general, each
month increases the balance by 2%. The program could keep track of the balance by
storing it in a variable called balance. The change in the value of balance for one
month can be calculated as follows:

balance = balance + 0.02*balance;

If we repeat this action until the value of balance reaches (or exceeds) 100.00 and
we count the number of repetitions, then we will know the number of months it will
take for the balance to reach 100.00. To do this we need another variable to count

CH02.fm Page 89 Thursday, July 24, 2003 3:08 PM

90 2 C++ BASICS

the number of times the balance is changed. Let us call this new variable count. The
final body of our while loop will thus contain the following statements:

balance = balance + 0.02*balance;
count++;

In order to make this loop perform correctly, we must give appropriate values to the
variables balance and count before the loop is executed. In this case, we can
initialize the variables when they are declared. The complete program is shown in
Display 2.14.

PITFALL Infinite Loops

A while loop or do-while loop does not terminate as long as the Boolean
expression after the word while is true. This Boolean expression normally contains
a variable that will be changed by the loop body, and usually the value of this
variable eventually is changed in a way that makes the Boolean expression false and
therefore terminates the loop. However, if you make a mistake and write your
program so that the Boolean expression is always true, then the loop will run forever.
A loop that runs forever is called an infinite loop.

First let’s describe a loop that does terminate. The following C++ code will
write out the positive even numbers less than 12. That is, it will output the numbers
2, 4, 6, 8, and 10, one per line, and then the loop will end.

x = 2;
while (x != 12)
{
 cout << x << endl;
 x = x + 2;
}

The value of x is increased by 2 on each loop iteration until it reaches 12. At that
point, the Boolean expression after the word while is no longer true, so the loop
ends.

Now suppose you want to write out the odd numbers less than 12, rather than the
even numbers. You might mistakenly think that all you need do is change the initial-
izing statement to

x = 1;

but this mistake will create an infinite loop. Because the value of x goes from 11 to
13, the value of x is never equal to 12, so the loop will never terminate.

infinite loop

CH02.fm Page 90 Thursday, July 24, 2003 3:08 PM

2.4 Simple Flow of Control 91

Display 2.14 Charge Card Program

#include <iostream>
using namespace std;
int main()
{
 double balance = 50.00;
 int count = 0;

 cout << "This program tells you how long it takes\n"
 << "to accumulate a debt of $100, starting with\n"
 << "an initial balance of $50 owed.\n"
 << "The interest rate is 2% per month.\n";

 while (balance < 100.00)
 {
 balance = balance + 0.02 * balance;
 count++;
 }

 cout << "After " << count << " months,\n";
 cout.setf(ios::fixed);
 cout.setf(ios::showpoint);
 cout.precision(2);
 cout << "your balance due will be $" << balance << endl;

 return 0;
}

Sample Dialogue

This program tells you how long it takes
to accumulate a debt of $100, starting with
an initial balance of $50 owed.
The interest rate is 2% per month.
After 36 months,
your balance due will be $101.99

CH02.fm Page 91 Thursday, July 24, 2003 3:08 PM

code91.html

92 2 C++ BASICS

This sort of problem is common when loops are terminated by checking a
numeric quantity using == or !=. When dealing with numbers, it is always safer to
test for passing a value. For example, the following will work fine as the first line of
our while loop:

while (x < 12)

With this change, x can be initialized to any number and the loop will still terminate.
A program that is in an infinite loop will run forever unless some external force

stops it. Since you can now write programs that contain an infinite loop, it is a good
idea to learn how to force a program to terminate. The method for forcing a program
to stop varies from system to system. The keystrokes Control-C will terminate a pro-
gram on many systems. (To type a Control-C hold down the Control key while press-
ing the C key.)

SELF-TEST EXERCISES

27 What is the output produced by the following (when embedded in a correct
program with x declared to be of type int)?

x = 10;
while (x > 0)
{
 cout << x << endl;
 x = x - 3;
}

28 What output would be produced in the previous exercise if the > sign were
replaced with <?

29 What is the output produced by the following (when embedded in a correct
program with x declared to be of type int)?

x = 10;
do
{
 cout << x << endl;
 x = x - 3;
} while (x > 0);

30 What is the output produced by the following (when embedded in a correct
program with x declared to be of type int)?

CH02.fm Page 92 Thursday, July 24, 2003 3:08 PM

2.5 Program Style 93

x = -42;
do
{
 cout << x << endl;
 x = x - 3;
} while (x > 0);

31 What is the most important difference between a while statement and a do-
while statement?

32 What is the output produced by the following (when embedded in a correct
program with x declared to be of type int)?

x = 10;
while (x > 0)
{
 cout << x << endl;
 x = x + 3;
}

33 Write a complete C++ program that outputs the numbers 1 to 20, one per
line. The program does nothing else.

2.5 Program Style

In matters of grave importance, style, not sincerity, is the vital thing.

OSCAR WILDE, THE IMPORTANCE OF BEING EARNEST

All the variable names in our sample programs were chosen to suggest their use. Our
sample programs were laid out in a particular format. For example, the declarations
and statements were all indented the same amount. These and other matters of style
are of more than aesthetic interest. A program that is written with careful attention to
style is easier to read, easier to correct, and easier to change.

Indenting

A program should be laid out so that elements that are naturally considered a group
are made to look like a group. One way to do this is to skip a line between parts that
are logically considered separate. Indenting can also help to make the structure of
the program clearer. A statement within a statement should be indented. In particular,

CH02.fm Page 93 Thursday, July 24, 2003 3:08 PM

94 2 C++ BASICS

if-else statements, while loops, and do-while loops should be indented either as
in our sample programs or as in some similar manner.

The braces { } determine a large part of the structure of a program. Placing each
brace on a line by itself, as we have been doing, makes it easy to find the matching
pairs. Notice that we have indented some pairs of braces. When one pair of braces is
embedded in another pair, the embedded braces are indented more than the outer
braces. Look back at the program in Display 2.14. The braces for the body of the
while loop are indented more than the braces for the main part of the program.

There are at least two schools of thought on where you should place braces. The
first, which we use in this book, is to reserve a separate line for each brace. This
form is easiest to read. The second school of thought holds that the opening brace for
a pair need not be on a line by itself. If used with care, this second method can be
effective, and it does save space. The important point is to use a style that shows the
structure of the program. The exact layout is not precisely dictated, but you should
be consistent within any one program.

Comments

In order to make a program understandable, you should include some explanatory
notes at key places in the program. Such notes are called comments. C++ and most
other programming languages have provisions for including such comments within
the text of a program. In C++ the symbols // are used to indicate the start of a
comment. All of the text between the // and the end of the line is a comment. The
compiler simply ignores anything that follows // on a line. If you want a comment
that covers more than one line, place a // on each line of the comment. The symbols
// are two slashes (without a space between them).

In this book, comments will always be written in italic so they stand out from
the program text. Some text editors indicate comments by showing them in a differ-
ent color from the rest of the program text.

There is another way to insert comments in a C++ program. Anything between
the symbol pair /* and the symbol pair */ is considered a comment and is ignored
by the compiler. Unlike the // comments, which require an additional // on each
line, the /* to */ comments can span several lines like so:

/*This is a comment that spans
three lines. Note that there is no comment
symbol of any kind on the second line.*/

Comments of the /* */ type may be inserted anywhere in a program that a space
or line break is allowed. However, they should not be inserted anywhere except where
they are easy to read and do not distract from the layout of the program. Usually com-
ments are only placed at the ends of lines or on separate lines by themselves.

where to place
braces {}

/*comments*/

CH02.fm Page 94 Thursday, July 24, 2003 3:08 PM

2.5 Program Style 95

There are differing opinions on which kind of comment is best to use. Either
variety (the // kind or the /* */ kind) can be effective if used with care. We will
use the // kind in this book.

It is difficult to say just how many comments a program should contain. The
only correct answer is “just enough,” which of course conveys little to the novice
programmer. It will take some experience to get a feel for when it is best to include a
comment. Whenever something is important and not obvious, it merits a comment.
However, too many comments are as bad as too few. A program that has a comment
on each line will be so buried in comments that the structure of the program is
hidden in a sea of obvious observations. Comments like the following contribute
nothing to understanding and should not appear in a program:

 distance = speed * time; //Computes the distance traveled

Notice the comment given at the start of the program in Display 2.15. All pro-
grams should begin with a comment similar to the one shown there. It gives all the
essential information about the program: what file the program is in, who wrote the
program, how to contact the person who wrote the program, what the program does,
the date that the program was last modified, and any other particulars that are appro-
priate, such as the assignment number, if the program is a class assignment. Exactly
what you include in this comment will depend on your particular situation. We will
not include such long comments in the programs in the rest of this book, but you
should always begin your programs with such a comment.

Naming Constants

There are two problems with numbers in a computer program. The first is that they
carry no mnemonic value. For example, when the number 10 is encountered in a
program, it gives no hint of its significance. If the program is a banking program, it
might be the number of branch offices or the number of teller windows at the main
office. In order to understand the program, you need to know the significance of each
constant. The second problem is that when a program needs to have some numbers
changed, the changing tends to introduce errors. Suppose that 10 occurs twelve
times in a banking program, that four of the times it represents the number of branch
offices, and that eight of the times it represents the number of teller windows at the
main office. When the bank opens a new branch and the program needs to be
updated, there is a good chance that some of the 10’s that should be changed to 11
will not be, or some that should not be changed will be. The way to avoid these
problems is to name each number and use the name instead of the number within
your program. For example, a banking program might have two constants with the
names BRANCH_COUNT and WINDOW_COUNT. Both these numbers might have a value

when to comment

CH02.fm Page 95 Thursday, July 24, 2003 3:08 PM

96 2 C++ BASICS

Display 2.15 Comments and Named Constants

//File Name: health.cpp (Your system may require some suffix other than cpp.)
//Author: Your Name Goes Here.
//Email Address: you@yourmachine.bla.bla
//Assignment Number: 2
//Description: Program to determine if the user is ill.
//Last Changed: September 23, 2004

#include <iostream>
using namespace std;
int main()
{
 const double NORMAL = 98.6;//degrees Fahrenheit
 double temperature;

 cout << "Enter your temperature: ";
 cin >> temperature;

 if (temperature > NORMAL)
 {
 cout << "You have a fever.\n";
 cout << "Drink lots of liquids and get to bed.\n";
 }
 else
 {
 cout << "You don’t have a fever.\n";
 cout << "Go study.\n";
 }

 return 0;
}

Sample Dialogue

Enter your temperature: 98.6
You don’t have a fever.
Go study.

Your programs should always
begin with a comment
similar to this one.

CH02.fm Page 96 Thursday, July 24, 2003 3:08 PM

code96.html

2.5 Program Style 97

of 10, but when the bank opens a new branch, all you need do in order to update the
program is to change the definition of BRANCH_COUNT.

How do you name a number in a C++ program? One way to name a number is to
initialize a variable to that number value, as in the following example:

int BRANCH_COUNT = 10;
int WINDOW_COUNT = 10;

There is, however, one problem with this method of naming number constants: You
might inadvertently change the value of one of these variables. C++ provides a way
of marking an initialized variable so that it cannot be changed. If your program tries
to change one of these variables it produces an error condition. To mark a variable
declaration so that the value of the variable cannot be changed, precede the
declaration with the word const (which is an abbreviation of constant). For
example:

const int BRANCH_COUNT = 10;
const int WINDOW_COUNT = 10;

If the variables are of the same type, it is possible to combine the above lines into
one declaration, as follows:

const int BRANCH_COUNT = 10, WINDOW_COUNT = 10;

However, most programmers find that placing each name definition on a separate
line is clearer. The word const is often called a modifier, because it modifies
(restricts) the variables being declared.

A variable declared using the const modifier is often called a declared
constant. Writing declared constants in all uppercase letters is not required by the
C++ language, but it is standard practice among C++ programmers.

Once a number has been named in this way, the name can then be used any-
where the number is allowed, and it will have exactly the same meaning as the num-
ber it names. To change a named constant, you need only change the initializing
value in the const variable declaration. The meaning of all occurrences of
BRANCH_COUNT, for instance, can be changed from 10 to 11 simply by changing the
initializing value of 10 in the declaration of BRANCH_COUNT.

Although unnamed numeric constants are allowed in a program, you should sel-
dom use them. It often makes sense to use unnamed number constants for well-
known, easily recognizable, and unchangeable quantities, such as 100 for the num-
ber of centimeters in a meter. However, all other numeric constants should be given
names in the fashion we just described. This will make your programs easier to read
and easier to change.

Display 2.15 contains a simple program that illustrates the use of the declaration
modifier const.

const

declared constants

CH02.fm Page 97 Thursday, July 24, 2003 3:08 PM

98 2 C++ BASICS

SELF-TEST EXERCISES

34 The following if-else statement will compile and run without any problems.
However, it is not laid out in a way that is consistent with the other if-else
statements we have used in our programs. Rewrite it so that the layout (indent-
ing and line breaks) matches the style we used in this chapter.

if (x < 0) {x = 7; cout << "x is now positive.";} else
{x = -7; cout << "x is now negative.";}

35 What output would be produced by the following two lines (when embedded
in a complete and correct program)?

 //cout << "Hello from";
 cout << "Self-Test Exercise";

36 Write a complete C++ program that asks the user for a number of gallons and
then outputs the equivalent number of liters. There are 3.78533 liters in a gal-
lon. Use a declared constant. Since this is just an exercise, you need not have
any comments in your program.

C H A P T E R S U M M A R Y

■ Use meaningful names for variables.

■ Be sure to check that variables are declared to be of the correct data type.

Naming Constants with the const Modifier
When you initialize a variable inside a declaration, you can mark the variable so
that the program is not allowed to change its value. To do this place the word
const in front of the declaration, as described below:
Syntax

const Type_Name Variable_Name = Constant;

Examples

const int MAX_TRIES = 3;
const double PI = 3.14159;

CH02.fm Page 98 Thursday, July 24, 2003 3:08 PM

Answers to Self-Test Exercises 99

■ Be sure that variables are initialized before the program attempts to use their
value. This can be done when the variable is declared or with an assignment
statement before the variable is first used.

■ Use enough parentheses in arithmetic expressions to make the order of opera-
tions clear.

■ Always include a prompt line in a program whenever the user is expected to
enter data from the keyboard, and always echo the user’s input.

■ An if-else statement allows your program to choose one of two alternative
actions. An if statement allows your program to decide whether or not to per-
form some one particular action.

■ A do-while loop always executes its loop body at least once. In some situa-
tions a while loop might not execute the body of the loop at all.

■ Almost all number constants in a program should be given meaningful names
that can be used in place of the numbers. This can be done by using the modifier
const in a variable declaration.

■ Use an indenting, spacing, and line break pattern similar to the sample
programs.

■ Insert comments to explain major subsections or any unclear part of a program.

Answers to Self-Test Exercises

1 int feet = 0, inches = 0;
int feet(0), inches(0);

2 int count = 0;
double distance = 1.5;

Alternatively, you could use

int count(0);
double distance(1.5);

3 sum = n1 + n2;

4 length = length + 8.3;

5 product = product*n;

6 The actual output from a program such as this is dependent on the system
and the history of the use of the system.

CH02.fm Page 99 Thursday, July 24, 2003 3:08 PM

100 2 C++ BASICS

#include <iostream>
using namespace std;
int main()
{
int first, second, third, fourth, fifth;
cout << first << " " << second << " " << third
 << " " << fourth << " " << fifth << endl;
return 0;

}

7 There is no unique right answer for this one. Below are possible answers:

a. speed
b. pay_rate
c. highest or max_score

8 cout << "The answer to the question of\n"
 << "Life, the Universe, and Everything is 42.\n";

9 cout << "Enter a whole number and press return: ";
cin >> the_number;

10 cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(3);

11 #include <iostream>
using namespace std;
int main()
{
 cout << "Hello world\n";
 return 0;
}

12 #include <iostream>
using namespace std;

int main()
{
 int n1, n2, sum;
 cout << "Enter two whole numbers\n";
 cin >> n1 >> n2;
 sum = n1 + n2;

CH02.fm Page 100 Thursday, July 24, 2003 3:08 PM

Answers to Self-Test Exercises 101

 cout << "The sum of " << n1 << " and "
 << n2 << " is " << sum << endl;
 return 0;
}

13 cout << endl << "\t";

14 #include <iostream>
using namespace std;

int main()
{
double one(1.0), two(1.414), three(1.732), four(2.0),
 five(2.236);
cout << "\tN\tSquare Root\n";
cout << "\t1\t" << one << endl
 << "\t2\t" << two << endl
 << "\t3\t" << three << endl
 << "\t4\t" << four << endl
 << "\t5\t" << five << endl;
return 0;

}

15 3*x
3*x + y
(x + y)/7 Note that x + y/7 is not correct.
(3*x + y)/(z + 2)

16

17

Since 1 and 3 are of type int, the / operator performs integer division,
which discards the remainder, so the value of 1/3 is 0, not 0.3333…. This
makes the value of the entire expression 0 * 3, which of course is 0.

18 #include <iostream>
using namespace std;

int main()
{

bcbc

(1/3) * 3 is equal to 0

CH02.fm Page 101 Thursday, July 24, 2003 3:08 PM

102 2 C++ BASICS

 int number1, number2;

 cout << "Enter two whole numbers: ";
 cin >> number1 >> number2;
 cout << number1 << " divided by " << number2
 << " equals " << (number1/number2) << endl
 << "with a remainder of " << (number1%number2)
 << endl;
 return 0;
}

19 a. 52.0
b. 9/5 has int value 1, since numerator and denominator are both int,

integer division is done; the fractional part is discarded.
c. f = (9.0/5) * c + 32.0;

or this
f = 1.8 * c + 32.0;

20 if (score > 100)
 cout << "High";
else
 cout << "Low";

You may want to add \n to the end of the above quoted strings depending on
the other details of the program.

21 if (savings >= expenses)
{
 savings = savings - expenses;
 expenses = 0;
 cout << "Solvent";
}
else
{
 cout << "Bankrupt";
}

You may want to add \n to the end of the above quoted strings depending on
the other details of the program.

22 if ((exam >= 60) && (programs_done >= 10))
 cout << "Passed";
else
 cout << "Failed";

CH02.fm Page 102 Thursday, July 24, 2003 3:08 PM

Answers to Self-Test Exercises 103

You may want to add \n to the end of the above quoted strings depending on
the other details of the program.

23 if ((temperature >= 100) || (pressure >= 200))
 cout << "Warning";
else
 cout << "OK";

You may want to add \n to the end of the above quoted strings depending on
the other details of the program.

24 (x < -1) || (x > 2)

25 (1 < x) && (x < 3)

26 a. 0 is false. In the section on type compatibility, it is noted that the int
value 0 converts to false.

b. 1 is true. In the section on type compatibility, it is noted that a nonzero
int value converts to true.

c. -1 is true. In the section on type compatibility, it is noted that a nonzero
int value converts to true.

27

28 There would be no output, since the Boolean expression (x < 0) is not sat-
isfied and so the while statement ends without executing the loop body.

29 The output is exactly the same as it was for Self-Test Exercise 27.

30 The body of the loop is executed before the Boolean expression is checked,
the Boolean expression is false, and so the output is

31 With a do-while statement the loop body is always executed at least once.
With a while statement there can be conditions under which the loop body is
not executed at all.

10
7
4
1

−42

CH02.fm Page 103 Thursday, July 24, 2003 3:08 PM

104 2 C++ BASICS

32 This is an infinite loop. The output would begin with the following and con-
ceptually go on forever:

(Once the value of x becomes larger than the largest integer allowed on your
computer, the program may stop or exhibit other strange behavior, but the
loop is conceptually an infinite loop.)

33 #include <iostream>
using namespace std;

int main()
{
 int n = 1;
 while (n <= 20)
 {
 cout << n << endl;
 n++;
 }
 return 0;
}

34 if (x < 0)
{
 x = 7;
 cout << "x is now positive.";
}
else
{
 x = -7;
 cout << "x is now negative.";
}

35 The first line is a comment and is not executed. So the entire output is just
the following line:

10
13
16
19

Self-Test Exercise

CH02.fm Page 104 Thursday, July 24, 2003 3:08 PM

Programming Projects 105

36 #include <iostream>
using namespace std;

int main()
{
 const double LITERS_PER_GALLON = 3.78533;
 double gallons, liters;

 cout << "Enter the number of gallons:\n";
 cin >> gallons;

 liters = gallons*LITERS_PER_GALLON;
 cout << "There are " << liters << " in "
 << gallons << " gallons.\n";

 return 0;
}

Programming Projects

1 A metric ton is 35,273.92 ounces. Write a program that will read the weight
of a package of breakfast cereal in ounces and output the weight in metric
tons as well as the number of boxes needed to yield one metric ton of cereal.
Your program should allow the user to repeat this calculation as often as the
user wishes.

2 A government research lab has concluded that an artificial sweetener com-
monly used in diet soda pop will cause death in laboratory mice. A friend of
yours is desperate to lose weight but cannot give up soda pop. Your friend
wants to know how much diet soda pop it is possible to drink without dying
as a result. Write a program to supply the answer. The input to the program is
the amount of artificial sweetener needed to kill a mouse, the weight of the
mouse, and the weight of the dieter. To ensure the safety of your friend, be
sure the program requests the weight at which the dieter will stop dieting,
rather than the dieter’s current weight. Assume that diet soda contains 1/10th
of 1% artificial sweetener. Use a variable declaration with the modifier const
to give a name to this fraction. You may want to express the percent as the
double value 0.001. Your program should allow the calculation to be
repeated as often as the user wishes.

3 Workers at a particular company have won a 7.6% pay increase retroactive
for six months. Write a program that takes an employee’s previous annual

CH02.fm Page 105 Thursday, July 24, 2003 3:08 PM

project105a.html
project105b.html

106 2 C++ BASICS

salary as input, and outputs the amount of retroactive pay due the employee,
the new annual salary, and the new monthly salary. Use a variable declara-
tion with the modifier const to express the pay increase. Your program
should allow the calculation to be repeated as often as the user wishes.

4 Negotiating a consumer loan is not always straightforward. One form of loan
is the discount installment loan, which works as follows. Suppose a loan has
a face value of $1,000, the interest rate is 15%, and the duration is 18
months. The interest is computed by multiplying the face value of $1,000 by
0.15, to yield $150. That figure is then multiplied by the loan period of 1.5
years to yield $225 as the total interest owed. That amount is immediately
deducted from the face value, leaving the consumer with only $775. Repayment
is made in equal monthly installments based on the face value. So the
monthly loan payment will be $1,000 divided by 18, which is $55.56. This
method of calculation may not be too bad if the consumer needs $775 dol-
lars, but the calculation is a bit more complicated if the consumer needs
$1,000. Write a program that will take three inputs: the amount the consumer
needs to receive, the interest rate, and the duration of the loan in months. The
program should then calculate the face value required in order for the con-
sumer to receive the amount needed. It should also calculate the monthly
payment. Your program should allow the calculations to be repeated as often
as the user wishes.

5 Write a program that determines whether a meeting room is in violation of
fire law regulations regarding the maximum room capacity. The program
will read in the maximum room capacity and the number of people to attend
the meeting. If the number of people is less than or equal to the maximum
room capacity, the program announces that it is legal to hold the meeting and
tells how many additional people may legally attend. If the number of people
exceeds the maximum room capacity, the program announces that the meet-
ing cannot be held as planned due to fire regulations and tells how many peo-
ple must be excluded in order to meet the fire regulations. For a harder
version write your program so that it allows the calculation to be repeated as
often as the user wishes. If this is a class exercise, ask your instructor if you
should do this harder version or not.

6 An employee is paid at a rate of $16.78 per hour for regular hours worked in
a week. Any hours over that are paid at the overtime rate of one and one half
times that. From the worker’s gross pay, 6% is withheld for social security
tax, 14% is withheld for federal income tax, 5% is withheld for state income
tax, and $10 per week is withheld for union dues. If the worker has three or
more dependents, then an additional $35 is withheld to cover the extra cost of
health insurance beyond what the employer pays. Write a program that will

CH02.fm Page 106 Thursday, July 24, 2003 3:08 PM

project106.html

Programming Projects 107

read in the number of hours worked in a week and the number of dependents
as input, and will then output the worker’s gross pay, each withholding
amount, and the net take-home pay for the week. For a harder version write
your program so that it allows the calculation to be repeated as often as the
user wishes. If this is a class exercise, ask your instructor if you should do
this harder version or not.

7 It is difficult to make a budget that spans several years, because prices are not
stable. If your company needs 200 pencils per year, you cannot simply use this
year’s price as the cost of pencils two years from now. Because of inflation the
cost is likely to be higher than it is today. Write a program to gauge the
expected cost of an item in a specified number of years. The program asks
for the cost of the item, the number of years from now that the item will be
purchased, and the rate of inflation. The program then outputs the estimated
cost of the item after the specified period. Have the user enter the inflation
rate as a percentage, like 5.6 (percent). Your program should then convert the
percent to a fraction, like 0.056, and should use a loop to estimate the price
adjusted for inflation. (Hint: This is similar to computing interest on a charge
card account, which was discussed in this chapter.)

8 You have just purchased a stereo system that cost $1,000 on the following
credit plan: no down payment, an interest rate of 18% per year (and hence
1.5% per month), and monthly payments of $50. The monthly payment of
$50 is used to pay the interest and whatever is left is used to pay part of the
remaining debt. Hence, the first month you pay 1.5% of $1,000 in interest.
That is $15 in interest. So, the remaining $35 is deducted from your debt,
which leaves you with a debt of $965.00. The next month you pay interest of
1.5% of $965.00, which is $14.48. Hence, you can deduct $35.52 (which is
$50 − $14.48) from the amount you owe. Write a program that will tell you
how many months it will take you to pay off the loan, as well as the total
amount of interest paid over the life of the loan. Use a loop to calculate the
amount of interest and the size of the debt after each month. (Your final pro-
gram need not output the monthly amount of interest paid and remaining
debt, but you may want to write a preliminary version of the program that
does output these values.) Use a variable to count the number of loop itera-
tions and hence the number of months until the debt is zero. You may want
to use other variables as well. The last payment may be less than $50 if the
debt is small, but do not forget the interest. If you owe $50, then your
monthly payment of $50 will not pay off your debt, although it will come
close. One month’s interest on $50 is only 75 cents.

9 Write a program that reads in ten whole numbers and that outputs the sum of
all the numbers greater than zero, the sum of all the numbers less than zero

CH02.fm Page 107 Thursday, July 24, 2003 3:08 PM

project107a.html
project107b.html

108 2 C++ BASICS

(which will be a negative number or zero), and the sum of all the numbers,
whether positive, negative, or zero. The user enters the ten numbers just once
each and the user can enter them in any order. Your program should not ask
the user to enter the positive numbers and the negative numbers separately.

CH02.fm Page 108 Thursday, July 24, 2003 3:08 PM

	code links 1:
	code links 2:
	code links 4:
	code links 3:
	code links 5:
	code links 7:
	code links 6:
	program projects 2:
	1:
	6:
	3:
	7:
	7b:

