Lecture – 03 Intro. to Internet of Things

Dr. Ahmed Elngar
Faculty of Computers and Artificial Intelligence
Beni-Suef University

6. IoT – Media, Marketing, & Advertising

The applications of IoT in media and advertising involve a customized experience in which the system analyzes and responds to the needs and interests of each customer. This includes their general behavior patterns, buying habits, preferences, culture, and other characteristics.

Marketing and Content Delivery

IoT functions in a similar and deeper way to current technology, analytics, and big data. Existing technology collects specific data to produce related metrics and patterns over time, however, that data often lacks depth and accuracy. IoT improves this by observing more behaviors and analyzing them differently.

- This leads to more information and detail, which delivers more reliable metrics and patterns.
- It allows organizations to better analyze and respond to customer needs or preferences.
- It improves business productivity and strategy, and improves the consumer experience by only delivering relevant content and solutions.

A customer buys a product containing sensors.

Sensors share locations of use.

Sensors also share use characteristics and performance data.

IoT systems then present relevant information on malfunction detection such as ads for solutions or product reviews for replacement products.

Improved Advertising

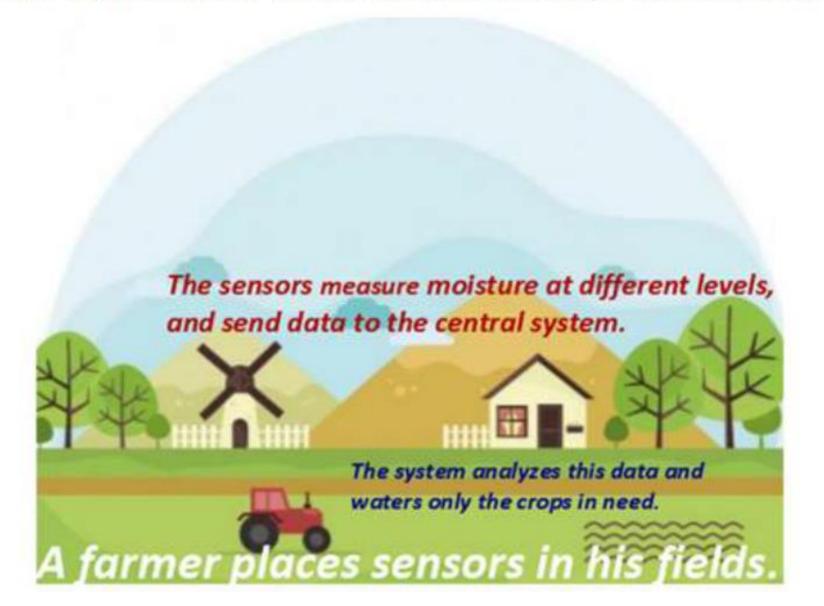
Current advertising suffers from excess and poor targeting. Even with today's analytics, modern advertising fails. IoT promises different and personalized advertising rather than one-size-fits-all strategies. It transforms advertising from noise to a practical part of life because consumers interact with advertising through IoT rather than simply receiving it. This makes advertising more functional and useful to people searching the marketplace for solutions or wondering if those solutions exist.

7. IoT – Environmental Monitoring

The applications of IoT in environmental monitoring are broad: environmental protection, extreme weather monitoring, water safety, endangered species protection, commercial farming, and more. In these applications, sensors detect and measure every type of environmental change.

Air and Water Pollution

Current monitoring technology for air and water safety primarily uses manual labor along with advanced instruments, and lab processing. IoT improves on this technology by reducing the need for human labor, allowing frequent sampling, increasing the range of sampling and monitoring, allowing sophisticated testing on-site, and binding response efforts to detection systems. This allows us to prevent substantial contamination and related disasters.


Extreme Weather

Though powerful, advanced systems currently in use allow deep monitoring, they suffer from using broad instruments, such as radar and satellites, rather than more granular solutions. Their instruments for smaller details lack the same accurate targeting of stronger technology.

New IoT advances promise more fine-grained data, better accuracy, and flexibility. Effective forecasting requires high detail and flexibility in range, instrument type, and deployment. This allows early detection and early responses to prevent loss of life and property.

Commercial Farming

Today's sophisticated commercial farms have exploited advanced technology and biotechnology for quite some time, however, IoT introduces more access to deeper automation and analysis.

Much of commercial farming, like weather monitoring, suffers from a lack of precision and requires human labor in the area of monitoring. Its automation also remains limited.

IoT allows operations to remove much of the human intervention in system function, farming analysis, and monitoring. Systems detect changes to crops, soil, environment, and more. They optimize standard processes through analysis of large, rich data collections. They also prevent health hazards (e.g., e. coli) from happening and allow better control.

8. IoT – Manufacturing Applications

Manufacturing technology currently in use exploits standard technology along with modern distribution and analytics. IoT introduces deeper integration and more powerful analytics. This opens the world of manufacturing in a way never seen before, as organizations become fully-developed for product delivery rather than a global network of suppliers, makers, and distributors loosely tied together.

Intelligent Product Enhancements

Much like IoT in content delivery, IoT in manufacturing allows richer insight in real-time. This dramatically reduces the time and resources devoted to this one area, which traditionally requires heavy market research before, during, and well after the products hit the market.

IoT also reduces the risks associated with launching new or modified products because it provides more reliable and detailed information. The information comes directly from market use and buyers rather than assorted sources of varied credibility.

Dynamic Response to Market Demands

Supplying the market requires maintaining a certain balance impacted by a number of factors such as economy state, sales performance, season, supplier status, manufacturing facility status, distribution status, and more. The expenses associated with supply present unique challenges given today's global partners. The associated potential or real losses can dramatically impact business and future decisions.

IoT manages these areas through ensuring fine details are managed more at the system level rather than through human evaluations and decisions. An IoT system can better assess and control the supply chain (with most products), whether demands are high or low.

Lower Costs, Optimized Resource Use, and Waste Reduction

IoT offers a replacement for traditional labor and tools in a production facility and in the overall chain which cuts many previously unavoidable costs; for example, maintenance checks or tests traditionally requiring human labor can be performed remotely with instruments and sensors of an IoT system.

IoT also enhances operation analytics to optimize resource use and labor, and eliminate various types of waste, e.g., energy and materials. It analyzes the entire process from the source point to its end, not just the process at one point in a particular facility, which allows improvement to have a more substantial impact. It essentially reduces waste throughout the network, and returns those savings throughout.

This XRS relay box connects all truck devices (e.g., diagnostics and driver cell) to the XRS fleet management supporting software, which allows data collection.

Improved Facility Safety

A typical facility suffers from a number of health and safety hazards due to risks posed by processes, equipment, and product handling. IoT aids in better control and visibility. Its monitoring extends throughout the network of devices for not only performance, but for dangerous malfunctions and usage. It aids (or performs) analysis and repair, or correction, of critical flaws.

Product Safety

Even the most sophisticated system cannot avoid malfunctions, nonconforming product, and other hazards finding their way to market. Sometimes these incidents have nothing to do with the manufacturing process, and result from unknown conflicts.

In manufacturing, IoT helps in avoiding recalls and controlling nonconforming or dangerous product distribution. Its high level of visibility, control, and integration can better contain any issues that appear.