

Introduction to Mechanism
Design

http://www.taylorandfrancis.com

Introduction to Mechanism
Design

With Computer Applications

Eric Constans and Karl B. Dyer

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the
accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products
does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular
use of the MATLAB® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2019 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-138-74065-5 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the
validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the
copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to
publish in this form has not been obtained. If any copyright material has not been acknowledged, please write and let
us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or
utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including
photocopying, microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users.
For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been
arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com/
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com

v

Contents

Preface ... xiii
Acknowledgments ... xvii
Authors ... xix

 1. Introduction to Kinematics ..1
1.1 Introduction to Mechanical Design ..1
1.2 Fundamentals of Kinematics ...2
1.3 Degrees of Freedom ..3

1.3.1 Mobility of Mechanisms ...4
1.3.2 Degrees of Freedom Example Problems ...7

1.4 The Fourbar Linkage and the Grashof Condition .. 15
1.4.1 Classifications of the Fourbar Linkage ... 17
1.4.2 Fourbar Classification: The Grashof Linkages .. 18
1.4.3 Fourbar Classification: Non-Grashof Linkages ... 19
1.4.4 Fourbar Classification – Special Cases.. 20
1.4.5 Fourbar Classification – The Extreme Cases .. 24
1.4.6 Limiting angles for Non-Grashof Linkages ... 27

1.5 Practice Problems .. 29
Acknowledgments ...42
Works Cited ..42

 2. Graphical Linkage Synthesis Using SOLIDWORKS® ...43
2.1 Introduction to Graphical Linkage Synthesis ...43
2.2 Two Specified Positions of the Rocker ...43

2.2.1 Two Positions of Rocker without Specified Ground Pin48
2.2.2 Quick-Return Mechanisms ..53

2.3 Two Specified Positions of the Coupler ..58
2.4 Three Specified Positions of the Coupler ...60
2.5 Summary .. 71
2.6 Practice Problems .. 74
Acknowledgments ...77

 3. Introduction to MATLAB® ... 79
3.1 Introduction ... 79
3.2 Simple MATLAB® – The Command Window .. 79
3.3 Vector Notation in MATLAB® ...84
3.4 A First Plot..86
3.5 Writing a Simple MATLAB® Script ..86
3.6 Plotting a Filled Square ..90
3.7 Adding Some Structure – The for Loop .. 94
3.8 A Primitive Animation .. 97
3.9 Summary ..99
Acknowledgments ... 100

vi Contents

 4. Position Analysis of Linkages ... 101
4.1 Introduction to Position Analysis ... 101
4.2 Review of Vectors and Matrices .. 102

4.2.1 Vector Addition .. 104
4.2.2 The Vector Loop ... 105
4.2.3 The Dot Product ... 107
4.2.4 The Cross Product.. 109
4.2.5 Unit Vectors .. 110

4.2.5.1 Time Derivatives of Unit Vectors ... 112
4.2.6 A Very Brief Introduction to Matrix Algebra .. 114
4.2.7 Transformation of Coordinates .. 118

4.3 Position Analysis of the Threebar Slider-Crank ... 122
4.4 Position Analysis of the Threebar Slider-Crank Using MATLAB® 125

4.4.1 Data Structure for the Position Calculations ... 128
4.4.2 The Main Loop ... 130
4.4.3 Position Calculations ... 131
4.4.4 Making a Fancy Plot and Verifying your Code....................................... 136
4.4.5 Verifying Your Calculations ... 137
4.4.6 Drawing the Linkage in MATLAB® .. 137

4.5 Position Analysis of the Slider-Crank .. 141
4.5.1 Extreme Positions of the Slider-Crank .. 143

4.6 Position Analysis of the Slider-Crank Using MATLAB® 147
4.6.1 Verifying the Code... 149

4.7 Position Analysis of the Fourbar Linkage ... 150
4.7.1 Finding the Position of Any Point on the Linkage 155
4.7.2 A Digression into Trigonometric Identities ... 161
4.7.3 Open and Crossed Configurations of the Fourbar 162
4.7.4 Summary ... 162

4.8 Position Analysis of the Fourbar Linkage Using MATLAB® 163
4.8.1 Data Structure for the Position Calculations ... 166
4.8.2 The Main Loop ... 166
4.8.3 Position Calculations ... 167
4.8.4 Making a Fancy Plot and Verifying your Code....................................... 170
4.8.5 Plotting the Non-Grashof Linkage .. 172

4.9 Position Analysis of the Inverted Slider-Crank ... 174
4.9.1 Limiting Positions for the Inverted Slider-Crank 177

4.10 Position Analysis of the Inverted Slider-Crank Using MATLAB® 180
4.10.1 Position Analysis of the Non-Grashof Linkage 183

4.11 Position Analysis of the Geared Fivebar Linkage .. 186
4.12 Position Analysis of the Geared Fivebar Using MATLAB® 189

4.12.1 Verifying Your Code .. 191
4.12.2 Position of Any Point on the Linkage ... 192

4.13 Position Analysis of the Sixbar Linkage .. 193
4.13.1 Stephenson Type I Sixbar Linkage .. 196
4.13.2 The Remaining Sixbar Linkages.. 198
4.13.3 The Stephenson Type II Sixbar Linkage ...200
4.13.4 Summary ... 201

4.14 Position Analysis of the Sixbar Linkage Using MATLAB® 201

viiContents

4.14.1 Making the Sixbar Plot .. 204
4.14.2 The Remaining Sixbar Linkages.. 207

4.15 Advanced Topic: The Newton–Raphson Method .. 207
4.15.1 The One-Dimensional Newton-Raphson Algorithm 212
4.15.2 One Dimensional Examples ... 214
4.15.3 A More Complicated Function ... 215
4.15.4 Newton–Raphson in Multidimensional Space .. 218
4.15.5 The Newton–Raphson Algorithm in MATLAB® 220
4.15.6 Summary ... 224

4.16 Practice Problems .. 226
Acknowledgments ... 239
Works Cited .. 239

 5. Velocity Analysis of Linkages ... 241
5.1 Introduction to Velocity Analysis ... 241

5.1.1 Pure Rotation .. 241
5.1.2 Complex Motion ... 243
5.1.3 Velocity of a Point Moving on a Rotating Link 243

5.2 The Method of Instant Centers ... 245
5.2.1 Instant Centers of the Fourbar Linkage .. 246
5.2.2 SOLIDWORKS® Tutorial – Velocity Analysis of the Fourbar

Linkage ... 249
5.2.3 Instant Centers of the Slider-Crank Linkage ... 251
5.2.4 Instant Centers of the Inverted Slider-Crank .. 252
5.2.5 Instant Center Example Problems ...256
5.2.6 Velocity Ratios .. 261
5.2.7 Mechanical Advantage ... 263

5.2.7.1 Mechanical Advantage in the Slider-Crank 266
5.3 Velocity Analysis of the Threebar Slider-Crank ... 267

5.3.1 Velocity of Any Point on the Linkage ... 270
5.3.2 Velocity Analysis of the Threebar Slider-Crank Using MATLAB® 271

5.3.2.1 Verifying the Code ... 273
5.3.2.2 Verifying the Code – An Alternative Approach 274

5.4 Velocity Analysis of the Slider-Crank .. 281
5.4.1 Example Slider-Crank ... 282

5.5 Velocity Analysis of the Fourbar Linkage ...283
5.5.1 Velocity of Any Point on the Linkage ...285
5.5.2 Fourbar Velocity Analysis Using MATLAB® ... 287
5.5.3 Verifying the Code... 289

5.6 Velocity Analysis of the Inverted Slider-Crank .. 293
5.7 Velocity Analysis of the Geared Fivebar Linkage .. 296

5.7.1 Example Fivebar Linkage ... 298
5.8 Velocity Analysis of the Sixbar Linkage .. 301

5.8.1 Some Example Solutions for the Sixbar Linkage303
5.9 Introduction to Electric Motors ...304

5.9.1 AC Motors ...306
5.9.2 DC Motors ... 312
5.9.3 Brushless Motors .. 313

viii Contents

5.9.4 Servo Motors ... 317
5.9.5 Stepper Motors ... 318

5.10 Practice Problems .. 318
Acknowledgments ... 328

 6. Acceleration Analysis of Linkages ... 329
6.1 Introduction to Acceleration Analysis ... 329

6.1.1 Acceleration of a Moving Point on a Moving Link 331
6.2 Acceleration Analysis of the Threebar Slider-Crank ...333

6.2.1 Computing the Accelerations Using MATLAB®335
6.2.2 Acceleration at the Pins ... 337

6.3 Acceleration Analysis of the Slider-Crank ..340
6.3.1 Slider-Crank with Constant Crank Angular Velocity 341
6.3.2 A Note on the Angular Acceleration of the Crank343

6.4 Acceleration Analysis of the Fourbar Linkage ...350
6.4.1 Computing the Accelerations Using MATLAB® 351

6.5 Acceleration Analysis of the Inverted Slider-Crank .. 356
6.5.1 Computing the Accelerations Using MATLAB® 357

6.6 Acceleration Analysis of the Geared Fivebar Linkage .. 357
6.6.1 Computing the accelerations using MATLAB® 359

6.7 Acceleration Analysis of the Sixbar Linkage .. 362
6.7.1 Some Example Solutions for the Sixbar Linkage365

6.8 Summary ..365
6.9 Practice Problems .. 374
Acknowledgments ... 381

 7. Force Analysis on Linkages ..383
7.1 Fundamentals of Dynamics ..383

7.1.1 Dynamic Models ..383
7.1.1.1 Mass ...384
7.1.1.2 Center of Mass ..384
7.1.1.3 Mass Moment of Inertia .. 387

7.1.2 The Parallel Axis Theorem ... 389
7.1.3 Using SOLIDWORKS® to Calculate Moment of Inertia 393

7.2 Newtonian Kinetics of a Rigid Body .. 395
7.2.1 Equations of Motion for the Rigid Body ... 396
7.2.2 Rotational Equations of Motion ... 398
7.2.3 A Digression on Moments, Torques, and Couples403

7.3 Force Analysis on a Single Link ..405
7.3.1 Another Useful MATLAB® Function ..409
7.3.2 Force Analysis of a Threebar Linkage using MATLAB® 413

7.4 Force Analysis of the Threebar Slider-Crank ... 417
7.4.1 Code Verification ..420

7.4.1.1 Static Verification ..420
7.4.1.2 Verifying the Code using the Energy Method420

7.4.2 Summary ... 424
7.5 Force Analysis Example 1 – The Threebar Door Closing Mechanism 424

7.5.1 The Problem Statement ...426
7.5.1.1 Critical Dimensions of the Linkage ...427

ixContents

7.5.1.2 Inertial Properties of the Mechanism427
7.5.1.3 External Forces Acting on the Mechanism428
7.5.1.4 Free-Body Diagrams of each Link in the Mechanism428
7.5.1.5 Motion of the Crank ... 431
7.5.1.6 Solving for the Pin Forces and Plotting Results 432

7.5.2 Verification of the Code ...433
7.5.3 Summary ...435

7.6 Force Analysis of the Slider-Crank ...436
7.6.1 Force Analysis of the Example Linkage ...438

7.7 Force Analysis Example 2 – The Air Compressor Mechanism444
7.7.1 First, a Simple Model ...445
7.7.2 Inertial Properties of the Links ..446
7.7.3 Driving Torque without Pressure Force ...447
7.7.4 And Now, a Little Thermo ..448
7.7.5 Adding Friction to the Model .. 452
7.7.6 Potential Energy of Air Inside the Cylinder ..455

7.8 Force Analysis of the Fourbar Linkage ..456
7.8.1 Force Analysis of the Sample Linkage .. 458

7.9 Force Analysis Example 3 – The Grill Lid Lifting Mechanism464
7.9.1 Designing the Fourbar Mechanism ..466
7.9.2 Determine the Critical Dimensions of the Linkage468
7.9.3 Determine the Inertial Properties of Each Body in the Mechanism 470
7.9.4 Determine the Nature of the External Forces Acting on the Linkage472
7.9.5 Draw Free-body Diagrams of Each Link in the Mechanism 473
7.9.6 Determine the Nature of the Motion of the Crank 475
7.9.7 Solve the Equations of Motion and Plot the Desired Results 476
7.9.8 Using the Code to Improve the Design ..477
7.9.9 Summary ... 481

7.10 Force Analysis of the Inverted Slider-Crank... 481
7.11 Force Analysis Example 4 – The Bicycle Air Pump ...488

7.11.1 Determine the Critical Dimensions of the Linkage 490
7.11.2 Calculate the Inertial Properties of Each Body in the Mechanism 490
7.11.3 Determine the External Forces .. 491
7.11.4 Draw Free-Body Diagrams of Each Link in the Mechanism 493
7.11.5 Determine the Nature of the Movement of Crank 495
7.11.6 Solve for the Pin Forces and Driving Force .. 496

7.12 Force Analysis of the Geared Fivebar Linkage ... 499
7.12.1 Some Gear Geometry ..500

7.13 Force Analysis of the Sixbar Linkage ... 511
7.13.1 Force Matrices for Sixbar Linkages .. 521

7.14 Practice Problems .. 527
Acknowledgments ... 536
Work Cited .. 536

 8. Gears and Gear Trains ... 537
8.1 Introduction to Gears ... 537

8.1.1 Spur Gears .. 537
8.1.2 Helical Gears .. 537
8.1.3 Bevel Gears ... 537

x Contents

8.1.4 Hypoid Gears ...540
8.1.5 Worm Gears ..540
8.1.6 Rack ..540
8.1.7 Internal Gears ... 541

8.2 Properties of the Involute Curve ...542
8.2.1 Base Circles and Pitch Circles ..549
8.2.2 Force Analysis on Involute Gears ..550
8.2.3 Summary ... 553

8.3 Gear Terminology ... 553
8.3.1 Parts of the Gear Tooth ... 557
8.3.2 Pressure Angle ... 558
8.3.3 Interference ... 558

8.4 Speed Reduction using Gear Trains ... 561
8.5 Efficiency of Gear Trains ..565

8.5.1 Summary ... 572
8.6 Practice Problems .. 572
Acknowledgments ... 576
Notes ..576
Works Cited .. 576

 9. Planetary Gear Trains .. 577
9.1 Introduction to Planetary Gearsets .. 577

9.1.1 Types of Planetary Gearsets ... 577
9.1.2 Sun, Ring, and Planet .. 577
9.1.3 Two Suns and Two Planets ...580
9.1.4 The Differential .. 581

9.2 Analysis of Planetary Gearsets—The Table Method ... 581
9.2.1 Table Method with One Fixed Input ... 582

9.3 Analysis of Planetary Gearsets—The Generalized Table Method 592
9.4 Analysis of Planetary Gearsets—An Algebraic Method 601

9.4.1 Overall Ratio of the Planetary Gearset ... 602
9.5 Efficiency of Planetary Gearsets ...604

9.5.1 A Generic Planetary Gearset ..604
9.5.2 The Basic Efficiency ...606
9.5.3 Torque Balance on the Gearset .. 607
9.5.4 Power Balance of the Gearset ...608
9.5.5 Efficiency of the Overall Gearset ... 610

9.6 Design Examples for Planetary Gearsets .. 613
9.7 Practice Problems ... 619
Acknowledgments ... 626
Notes ..626
Works Cited .. 626

 10. Cams and Followers ... 627
10.1 Introduction to Cams ... 627

10.1.1 Types of Cams .. 627
10.1.2 Follower Motion ... 628
10.1.3 Types of Followers ...630

10.2 Eccentric Cams .. 631

xiContents

10.3 Cams in an Automotive Engine .. 632
10.4 Introduction to Cam Design ..635
10.5 Polynomial Cam Profiles ...640
10.6 Sinusoidal Cam Profiles ...646
10.7 Single-Dwell Cams ...649
10.8 Cam Design Using MATLAB® ..654

10.8.1 The Main Program ..655
10.8.2 The Cam Motion Function ... 659
10.8.3 Interpolating the Cam Profile Using the Spline Function665
10.8.4 The Unit Tangent and Normal Vectors ..668
10.8.5 Radius of Curvature of the Cam Profile .. 671

10.9 Plotting the Cam Profile, the s-v-a-j Diagram, and Other Interesting
Functions .. 677
10.9.1 Plotting the Cam Profile ... 678
10.9.2 The s-v-a-j Diagram for the Cam ... 679
10.9.3 Plotting the Radius of Curvature .. 681
10.9.4 A Plot for Checking the Radius of Curvature 682
10.9.5 Some Design Examples ..686
10.9.6 The CamMotion Function ..688

10.10 Motion of the Follower ... 692
10.10.1 Spline Interpolation—Part 2 ..693
10.10.2 Motion of the Flat-Faced Follower ... 694
10.10.3 Calculating Velocity and Acceleration of the Follower 698
10.10.4 The Translating Roller-Follower ... 702
10.10.5 The Oscillating Rocker-Follower .. 709
10.10.6 The RockerMotion Function .. 713

10.11 Force Analysis in Cams .. 715
10.11.1 Force Analysis of the Roller-Follower .. 718
10.11.2 Force Analysis on the Rocker-Follower Mechanism 720
10.11.3 Force Analysis of the Rocker-Follower in MATLAB® 721

10.12 Practice Problems ..725
Acknowledgments ... 729
Works Cited .. 729

Appendix: Inertial Properties of some Common Shapes .. 731

Index ... 735

http://www.taylorandfrancis.com

xiii

Preface

This book serves as an introduction to the design and analysis of mechanisms using
computer-aided design tools. A mechanism is a set of components connected together
in such a way as to produce a desired motion. Examples of mechanisms in everyday life
are numerous, and include windshield wipers, mechanical watch movements, the piston/
connecting-rod/crankshaft assembly in an automotive engine, and the fancy “European
hinges” found in upscale kitchen cabinets. In each of these instances, the designer was
confronted with the problem of producing a desired motion (e.g. sweeping a wiper across
a windshield) in the most economical way.

Until the recent past, mechanical designers have employed drafting tools (triangle,
T-square, compass) to complete their work. These tools have been entirely superseded by
computer-aided design tools such as CAD software (e.g. SOLIDWORKS®) and mathemati-
cal simulation software (e.g. MATLAB®). While a mechanical engineer might use a pen-
cil and sketch pad to help in brainstorming a design, the final result will inevitably be
developed and communicated through software. This wholesale change in the mechanical
design process has been largely ignored in most mechanical design textbooks, where ref-
erences to compasses and dividers are still common.

With this in mind, we have written a textbook that would bring the modern practice of
mechanical design into the classroom and computer lab. The book is intended to accom-
pany a one-semester course in mechanical design at a 4-year university or technical col-
lege. The authors have used the material in this textbook to teach mechanical design to
first-, second-, and third-year students for almost 20 years at our university. Some impor-
tant features of the book include:

• An improved notation for conducting position, velocity, and acceleration analy-
sis based upon the unit vector concept. This method gives the student a clearer
understanding of the meaning of the equations, instead of the confusing jumble of
trigonometric functions (or complex variables) found in most textbooks.

• A simplified (and more computationally efficient) solution to the fourbar linkage
problem. This solution forms the basis for analyzing more complex linkages, such
as the geared fivebar and sixbar.

• A rich set of web-based animations and simulations that are designed to be used
with mobile devices, laptops, and desktop computers. QR codes interspersed
through the chapters provide links to animations that illustrate the topic under
discussion. Mechanical design is the study of motion, and students can gain a
much deeper understanding of the subject by seeing and interacting with the
mechanisms as they move.

 Web Address: http://www.mechdes.net
• A set of real-world design examples that employ the methods discussed in the

text.
• Links to hands-on design projects that we have employed at our university for

many years.

http://www.mechdes.net

xiv Preface

The target audience for this text is first-, second-, or third-year students in mechanical
engineering or mechanical technology programs. The course can be taken concurrently
with differential calculus, which most engineering students take during their first semes-
ter. The textbook relies to a large degree upon vector analysis, which most students learn
in high school. For those who did not learn it in high school, a short “refresher” is provided
in Chapter 4.

The first chapter is an introduction to kinematics, which is the study of motion. The
important concept of degrees of freedom is discussed, along with a new classification
scheme for the fourbar linkage that is tied to motion analysis. Next, we introduce the
use of CAD software to design fourbar linkages to achieve specified motion. The tech-
niques presented in Chapter 2 are better suited for a tutorial in a computer laboratory than
in the classroom, and students will employ these design techniques for the remainder
of the course. While we use SOLIDWORKS® in our example problems, the design tech-
niques can be used with any CAD software including AutoCAD, ProEngineer, and others.
Chapter 3 gives a very basic introduction to MATLAB® and is intended for students new
to the software.

Chapters 4–7 form a sequence leading up to the force analysis of linkages. Chapter 4
presents techniques to conduct position analysis on a variety of linkages. Once the posi-
tions of the links have been found, the velocity analysis methods in Chapter 5 can be used
to find the velocity at any point on the linkage. From here, it is a simple step to find the
accelerations on a linkage, as seen in Chapter 6. The culmination of all this effort is force
analysis, which is presented in Chapter 7. Here we use the prescribed motion of the link-
age to solve for the forces required to produce this motion – the inverse dynamics problem.
The rigid-body inverse dynamics problem is often encountered in biomechanics, and the
techniques presented in Chapter 7 are also used in automotive crash safety analysis.

Speed reduction using gear trains is discussed in Chapter 8, along with some practical
design examples. Chapter 9 introduces students to planetary gearsets and a variety of
analysis techniques is shown. The topic of efficiency in planetary gearsets is given a more
thorough treatment than is given in most textbooks.

The text concludes with a chapter on cam design and analysis. Most textbooks provide
several techniques for designing a cam profile to achieve a specified motion. In the inter-
est of keeping the book to a reasonable length, we have chosen to present only the most
versatile profile functions (polynomial and sinusoidal) and have given more emphasis to
the motion of the follower, which can be quite different from the cam profile in many
instances. The chapter concludes with a discussion of force analysis of the cam/follower
mechanism, which is often neglected in other texts.

For each of the analysis sections we have followed a four-step scheme:

 1. Develop a mathematical model of the system under investigation. This results in a
set of equations that can be solved for position, velocity, acceleration, or force.

 2. Write a MATLAB® script to solve the equations for a set of positions of the system.
 3. Verify the results of step 2 using a different mathematical technique (e.g. energy,

numerical differentiation).
 4. Demonstrate the results by creating a set of MATLAB® plots.

The successful engineer must be proficient at all four steps, but most textbooks emphasize
only the first. In fact, verifying and plotting the results of calculations are some of the most

xvPreface

important aspects of an engineer’s role, and we have given these tasks a strong emphasis
in this text.

Finally, this textbook has been written using informal, engaging language in the hope of
drawing the student into the subject. The mechanical design process is rich in opportuni-
ties for creative intellectual excitement, and we hope to convey some of our own enjoyment
to the student.

MATLAB® is a registered trademark of The MathWorks, Inc. For product information,
please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

mailto:info@mathworks.com
http://www.mathworks.com

http://www.taylorandfrancis.com

xvii

Acknowledgments

The authors wish to express their gratitude to their friends and colleagues at Rowan
University, especially to Dr. Tirupathi Chandrupatla, who was the inspiration for writing
this book. Eric Constans would like to thank his wife, Aileen, for her patient support dur-
ing the years of writing this book, as well as David Mosko and Thomas Mosolovich for
their assistance in preparing the problems and exercises. Karl B. Dyer would like to thank
his wife, Nicole, for her encouragement to start the book writing process and Dr. Smitesh
Bakrania for his help with selecting color palettes. Finally, we wish to give thanks to the
students in the Mechanical Engineering Department of Rowan University – you’ve been
our motivation all along!

http://www.taylorandfrancis.com

xix

Authors

Eric Constans, PhD, is a professor in Mechanical Engineering at the Rose-Hulman
Institute of Technology in Terre Haute, Indiana. Prior to joining Rose-Hulman, he
taught at Rowan University in southern New Jersey for 19 years and served as depart-
ment chair for six years. He has taught courses in Mechanical Design for two decades,
and has published over 50 articles on mechanical design and engineering education. His
fields of expertise include acoustics, vibration, and mechanical design and he worked for
two years at Continental, AG as an acoustician before joining academia in 1999. He lives
near Philadelphia, Pennsylvania and enjoys working on old houses and building custom
hi-fi equipment.

Karl B. Dyer, holds a BS in Mechanical Engineering and a MS in Electrical Engineering.
He is a technologist and adjunct professor in the Mechanical Engineering Department at
Rowan University. Karl’s professional areas of interest include programming and mechan-
ical design. He believes that all engineers should have hands-on experiences during their
education to aide in understanding theory presented during lecture. Through use of soft-
ware packages, both CAD and programming languages, students are forced to utilize the-
ory and produce a functioning “product.” As a technologist, Karl enables Rowan students
to move from the software design phase to the building phase, teaching rapid prototyping
and industrial machining to students so they may produce working models.

http://www.taylorandfrancis.com

1

1
Introduction to Kinematics

1.1 Introduction to Mechanical Design

The subject of this textbook is mechanical design and analysis. While most people have at
least a vague idea of what the word “design” means, in this text we are mainly interested
in two definitions [1]:

Design:

transitive verb 1. To make preliminary sketches of; sketch a pattern or outline for; plan. 2.
To plan and carry out, esp. by artistic arrangement or in a skillful way. …

intransitive verb 8. the arrangement of parts, details, form, color, etc. so as to produce a
complete and artistic unit

The goal of the text is to give the reader a set of computational tools to design and analyze
mechanisms to achieve specific goals. A mechanism is a collection of links and joints
designed in such a way as to create a desired motion output. One link of a mechanism
is “grounded,” that is, fixed to some reference frame, and we are commonly interested in
finding the motion of the remaining links. Some examples of mechanisms are windshield
wiper blades, the crankshaft/connecting rod/piston assembly in a car engine, certain
types of hinges, mechanical watches and clocks, etc. Another excellent example of a mech-
anism, or linkage, is the human body. Each segment of the body can be modeled as a link,
and the segments are connected through pin joints (the elbow) or spherical joints (the
shoulder). By modeling the body in this way, biomechanical engineers can deduce the
forces and moments present at the joints by analyzing the motion of the body with motion
capture techniques.

Scientists, mathematicians, and engineers have studied mechanisms since the 1700s.
Until very recently, all mechanism analysis was performed graphically, that is, with draft-
ing tools. These tools have been superseded in modern times by computational tools such
as CAD software, which make it possible to analyze several trial designs very quickly to
find a solution. Computers have also made “linkage design optimization” possible; that is,
finding the dimensions of a linkage that traces out a desired path.

The majority of the book covers the kinematic analysis of mechanisms:

Kinematics: the study of motion without regard to forces.

The first section of the book provides an introduction to some fundamental concepts
in kinematics, and the student will learn techniques for designing linkages with CAD
 software, such as SOLIDWORKS®. Afterwards, we discuss methods for predicting the
motion of linkages using computer programs written in MATLAB®. This is actually a

2 Introduction to Mechanism Design

rather difficult task, and will take up most of the text. To begin this task, we will learn how
to find the positions traced out by a given linkage. Once we are able to compute positions
of linkages, it is a simple matter to compute velocities and accelerations. Accelerations
must be calculated to analyze link forces, as well as to keep accelerations within limits that
can be tolerated by human beings. Once the motion of a linkage has been determined, the
next step is to perform kinetic (dynamic) analysis.

Kinetics: the study of forces on a system in motion.

Force analysis is necessary to keep forces (stresses) within acceptable limits. The final
chapters of the book cover gear train design (both conventional and planetary) and cam
design and analysis. By the end of the book, the student will have developed a set of soft-
ware tools for analyzing and designing a wide variety of interesting mechanisms. The
authors have endeavored to present proper programming techniques throughout the text,
so that the diligent student will be well prepared for modeling and analysis in many other
courses in the engineering curriculum. And so, without further ado, let us begin our jour-
ney into Mechanical Design!

1.2 Fundamentals of Kinematics

We will now introduce some fundamental concepts in the science of kinematics. The first
concept is that of a rigid body. In a rigid body, any two points that are separated by a dis-
tance d maintain that distance regardless of the ensuing motion. In other words, a rigid
body cannot stretch, twist, compress, or otherwise deform. A generic rigid body is shown
in Figure 1.1; the two points A and B remain a distance d apart, even though the object has
been translated and rotated.

A second fundamental concept is that of Chasles’ Theorem, which states that any motion
of a rigid body can be described by a single rotation and translation (not necessarily in that
order). A pure rotation occurs when all points on a body describe circular arcs of constant
radius about a single point (the center of rotation, see Figure 1.2).

Pure translation occurs when the motion of a point on a body describes a straight line
parallel to the lines traced by every other point (Figure 1.3).

The most general type of motion, complex motion, occurs when we have a combination of
pure rotation and pure translation. These concepts will come in handy when we describe
the motion of various links in a mechanism. For a complete discussion of rigid body
motion, see [2].

d d
A

A

B

B

FIGURE 1.1
Any two points on a rigid body maintain a fixed distance from each other.

3Introduction to Kinematics

1.3 Degrees of Freedom

In designing a mechanism, it is often critical to know its mobility, or the number of degrees
of freedom (DOF) it possesses. Some mechanisms have so many links and joints that it is
impossible to determine at a glance whether they are capable of movement at all. To deter-
mine the mobility of a mechanism, we define the number of DOF as:

 DOF = number of independent coordinates needed to completely define an object’s
 orientation in space.

Imagine a point mass in 3D space like the one shown in Figure 1.4. The point is free to
move in three directions: x, y, and z. It would take three coordinates to completely specify
the position of the point mass; therefore, it has three DOF.

Now imagine a rigid body in 3D space. The body can translate in the same three directions
as the point mass, but it can also rotate about its three axes as shown in Figure 1.5. To
specify the configuration of the rigid body requires six coordinates: three translations and
three rotations. Thus, a rigid body in 3D space has six DOF.

For the majority of this book, we will restrict ourselves to 2D (planar) space. We will
be able to generalize many of the concepts that we develop to 3D, but staying in 2D will
 simplify the presentations considerably. In addition, a very large number of interesting
mechanisms are essentially planar, rather than spatial. One important exception is the field
of automotive suspension design, as we will see later in this chapter. As seen in Figure 1.6,
a rigid body in 2D space has three DOF: two translations and one rotation.

r

r = Constant

A

B

FIGURE 1.2
The body in the figure above is in pure rotation about a fixed point. The point B traces a circular arc with radius
r and centered at A.

d = Constant

A

B

FIGURE 1.3
The points on a body in pure translation move along parallel lines.

4 Introduction to Mechanism Design

1.3.1 Mobility of Mechanisms

With two bodies (links) we have six DOF, since each body has three of its own (Figure 1.7).
We can generalize this by saying

 DOF 3L= (1.1)

where L is the number of links. But what happens if we connect the two links with a pin
joint? (Figure 1.8).

Adding the pin constrains the translation of each link at the location of the pin without
restricting rotation of each link. Denote this location (x1, y1) on link 1 and (x2, y2) on link 2.
Then, for the pin joint, we have:

x

y

z
Z

Y

X

FIGURE 1.4
A point in 3D space has three DOF: three translations.

x

θx
θy

y

z

Y

Z

X

θz

FIGURE 1.5
A rigid body in 3D space has six DOF: three translations and three rotations.

θ

X

Y

x

y

FIGURE 1.6
A 2D rigid body has three DOF.

5Introduction to Kinematics

 x x x

y y y

= =
= =

 1 2

1 2

 (1.2)

It now appears that coordinates x2, y2 (or x1, y1) are not independent; in fact, they have been
eliminated as DOF. Thus, adding a pin joint removes two DOF from a mechanism.

 DOF 3 2L Jp= − (1.3)

where Jp is the number of pin joints. As we will see in a later example, a pin joint can only
be used to pin two links together. To join three links at a point requires two pin joints (i.e.,
one pin to join links 1 and 2 and another pin to join links 1 and 3).

Another common type of joint is the full-slider, or piston in cylinder. Figure 1.9 shows a
block that is mounted inside a slot in a link. The block is not free to rotate, and cannot move
in a direction perpendicular to the slot. Thus, putting the piston in its cylinder has also
removed two DOF.

 DOF 3 2 2L J Jp fs= − − (1.4)

The “fs” in Jfs stands for “full slider.” We wish to contrast this with the “half slider” joint
shown below.

In the half-slider joint, shown in Figure 1.10, the pin is free to move along the slot, and the
link can rotate about the pin. Thus, the half-slider, Jhs, only removes one DOF: it prevents
the pin from moving in a direction perpendicular to the slot.

 DOF 3 2 2L J J Jp fs hs= − − − (1.5)

Another example of a half-slider joint is the cam-follower, shown in Figure 1.11 above.
A cam is a rotating body with a well-defined shape that is designed to make continuous

θ1

θ2

y2y1

x1
x2

FIGURE 1.7
Two links have six DOF: four translations and two rotations.

x

y

θ1

θ2

FIGURE 1.8
A pin joint removes two DOF.

6 Introduction to Mechanism Design

contact with another body (the follower) and imparts a specific motion to it. In Figure 1.11,
the cam is egg-shaped, and causes the follower to move up and down as it rotates. The fol-
lower can slide back and forth along the cam, and it can also rotate. The follower cannot,
however, pass through the cam, which removes one DOF. Thus, the cam-follower joint is
identical to the half-slider. Note that we have assumed that the cam remains in contact
with the follower at all times; if contact is lost then the half-slider joint no longer exists!

Full slider joint

x

FIGURE 1.9
The full-slider removes two DOF.

θ

y

FIGURE 1.10
The half-slider removes only one DOF.

Follower

Cam

x

θ

FIGURE 1.11
A cam-follower is another example of a half-slider joint.

7Introduction to Kinematics

Finally, we note that a grounded link (one that is fixed in space) has all three DOF removed,
as seen in Figure 1.12. Every mechanism has one grounded link, while all other links can
move, completing Gruebler’s equation presented in Equation (1.6)

 DOF 3 2 2 3L J J J Gp fs hs= − − − − (1.6)

where G is the number of grounded links. In the case where the entire mechanism is
 moving, as in the engine of a car, we choose one link (usually the engine block) to be
ground, and analyze the movement of the remaining links relative to this. Since all the
grounded links in a mechanism have the same movement (i.e., zero), we typically lump
them together as a single link, so that G = 1

 DOF 3 1 2L J J Jp fs hs()()= − − + − (1.7)

For the remainder of this book we will assume that there is one, and only one grounded
link. Equation (1.7) is known as the “modified Gruebler’s equation,” and can be used to
determine the mobility of any two-dimensional linkage.

A mechanism with zero DOF is not a mechanism at all, since it cannot move. As we will
see in the examples that follow, we usually wish for the mobility of a mechanism to be one.
If we wish to control the position of each part of the linkage, we must provide one actua-
tor (e.g. a motor, pneumatic cylinder, etc.) for each DOF. Since actuators add expense and
complexity to the mechanism, our goal should be to achieve the desired motion with the
lowest possible number of DOF. In some cases, such as robotic arms, a mobility of greater
than 1 is unavoidable and will require multiple actuators. For most of this book, we will
concentrate on mechanisms with a single DOF, but the methods presented here can easily
be extended to multiple DOF systems.

1.3.2 Degrees of Freedom Example Problems

Example 1.1: Threebar Linkage

The linkage in Figure 1.13 has three links, one of which is grounded. There are three pin
joints, and no full or half-sliders. Thus, we have

 L J J Jp fs hs= = = =3 3 0 0

Using the modified Gruebler’s equation gives

L J J Jp fs hs()()

()

= − − + −

= − −

=

DOF 3 1 2

3 3 1 2(3)

0

Since DOF = 0, the mechanism cannot move, and is therefore called a “structure.” It is
interesting to note that the shape of the threebar linkage is a triangle. Since the triangle

FIGURE 1.12
The grounded link has zero DOF.

8 Introduction to Mechanism Design

has an inherently rigid structure (i.e. zero mobility), it is often used as a fundamental
component in trusses and frames. For our purposes, however, the threebar is of little
interest. In fact, since none of the three links can move, we may consider all three to be
parts of a single “ground” link.

Example 1.2: Fourbar Linkage (Bad)

Figure 1.14 shows one method for constructing a fourbar linkage. There are four links,
including the ground link. Remember that the two ground pivots count as one link,
since they have the same (zero) motion! It may appear at first glance that there are four
pin joints, but observe that the lower left pin connects two links to ground, so it counts
as two pin joints. Therefore, there are five pin joints altogether. There are no sliders, so
that we have

FIGURE 1.14
One way of constructing a fourbar linkage.

FIGURE 1.13
The threebar linkage.

9Introduction to Kinematics

 4 5 0 0L J J Jp fs hs= = = =

DOF 3 1 2

3 4 1 2(5)

1

L J J Jp fs hs()()

()

= − − + −

= − −

= −

Since DOF = −1, the mechanism cannot move, and is called a “preloaded structure.” To see
why, imagine trying to assemble the linkage: first, we pin the outermost links to ground,
and then together at their uppermost pin holes. When we try to pin the central link between
the outer links, any manufacturing error will prevent it from fitting – especially since we
are assuming rigid links! That is, the distance between the two pin holes must be exactly
the same as the length of the link, which is impossible in practice. If we force the force link
to fit, we will be forced to bend (preload) the outer right link. This is the reason for the nega-
tive value of DOF. Every additional negative DOF means that another link must be forced
into position, unless the pin holes are made oversize so that the pins have a “sloppy” fit.

Example 1.3: Fourbar Linkage (Good)

Figure 1.15 shows a second way of constructing a fourbar linkage. Here, we have four
links (including ground) and only four pin joints. Thus,

 4 4 0 0L J J Jp fs hs= = = =

L J J Jp fs hs()()

()

= − − + −

= − −

=

DOF 3 1 2

3 4 1 2(4)

1

The correctly assembled fourbar linkage has one DOF, which means that one coordinate
is sufficient to specify the configuration of the entire linkage. We shall have much to say
about the fourbar linkage in the chapters to come.

Example 1.4: Slider-Crank

Another very common mechanism is the slider-crank, shown in Figure 1.16. This mech-
anism is found inside single-cylinder engines such as those found in a lawnmower or
chainsaw. The slider-crank has two ordinary links, the crank and the connecting rod,

FIGURE 1.15
A better way of constructing a fourbar linkage.

10 Introduction to Mechanism Design

and a slider, or piston. Including the ground, there are four links altogether. The slider-
crank has three pin joints, and the piston rides in a full-slider joint. Thus, we have:

 4 3 1 0L J J Jp fs hs= = = =

L J J Jp fs hs()()

() ()

= − − + −

= − − +

=

DOF 3 1 2

3 4 1 2 3 1

1

Like the fourbar linkage, the slider-crank has one DOF. If we specify the angle of the
crank, we can calculate the positions of the connecting rod and piston.

Example 1.5: Double Slider-Crank

Figure 1.17 shows a double slider-crank mechanism, as might be found in a multi-cylinder
engine. It is the same as the single slider-crank of Example 1.4, but has two pistons, two

Slider

Crank

Ground pivot

Connecting rod

Cylinder (ground)

FIGURE 1.16
The slider-crank mechanism consists of a slider, crank, connecting rod, and cylinder.

FIGURE 1.17
The double slider-crank.

11Introduction to Kinematics

connecting rods, and a crank with an additional pin hole. Including ground, the num-
ber of links is six, and there are five pin joints. Thus:

 6 5 0 0L J J Jp fs hs= = = =

L J J Jp fs hs()()

() ()

= − − + −

= − − +

=

DOF 3 1 2

3 6 1 2 5 2

1

The double slider-crank also has one DOF, which means that the crank angle is suf-
ficient to determine the positions of both pistons. If this were not so, then it would not
be possible to time an engine; that is, to time the firing of each spark plug when its cor-
responding piston reaches the desired height in the cylinder.

Example 1.6: The Inverted Slider-Crank Mechanism

The mechanism in Figure 1.18 may look strange at first, but it is surprisingly common.
The inverted slider-crank, is most often seen in foot-operated bicycle pumps, but it can
also be found as the “McPherson strut” suspension in many automobiles. As seen in the
figure, the linkage consists of a crank, a slider, and a rocker, where the slider and rocker
are connected through a full-slider joint. As with the slider-crank, there are four links
(including ground), three pin joints, and one full-slider.

 4 3 1 0L J J Jp fs hs= = = =

DOF 3 1 2

3 4 1 2(4)

1

L J J Jp fs hs()()

()

= − − + −

= − −

=

Thus, like the slider-crank, the inverted slider-crank has one DOF.

Example 1.7: The Cam-Follower Mechanism

A cam-follower mechanism is shown in Figure 1.19. As the cam rotates, the roller spins
on its pin joint, which is attached to the follower. There are four links in the mechanism:

Crank

Slider Rocker

Full slider joint

FIGURE 1.18
The inverted slider-crank mechanism.

12 Introduction to Mechanism Design

cam, roller, follower, and ground. There are three pin joints, and one half-slider between
the cam and roller. Conducting the DOF analysis gives

 4 3 0 1L J J Jp fs hs= = = =

DOF 3 1 2

3 4 1 2(3) 1

2

L J J Jp fs hs()()

()

= − − + −

= − − −

=

This result may surprise you, since it appears as though the rotational position of the
cam should determine the configuration of the entire mechanism. However, if we hold
the cam fixed, we are still able to rotate the roller, and the roller can take on any angular
coordinate without affecting the rest of the system. Hence, the two DOF are the angular
coordinates of the cam and roller.

From this example, we see that Gruebler’s equation is a good “sanity check” for
design, but the designer should always take care to match the resulting DOF number
with actual movements in the mechanism.

Example 1.8: Gruebler’s Paradox

Figure 1.20 shows a fivebar linkage arranged in parallelogram form. There are five links
and six pin joints so that,

 5 6 0 0L J J Jp fs hs= = = =

DOF 3 1 2

3 5 1 2(6) 0

0

L J J Jp fs hs()()

()

= − − + −

= − − −

=

FIGURE 1.20
Another fivebar linkage arranged in a parallelogram.

Follower
Roller

Cam

FIGURE 1.19
The follower pivots on its ground pin as the cam rotates.

13Introduction to Kinematics

Gruebler’s equation predicts that the mechanism has zero DOF and cannot move, but
our intuition would seem to indicate that it can move. In fact, it appears to be identical
to the drive mechanism seen on steam locomotives from the 1800s. This phenomenon
is known as Gruebler’s Paradox and reinforces the notion that we should always accom-
pany our DOF calculations with a healthy dose of skepticism and intuition. To construct
the mechanism we would need to force the final link into position, unless the pin joints
have sufficient slop to permit easy insertion. If the pin joints are made to a tight toler-
ance, the mechanism would have some difficulty moving, as the DOF equation predicts.
Building some “play” into the pin joints gives us the one DOF mechanism that our
intuition predicts.

Example 1.9: Stephenson’s Type 1 Sixbar Linkage

Figure 1.21 shows one configuration of the Stephenson sixbar linkage. Two of the links
have three pin holes, while the other links have two. There are six links in the mecha-
nism, including ground, and seven pin joints.

 6 7 0 0L J J Jp fs hs= = = =

DOF 3 1 2

3 6 1 2(7)

1

L J J Jp fs hs()()

()

= − − + −

= − −

=

Surprisingly, this complicated linkage has only one DOF. The sixbar linkage finds many
applications in function generation and in early “mechanical calculators.”

Example 1.10: Fivebar Linkage

Figure 1.22 appears similar to the Stephenson sixbar, but has one less link.

FIGURE 1.21
A Stephenson Type I sixbar linkage.

14 Introduction to Mechanism Design

 5 6 0 0L J J Jp fs hs= = = =

DOF 3 1 2

3 5 1 2(6)

0

L J J Jp fs hs()()

()

= − − + −

= − −

=

It appears that removing the sixth link has resulted in a structure, rather than a
mechanism.

Example 1.11: Robot Arm

Figure 1.23 shows a robotic arm with three segments. There are four links (including
ground) and three pin joints.

 4 3 0 0L J J Jp fs hs= = = =

DOF 3 1 2

3 4 1 2(3)

3

L J J Jp fs hs()()

()

= − − + −

= − −

=

The robotic arm above has three DOF, which means we need three coordinates (angles)
to uniquely specify the configuration of the arm. As a designer, this means that we

FIGURE 1.22
A fivebar linkage.

FIGURE 1.23
A robotic arm with three segments.

15Introduction to Kinematics

need at least three motors or actuators to control the arm. Some options include servo or
stepper motors at each joint, hydraulic, or pneumatic cylinders at each joint, ball-screw
drives, and many others.

1.4 The Fourbar Linkage and the Grashof Condition

As we saw in the previous examples, a linkage with four bars is the simplest possible
mechanism; linkages with three or fewer fully connected bars cannot move, and were
denoted “structures.” For this reason, the fourbar linkage is one of the most common link-
age types used in machinery today. Despite its apparent simplicity, the fourbar is capable
of producing many interesting types of motion, as we will see. As it is composed only
of links and pin joints, it is much simpler to fabricate than a comparable linkage with
 full-slider or half-slider joints. Thus, the fourbar should be the first linkage to try when
designing a new mechanism.

Before we can analyze the motion of the fourbar linkage, we must first determine the
type of motion it can achieve. To do this, we will make use of Grashof’s Theorem, which is a
very simple but powerful tool used in linkage design. A generic fourbar linkage is shown
in Figure 1.24. Let:

S = length of the shortest link
L = length of the longest link
P = length of one remaining link
Q = length of the last link

Based upon these definitions, we can develop the classification scheme shown in
Table 1.1.

If a linkage is Grashof, then at least one link (usually the shortest link) can make a full
revolution without binding. If a linkage is non-Grashof, then no link can make a full revo-
lution; that is, the linkage “binds up” when we try to turn a link too far. For Grashof
Special Case linkages, at least one link can make a full revolution, but we must take special
care with these linkages, as will be seen below.

L

P

Q

S

FIGURE 1.24
A generic fourbar linkage. Note that no link is “ground” at present.

16 Introduction to Mechanism Design

In many practical situations, we will use a motor (AC or DC) to drive the linkage. This
is simple in the case of a Grashof linkage – we attach the motor to the crank, and the link-
age can spin forever as shown in Figure 1.25. In the non-Grashof case, we must either use
a servomotor or stepper motor, or, where we desire to use a simple AC or DC motor (if we
need continuous motion), we can attach a driver dyad as shown on the left in Figure 1.26.
Note that the driver dyad must convert the left side of the linkage to a Grashof fourbar or
we will be unable to drive it either! An animation of a non-Grashof linkage being driven
by a driver dyad can be viewed by scanning the QRC tag or navigating to the textbook’s
website www.mechdes.net.

TABLE 1.1

Grashof Fourbar Linkage Classification

Condition Type

S L P Q+ < + Grashof

S L P Q+ > + Non-Grashof

S L P Q+ = + Grashof Special Case

Motor

Crank

FIGURE 1.25
This linkage is Grashof, and we may attach a motor to its crank to drive it.

Motor

Driver dyad

FIGURE 1.26
This linkage is non-Grashof, and we must use a driver dyad (or similar) to drive it.

http://www.mechdes.net

17Introduction to Kinematics

1.4.1 Classifications of the Fourbar Linkage

Our goal in the next few chapters will be to develop a suite of computer programs that
we can use to rapidly analyze the motion of a set of typical linkages. We will use these
programs as design tools to ensure that a given linkage achieves the desired motion. To
effect this, we must first create a classification scheme for the different types of fourbar
(and other) linkages that can be easily implemented in software.

To begin, consider the “standard” fourbar linkage as shown in Figure 1.27. For the
 purposes of our discussion, we will define the crank as the link on the left side of the link-
age and the rocker as the link on the right. The coupler is the moving link that connects the
crank and the rocker, and the ground is the fixed link between the crank and rocker. In
Figure 1.27, we have shown the ground link as two fixed pivots, but it may also be shown
as an ordinary link in some illustrations.

It is important to note that much of the engineering literature defines a crank as any link
with one fixed pin that can make a full revolution, and a rocker as any link with one fixed
pin that cannot make a full revolution. We have deviated from this convention because the
classification system proposed here permits an easier implementation into software than
the ones in the literature (see e.g. [3]). As we will see, most practical linkages have cranks
that make full revolutions and rockers that do not.

In most cases of practical interest, the crank receives the input to the linkage, either
through a motor, pneumatic cylinder, or the output of a preceding linkage. Either the
rocker or coupler is normally taken as the output of the linkage. In some cases, however,
we must drive the coupler or rocker to achieve full motion of the linkage. These cases are
of limited practical interest, because:

 1. It is impossible to drive the coupler using a fixed motor, since all parts of the
 coupler move. While it is possible to attach a motor to the pin between the crank
and the coupler, wiring constraints make this option rather difficult.

 2. A linkage that has the rocker as the driven link can be easily “mirrored”
 horizontally, so that the crank is the driven link.

We present here a classification scheme that contains all possible motions of the fourbar
linkage while recognizing that almost all practical cases will use the crank as the driving
link.

Coupler

Crank

Rocker

FIGURE 1.27
The fourbar linkage in its “standard” configuration. The ground link is defined as the distance between the two
ground pivots.

18 Introduction to Mechanism Design

1.4.2 Fourbar Classification: The Grashof Linkages

We begin with the set of fourbar linkages that are seen most often in practice: Grashof
 linkages. Recall that a linkage is considered “Grashof” if its link lengths fulfill the follow-
ing condition

 S L P Q+ ≤ + (1.8)

If a linkage is Grashof, then at least one of the links can make a full revolution without the
linkage binding.

Table 1.2 shows the classification scheme for all four types of Grashof linkage. The
 distinction between each type is the location of the shortest link, that is, if the crank is the
shortest link then we have a Class 2 Grashof linkage. It is interesting to note that the crank,
coupler, and rocker all make a full revolution in the Class 1 linkage.

TABLE 1.2

Classification Scheme for Grashof Linkages

Class Driver Notes Illustration

1 Crank,
coupler,
or rocker

Short link is ground. Crank,
coupler, and rocker make
full revolution.

2 Crank Short link is crank. Only
crank makes full
revolution.

(Continued)

19Introduction to Kinematics

In the Class 3 linkage, only the coupler can make a full revolution. To drive this linkage
to its full extent of motion we would need to attach a motor to one of the moving pins,
which presents practical difficulties. Although the coupler makes a complete revolution,
no point on the coupler traces out a circular arc. The reader will note that Class 4 is a mirror
image of Class 2, and by reflecting the linkage horizontally, we arrive at the standard form
of the linkage where the crank makes a full revolution.

1.4.3 Fourbar Classification: Non-Grashof Linkages

Table 1.3 shows the six types of non-Grashof linkages. All of these are similar in that they
“bind up” at a certain position, and no link can make a full revolution. To visualize the
non-Grashof linkages in motion scan the QRC tag or navigate to the textbook’s website
www.mechdes.net. Note that Class 6 is the mirror of Class 5, and Class 9 is the mirror of
Class 8. The means for distinguishing the different types of non-Grashof linkages is the
position of the long link, instead of the short link as was the case with Grashof linkages.

When a non-Grashof linkage becomes bound up at one of its extreme positions, two
of the links become collinear and the linkage assumes the shape of a triangle. In some

TABLE 1.2 (Continued)

Classification Scheme for Grashof Linkages

Class Driver Notes Illustration

3 Coupler Short link is coupler. Only
coupler makes full
revolution.

4 Rocker Short link is rocker. Only
rocker makes full
revolution.

http://www.mechdes.net

20 Introduction to Mechanism Design

cases, the two links overlap each other (as in Classes 7–10) and in others the two links are
stretched out (as in Classes 5 and 6). For either case, we will use the triangularity of the
extreme positions to deduce the range of motion of the driving link.

1.4.4 Fourbar Classification – Special Cases

Recall that a Grashof Special Case linkage is defined as one whose link lengths satisfy

 S L P Q+ = + (1.9)

TABLE 1.3

Classification Scheme for Non-Grashof Linkages

Class Driver Notes Illustration

5 Crank Long link is
ground. Crank is
shorter than
rocker

6 Rocker Long link is
ground. Rocker is
shorter than
crank.

7 Rocker Long link is crank.

(Continued)

21Introduction to Kinematics

TABLE 1.3 (Continued)

Classification Scheme for Non-Grashof Linkages

Class Driver Notes Illustration

8 Crank Long link is
coupler. Crank is
shorter than
rocker.

9 Rocker Long link is
coupler. Rocker is
shorter than
crank.

10 Crank Long link is rocker.

22 Introduction to Mechanism Design

In these classes, at least one link can make a full revolution, as with the Grashof classes.
The first four Grashof Special Case classes are shown in Table 1.4. Each of the classes is
similar to one of the Grashof classes shown in Table 1.2, with one important difference as
will be discussed below.

Because of the equal relationship between the link lengths, all four links will be c ollinear
for at least one position of the driver link. To see why this is so, imagine that the crank is
the shortest link and the coupler is the longest link, as shown in Figure 1.28. If the crank is
horizontal, then the total length of the crank and coupler is equal to the total length of the
ground and rocker; thus, all links are horizontal and collinear. A similar demonstration
can be given regardless of which links are the shortest and longest.

After the links have assumed the collinear configuration, it is impossible to predict what
will happen next with the linkage. As shown in Figure 1.29, the linkage may assume an
“open” or “crossed” configuration. The open configuration takes the shape of an ordinary

TABLE 1.4

Four of the Special Case Grashof Linkages

Class Driver Notes Illustration

11 Crank,
coupler,
or rocker

Short link is ground.
Crank, coupler, and
rocker make full
revolution. Analagous
to Class 1.

12 Crank Short link is crank. Only
crank makes full
revolution. Analagous
to Class 2.

(Continued)

23Introduction to Kinematics

quadrilateral, and the crossed configuration is so-called because the coupler crosses the
ground link. Which configuration the linkage chooses is almost completely random, and
depends upon the momentum of the links, friction in the pins, and other factors that are
mostly out of the control of the designer. For this reason, a Grashof Special Case linkage
should be avoided, unless absolutely necessary. If a Grashof Special Case linkage is used
in a design, special care must be taken to ensure that the desired configuration (open
or crossed) is achieved for each rotation of the crank. A fifth link is sometimes added
to the fourbar to achieve this predictability, with the resulting linkage taking the form
of the Gruebler’s Paradox linkage in DOF Example 1.8 in Section 1.3. As you can see in
the animation, the open and crossed configurations are mirror images of each other in

TABLE 1.4 (Continued)

Four of the Special Case Grashof Linkages

Class Driver Notes Illustration

13 Coupler Short link is coupler.
Only coupler makes full
revolution. Analagous
to Class 3.

14 Rocker Short link is rocker. Only
rocker makes full
revolution. Analagous
to Class 4.

FIGURE 1.28
All links are collinear for at least one crank angle for a Special Case linkage.

24 Introduction to Mechanism Design

the vertical direction. In each case, however, the linkage “chooses” which configuration
to pursue when all links are collinear, and it is impossible to predict beforehand which
 configuration it will choose.

1.4.5 Fourbar Classification – The Extreme Cases

We now arrive at the final set of Grashof classes: the extreme cases. In each of these classes,
as shown in Table 1.5, there are two pairs of identical links. In Classes 15–18, the identical
links are adjacent to each other, and in Class 19 (the parallelogram linkage) the identical
pairs are opposite each other. Observe the motion of each of these linkages by scanning the
QRC tags provided or by navigating to the textbook’s website www.mechdes.net. Classes
15 and 18 are mirror images of each other, as are Classes 16 and 17.

The reader may wonder why these classes have been distinguished from the Grashof
Special Cases shown earlier, for example, Classes 15 and 16 would seem to be special cases
of Class 12, where the crank is the shortest link. There are two reasons:

 1. Because there are two identical pairs in each extreme case linkage, the positions of
each link are much easier to determine mathematically than for the special cases.

 2. The extreme cases (especially Classes 15–18) exhibit a phenomenon not seen in the
special cases.

As you can see by observing the animation of the linkages of Class 15 and 18, the coupler
and rocker make a complete revolution for every two revolutions of the crank. In Classes 16
and 17, the coupler makes a complete revolution in the opposite direction of the driving link

Crossed

Open

FIGURE 1.29
The links in a Special Case Grashof linkage will be collinear once per revolution of the crank. After this, the
linkage may adopt the open or crossed configuration.

http://www.mechdes.net

25Introduction to Kinematics

TABLE 1.5

Extreme Classes of the Fourbar Linkage

Class Driver Notes Illustration

15 Crank Two identical, adjacent
pairs. Ground and crank
are shortest links. Crank,
coupler, and rocker
make full rotation.

16 Crank Two identical, adjacent
pairs. Crank and coupler
are shortest links. Crank
and coupler make full
rotation.

17 Rocker Two identical, adjacent
pairs. Coupler and
rocker are shortest links.
Coupler and rocker
make full rotation.

(Continued)

26 Introduction to Mechanism Design

(crank or rocker). These unusual phenomena are the main reason for creating the extreme
case classes for the fourbar linkage. Of course, these phenomena are more mathemati-
cal than practical – to demonstrate this in a physical linkage would require an external
mechanism to force the linkage to “choose” the proper configuration when it encounters
the collinear situation.

Although Classes 15–18 are largely impractical, the parallelogram linkage (Class 19) is
used in several applications. Many automotive windshield wipers use this linkage with
one wiper attached to the crank and the other to the rocker (see Figure 1.30). Each wiper
remains parallel during the motion of the linkage, and it is normally driven by a driver
dyad linkage, since it is not desired that a wiper make a complete revolution.

Another application of the parallelogram linkage was found in the drive wheels of steam
locomotives (Figure 1.31). To deliver power to multiple wheels (to increase traction) each
drive wheel was connected by a straight link. To ensure that the linkage did not assume
the crossed configuration, the straight links were placed “out of phase” with each other

TABLE 1.5 (Continued)

Extreme Classes of the Fourbar Linkage

Class Driver Notes Illustration

18 Rocker Two identical, adjacent
pairs. Rocker and
ground are shortest
links. Crank, coupler,
and rocker make full
rotation.

19 Crank Two identical, opposite
pairs. Crank and rocker
make full rotation. This
is the parallelogram
linkage.

Each of these classes has two identical pairs of links. The driver is chosen to give the maximum range of motion
for the linkage.

27Introduction to Kinematics

on opposite sides of the locomotive. In this way, at least one linkage was non-collinear at
all times.

1.4.6 Limiting angles for Non-Grashof Linkages

We have seen that the configuration of the linkage is undefined if the driving link is outside
its limiting position for the non-Grashof linkage. Table 1.6 shows the limiting angles for
all classes of non-Grashof linkages. As you can see, the limiting angle is prescribed on the
driving link for each class, and the limit is reached when either the crank or rocker becomes
collinear with the coupler.

Wiper

FIGURE 1.30
A set of windshield wipers is a common application of the parallelogram linkage.

FIGURE 1.31
Steam locomotives used a parallelogram linkage to transmit power to multiple wheels.

28 Introduction to Mechanism Design

TABLE 1.6

Limiting Angles of Non-Grashof Linkages

Class Limiting Angles Illustration

5
cos

22
1

2 2 2a d b c
ad

θ ()= ±
+ − +

−

b

d

c
a θ2

6
cos

24
1

2 2 2c d a b
cd

θ ()= ±
+ − +

−

d

a

b

c
θ4

7
cos

24
1

2 2 2c d a b
cd

θ ()= ±
+ − −

−

d

c

a

θ4

b

8
cos

22
1

2 2 2a d b c
ad

θ ()= ±
+ − −

−

d

b

c

θ2

a

9
cos

24
1

2 2 2c d b a
cd

θ ()= ±
+ − −

− d

c θ4
b

a

(Continued)

29Introduction to Kinematics

1.5 Practice Problems

Problem 1.1

What is the definition of a rigid body? Describe types of motion that a rigid body can
experience.

Problem 1.2

Define the term Degrees of Freedom. What does it mean if a linkage has a negative
Degree of Freedom?

Problem 1.3

How many degrees of freedom do the following joints on your body permit?
 a. Your knee
 b. Your ankle
 c. Your shoulder
 d. Your hip
 e. A knuckle on one of your fingers

Problem 1.4

Figure 1.32 shows a simple roller bearing. How many DOF does the roller bearing
have if the outer race is fixed to ground? Sketch the bearing, and indicate an
appropriate set of coordinates that completely specify the configuration of the
bearing.

Problem 1.5

How many degrees of freedom does the linkage in the Figure 1.33 have? Is it a
 mechanism, a structure, or a preloaded structure?

TABLE 1.6 (Continued)

Limiting Angles of Non-Grashof Linkages

Class Limiting Angles Illustration

10
cos

22
1

2 2 2a d c b
ad

θ ()= ±
+ − −

−

b

a
c

d

θ2

30 Introduction to Mechanism Design

Problem 1.6

How many degrees of freedom does the scissor-lift mechanism in Figure 1.34 have?

Problem 1.7

How many degrees of freedom does the cam-follower linkage in Figure 1.35 have?
Is it a mechanism, a structure, or a preloaded structure? Sketch the figure and
indicate an appropriate set of coordinates to completely specify the configuration
of the linkage.

Problem 1.8

How many degrees of freedom does the linkage in Figure 1.36 have? Is it a mechanism,
a structure, or a preloaded structure? Sketch the figure and indicate an appropri-
ate set of coordinates to completely specify the configuration of the linkage.

Problem 1.9

How many degrees of freedom does the linkage in Figure 1.37 have? Is it a mechanism,
a structure, or a preloaded structure? Sketch the figure and indicate an appropri-
ate set of coordinates to completely specify the configuration of the linkage.

FIGURE 1.33
Problem 1.5.

Roller

Outer race

Inner race

FIGURE 1.32
Problem 1.4.

31Introduction to Kinematics

FIGURE 1.34
Problem 1.6.

FIGURE 1.35
Problem 1.7.

FIGURE 1.36
Problem 1.8.

32 Introduction to Mechanism Design

Problem 1.10

The two cylinders in Figure 1.38 roll without slipping. How many degrees of free-
dom does the system have?

Problem 1.11

How many degrees of freedom does the radial compressor in Figure 1.39 have? Is it
a mechanism, a structure, or a preloaded structure? Sketch the figure and indicate
an appropriate set of coordinates to specify completely the configuration of the
linkage.

Problem 1.12

How many degrees of freedom does the linkage in Figure 1.40 have? Is it a mechanism,
a structure, or a preloaded structure? Sketch the figure and indicate an appropri-
ate set of coordinates to specify completely the configuration of the linkage.

Problem 1.13

How many degrees of freedom does the linkage in Figure 1.41 have? Is it a mechanism,
a structure, or a preloaded structure? Sketch the figure and indicate an appropri-
ate set of coordinates to completely specify the configuration of the linkage.

b
c

u
a

B

A D

C

E

FIGURE 1.37
Problem 1.9.

FIGURE 1.38
Problem 1.10.

33Introduction to Kinematics

FIGURE 1.39
Problem 1.11.

FIGURE 1.40
Problem 1.12.

FIGURE 1.41
Problem 1.13.

34 Introduction to Mechanism Design

Problem 1.14

How many degrees of freedom does the linkage in Figure 1.42 have? Is it a mechanism,
a structure, or a preloaded structure? Hint: the answer is something of a paradox!

Problem 1.15

How many degrees of freedom does the linkage in Figure 1.43 have? Is it a mechanism,
a structure, or a preloaded structure? Sketch the figure and indicate an appropri-
ate set of coordinates to specify completely the configuration of the linkage.

Problem 1.16

How many degrees of freedom does the linkage in Figure 1.44 have? Is it a mechanism,
a structure, or a preloaded structure? Sketch the figure and indicate an appropri-
ate set of coordinates to specify completely the configuration of the linkage.

FIGURE 1.42
Problem 1.14.

FIGURE 1.43
Problem 1.15.

35Introduction to Kinematics

Problem 1.17

How many degrees of freedom does the linkage in Figure 1.45 have? Is it a mechanism,
a structure, or a preloaded structure? Sketch the figure and indicate an appropri-
ate set of coordinates to specify completely the configuration of the linkage.

Problem 1.18

How many degrees of freedom does the linkage in Figure 1.46 have? Is it a mechanism,
a structure, or a preloaded structure? Sketch the figure and indicate an appropri-
ate set of coordinates to specify completely the configuration of the linkage.

Problem 1.19

How many degrees of freedom does the linkage in Figure 1.47 have? Is it a mechanism,
a structure, or a preloaded structure? Sketch the figure and indicate an appropri-
ate set of coordinates to specify completely the configuration of the linkage.

FIGURE 1.44
Problem 1.16.

FIGURE 1.45
Problem 1.17.

36 Introduction to Mechanism Design

Problem 1.20

How many degrees of freedom does the linkage in Figure 1.48 have? Is it a mechanism,
a structure, or a preloaded structure? Sketch the figure and indicate an appropri-
ate set of coordinates to specify completely the configuration of the linkage.

Problem 1.21

How many degrees of freedom does the linkage in Figure 1.49 have? Is it a mech-
anism, a structure, or a preloaded structure? Sketch the figure and indicate
an appropriate coordinate that completely specifies the configuration of the
linkage

Problem 1.22

Determine if the linkage in Figure 1.50 meets the Grashof condition. If it does, which
link can make a full revolution?

Problem 1.23

Determine if the linkage shown in Figure 1.51 meets the Grashof condition.

FIGURE 1.46
Problem 1.18.

FIGURE 1.47
Problem 1.19.

37Introduction to Kinematics

FIGURE 1.49
Problem 1.21.

FIGURE 1.48
Problem 1.20.

45 mm

26.5 m
m

18 m
m

28.25 m
m

FIGURE 1.50
Problem 1.22.

38 Introduction to Mechanism Design

Problem 1.24

Determine if the linkage shown in Figure 1.52 meets the Grashof condition.

Problem 1.25

 a. Does the fourbar linkage shown in Figure 1.53 meet the Grashof condition?
 b. Determine class of the linkage and which link(s) are capable of making a full

 rotation using the tables in Section 1.4.

Problem 1.26

 a. Does the fourbar linkage shown in Figure 1.54 meet the Grashof condition?
 b. Determine class of the linkage and which link(s) are capable of making a full

 rotation using the tables in Section 1.4.

Problem 1.27

Figure 1.55 shows a drum brake mechanism. When the crank AB rotates counter-
clockwise, the brake pads are pressed against the drum. The length AB is 100 mm,
the length BC is 60 mm, then length CD is 156 mm and the distance between A and
D is 110 mm. Is the linkage Grashof? Does it matter for this mechanism?

62 cm

84 cm
11

6
cm

132 cm

FIGURE 1.51
Problem 1.23.

80 cm

45 cm

65 cm

60 cm

FIGURE 1.52
Problem 1.24.

39Introduction to Kinematics

32 cm

32 cm

74 cm

74 cm

FIGURE 1.53
Problem 1.25.

225 mm

75
 m

m75
 m

m

225 mm

FIGURE 1.54
Problem 1.26.

Drum

Brake pad

Crank

A
B

CD

FIGURE 1.55
Problem 1.27.

40 Introduction to Mechanism Design

Problem 1.28

The linkage in Figure 1.56 is used as part of a continuous stamping operation. It is
intended that an AC motor drive the crank at a constant angular velocity. Is the
linkage Grashof? Does it matter for this mechanism?

Problem 1.29

Figure 1.57 shows a toggle clamp, which is often used in woodworking operations to
hold a workpiece fixed on a bench. Is the linkage Grashof? Does it matter for this
mechanism?

Problem 1.30

Figure 1.58 shows a windshield wiper mechanism. Is the driving linkage Grashof?
If not, which part of the linkage would you change in order to make it Grashof?

Problem 1.31

Figure 1.59 shows a trailing arm suspension design intended for use on an off-road
vehicle. A third control arm has been added in order to regulate the “toe” of the

200

190

225

160

Punch

Motor

FIGURE 1.56
Problem 1.28.

Handle

Workpiece

10
0

105

210

130

FIGURE 1.57
Problem 1.29.

41Introduction to Kinematics

wheel, which is the angle between the wheel centerline and the centerline of the
vehicle. How many degrees of freedom does this suspension have? Can the wheel
move up and down in the required fashion? Sketch the mechanism and draw a set
of appropriate coordinates showing the available mobility.

Problem 1.32

Figure 1.60 shows a five-link suspension that is sometimes used in off-road vehicle
design. Each angle of the wheel hub can be precisely tuned, although tuning is
a finicky and time-consuming affair. How many degrees of freedom does this

Motor

190

165

130

150

FIGURE 1.58
Problem 1.30.

Swing arm

Ground (fixed to
frame of car)

Control arm
for toe

Spherical joint (typ)

To front
of car

FIGURE 1.59
Problem 1.31.

42 Introduction to Mechanism Design

suspension have? Sketch the suspension and draw an appropriate set of coordi-
nates defining the degrees of freedom. Can the wheel hub move up and down in
the required fashion?

Acknowledgments

SOLIDWORKS is a registered trademark of Dassault Systèmes SolidWorks Corporation.
MATLAB is a registered trademark of The MathWorks, Inc.

Works Cited

 1. Webster’s New World Dictionary, Second College Edition, New York: Simon & Schuster, 1982.
 2. D. Jackson, “The instantaneous motion of a rigid body,” The American Mathematical Monthly,

vol. 49, no. 10, pp. 661–667, 1942.
 3. R. L. Norton, Design of Machinery, 4th ed., New York: McGraw-Hill Publishing, 2008.

Wheel hub
Ground (fixed to
frame of car)

Spherical joint (typ)

To front
of car

FIGURE 1.60
Problem 1.32.

43

2
Graphical Linkage Synthesis Using SOLIDWORKS®

2.1 Introduction to Graphical Linkage Synthesis

Now that we have learned to classify the various types of fourbar linkage, we will turn
our attention to linkage design, to accomplish a specified motion. Designing some types of
linkages (e.g. the threebar and the slider-crank) is quite simple and will not be discussed
here. Creating an appropriate fourbar linkage is more challenging, and that will be the
focus of this chapter. The general problem statement is as follows: given a set of specified
positions, design a fourbar linkage such that a portion of one of the links passes exactly
through these positions as the crank makes a revolution. An example of such a scenario is
shown in Figure 2.1. For this problem, we would need to find the lengths of each link such
that the line AB passes through positions 1, 2, and 3, in order. In most cases, the line AB is
attached to the coupler, since the coupler is capable of complex motion. But if the desired
motion is a pure rotation then we may decide to attach line AB to the rocker instead.

It is possible to solve this problem using algebra and MATLAB®, but it is much simpler,
and more intuitive, to use a CAD package such as SOLIDWORKS® for the design process.
This is the technique that we will employ in this chapter. We will use the 2D drafting
capabilities of SOLIDWORKS to create layout sketches for the linkages we design. Once the
dimensions of each link have been finalized, we can revert to ordinary 3D environment
in SOLIDWORKS to create each link as a separate part. Finally, we will mate each link
together into an Assembly to check our work. In the old days, these problems would have
been tackled using a straightedge, compass, and scale, but using SOLIDWORKS enables
us to quickly and painlessly try several designs before settling on a final linkage. You can
still use pencil and paper to employ the techniques in this chapter, but (with practice) you
will be much faster and more efficient using CAD.

Our first example will be quite simple: design a fourbar linkage to sweep the rocker
through a specified angle. We will gradually add complexity to our designs until we are
able to design a fourbar to move the coupler through three specified positions. As we will
see, it is not possible to meet more than three specified positions exactly, since it takes only
three points to uniquely define a circle.

2.2 Two Specified Positions of the Rocker

We begin with the simplest possible case: designing a fourbar linkage such that the rocker
sweeps out a specified angle, as shown in Figure 2.2. An example of this linkage in practical

44 Introduction to Mechanism Design

use is a windshield wiper mechanism, where an inexpensive DC motor is attached to the
crank. As the crank makes continuous revolutions, the windshield wiper attached to the
end of the rocker sweeps back and forth across the windshield. Of course, this linkage
must be Grashof to function properly, since the crank must be capable of making a full
revolution.

Example 2.1: Sweep the Rocker through 80°

To begin the design process, open a new drawing in SOLIDWORKS. In this example,
we will design a linkage that sweeps a 50 mm rocker through 80°. Create the drawing
shown in Figure 2.3. The two positions of the rocker are shown as solid lines, and a
construction line is used to define the ground. We have arbitrarily chosen an angle of 60°
from the ground for the second position of the rocker, but any angle would work. The
dots at the endpoints of the lines have been added to the figure to make them stand out;
your drawing will not contain these dots (or the point labels C1 and C2). Add a fixed rela-
tion to the ground pin of the rocker to make the drawing fully defined. You should not
proceed to the next step until your drawing is fully defined.

Motor

Rocker

β

FIGURE 2.2
The rocker must sweep through the angle β as the crank makes a revolution.

Position 2

Position 3
Position 1

A

A

A

B

B

B

FIGURE 2.1
We wish to design a fourbar linkage to move the link through the specified positions.

45Graphical Linkage Synthesis Using SOLIDWORKS®

Our drawings will quickly become cluttered and hard to read when we begin adding
the necessary construction lines, circles, etc. To keep the drawings neat, we will use a
little-known toolbar in SOLIDWORKS: the Layer toolbar. Select the Toolbars from the
View menu and click on Layer. The Layer toolbar enables us to place any set of objects in
the drawing into its own, separate layer. We can turn the visibility of any of the layers
on or off to hide objects that are not being used at the moment. Hiding a set of objects
does not delete them, it merely makes them invisible for the moment. We can always
show the objects later, if needed.

Once the Layer toolbar is visible, click on the icon that looks like a stack of folders to
open the Layer dialog box. This is where you can set the properties of each layer, includ-
ing color, line style, and visibility. Add the following five layers defined in Table 2.1 so
that the dialog box looks like Figure 2.4.

Click OK to close the Layers dialog box once you have finished. There are two differ-
ent methods for adding an object to a layer. In the first, you click on an object and select
the desired layer from the Layers toolbar. We will need to do this for the objects we
have already placed in the drawing (the lines and dimensions). In the second method,
you select a layer from the Layers toolbar and begin drawing. All objects that you draw
when a layer has been selected will be placed in that layer. If you find yourself drawing
objects that disappear from view as soon as you finish them, it is likely that they are
being placed on a hidden layer.

Select the two lines that define the positions of the rocker and place them in the Links
layer. Select the dimensions and the horizontal construction line and place them in the
HiddenDims layer. Once the two positions of the rocker have been defined, there is no
need to have the angles cluttering up the drawing. In the Layers dialog box, click on the
eyeball icon for the HiddenDims layer to make it hidden. Your drawing should appear
to contain only the two lines showing the rocker positions.

Select the Construction layer from the Layers toolbar and draw a line connecting C1
and C2 as shown in Figure 2.5. Draw a circle centered at the midpoint of the construction

Fixed

80.00° 60.00°

50

C2

C1

FIGURE 2.3
The rocker sweeps out an angle of 80°. Adding a fixed relation to the ground pivot of the rocker
will make the drawing fully defined.

TABLE 2.1

Layers to Define in SOLIDWORKS Drawing

Name Color Line Style Thickness (mm)

Links Black Solid 0.18
Dims Blue Solid 0.18
Construction Gray Dotted 0.18
NewLinks Blue Dashed 0.35
HiddenDims Gray Solid 0.18

46 Introduction to Mechanism Design

line and coincident with C2. Your drawing should still be fully defined. If it is not, make
sure that the center of the circle has a Midpoint relation with the construction line and
that the circle itself has a Coincident relation with C2.

Next, draw a construction line starting at C1 and going to the left. Add a Collinear
relation to make both construction lines collinear, as shown in Figure 2.6. Create a new
circle that is equal to the first at point A. After making sure that the new construction

C1

C2

FIGURE 2.5
The circle is coincident with the rocker endpoints and centered at the midpoint of the construction line.

Collinear

C1

A

C2

FIGURE 2.6
Draw a line collinear with the first construction line and place a circle equal to the first at the
endpoint of the line.

FIGURE 2.4
The Layers dialog box allows you to set the properties of each layer. Screenshot of SOLIDWORKS
software.

47Graphical Linkage Synthesis Using SOLIDWORKS®

line is collinear with the first and that both circles have an Equal relation, your sketch
should still be Under Defined. Can you see what is missing? Although both circles lie on
the same line, we have not yet specified the distance between their centers.

Use Smart Dimension to make the distance between the centers of the two circles
90 mm, as shown in Figure 2.7. Your drawing should now be fully defined. Believe it or
not, we have solved the problem! The point A is the ground pivot for the crank and the
circle on the left traces out the path taken by the crank as it makes its revolution.

Change to the NewLinks layer and draw a line from A to B2, and then from B2 to C2.
The line AB2 is the crank and B2C2 is the coupler. Use the Smart Dimension tool to find the
lengths of each of these links (plus the ground link) as shown in Figure 2.8. Each time you
add a dimension you will get a warning that the new dimensions are “driven.” Since we
are adding dimensions to a fully defined drawing, these dimensions cannot be changed,
and are “driven” by the pre-existing dimensions in the drawing. In other words, when
you specified the length of the rocker (50 mm) and the angle of sweep (80°) the crank
length became fixed. The only free choice we had was the length of the coupler (90 mm)
that specified the distance between the two circles. The crank is then 32.139 mm, the cou-
pler is 90 mm, the rocker is 50 mm, and the distance between ground pins is 97.811 mm.

90
C1

A

C2

FIGURE 2.7
The distance between the centers of the two circles is 90 mm.

32.139

97.811

90
C1

C2

90B2

A

FIGURE 2.8
Dimensioning the links for the crank-rocker linkage. Each of the new dimensions is driven, since
the drawing was fully defined before we added them.

48 Introduction to Mechanism Design

Figures 2.9 and 2.10 show the linkage in its two specified positions. As a next step, we
would use these dimensions to design a SOLIDWORKS part for each link, and place
them together into an assembly. This very basic Grashof linkage is often added to a
non-Grashof linkage to drive it between its two limiting angles. When used to drive a
non-Grashof linkage it is referred to as a driver dyad. An example of how this may be
added is shown in Figure 2.11 and will be used in later sections.

2.2.1 Two Positions of Rocker without Specified Ground Pin

In the preceding example we were given the desired angle of sweep of the rocker, which
gave an implicit location for the ground pin at D. For the next example, we specify two
positions of a line on the rocker, without specifying a ground pin – see Figure 2.12. Our first
task will be to find the position of the ground pin at D such that the line on the rocker can
reach the specified positions. Once we have the location of the ground pin, we can use the
techniques in the preceding example to design the rest of the linkage (i.e., to find the crank
and coupler lengths, and the distance between ground pins).

Begin by creating a new Drawing in SOLIDWORKS, then draw and dimension the two
lines shown in Figure 2.13. Create the same set of layers that we used in the preceding

B2

A

C1

C2

FIGURE 2.9
Position 1 for crank-rocker linkage.

B1

C1

C2

A

FIGURE 2.10
Position 2 for crank-rocker linkage.

49Graphical Linkage Synthesis Using SOLIDWORKS®

example. The top line has a vertical relation added and the bottom line has a horizontal
relation added. Of course, the two specified positions of the rocker need not be horizontal
and vertical; we have done this for the sake of creating a simple example. The length of
the vertical line is given an Equal relation with the horizontal line. Place a Fixed relation at
point C1 to fully define the drawing.

Now draw a line in the Construction layer between points E1 and E2. Create a perpen-
dicular bisector on this line as shown in Figure 2.14. A perpendicular bisector starts at the
midpoint of a given line (in this case the line E1E2) and is directed perpendicular to that
line. The simplest way to do this in SOLIDWORKS is to hover over the center of the line
E1E2 until the midpoint icon appears, then drag along the yellow perpendicular guide. The
resulting line will be a perpendicular bisector of E1E2. Don’t worry about the length of the
bisector for now – we’ll fix it in the next step.

Next, draw another line in the Construction layer between points C1 and C2. Create a
perpendicular bisector for this line and extend it until it reaches the first perpendicular
bisector. Use the Trim tool to make the two bisectors end at the same point, D, as shown in
Figure 2.15. Your drawing should now be fully defined.

Driver dyad

Motor

FIGURE 2.11
Simple two position rocker used as driver dyad for non-Grashof linkage.

Rocker in position 1

Rocker in position 2

Ground pin in
unknown position

C1

C2

E1
E2

D

FIGURE 2.12
In this example, we are given two positions of a line on the rocker, but the ground pin location is unspecified.

50 Introduction to Mechanism Design

The point D is the missing ground pin! To see why, note that the distance from D to C1
is the same as the distance from D to C2, because D is on the perpendicular bisector of
the line C1C2. This means that a circle centered at D that passes through C1 will also pass
through C2. Similarly, a larger circle centered at D will pass through both E1 and E2. Since
all points on the rocker sweep out circular arcs centered at D, we have found the necessary
ground pin. This is easiest to visualize by drawing the complete rocker link as shown in

Fixed

5015

10
C2

E2

E1
C1

FIGURE 2.13
The line CE on the rocker must move to the two specified positions.

Perpendicular bisector

C1

C2

E2

E1

FIGURE 2.14
A perpendicular bisector has been drawn between E1 and E2.

Perpendicular bisector

E2

C2

D C1 E1

FIGURE 2.15
Another perpendicular bisector has been drawn for the line C1C2.

51Graphical Linkage Synthesis Using SOLIDWORKS®

Figure 2.16. Instead of being a straight line, the rocker has a shallow “elbow” at point C that
enables it to reach the ground pin at D.

We will now repeat the procedure used in the first example to design the remainder of
the linkage. First, we choose the point C on the rocker to be the pin that connects it to the
coupler. We are free to choose any point on the rocker that we wish for this purpose, but
the point C is convenient for this example. In the Construction layer draw a circle centered
at the midpoint of the line between C1 and C2 and passing through both C1 and C2. Draw
a line starting at C2 and running to the left, and use a relation to make the line Collinear
with C1C2. Dimension the line as shown in Figure 2.17 and create an Equal circle at point
A. Of course, point A is now the ground pin for the crank, and the crank length is equal to
the radius of the circle.

As a final step, we should use Smart Dimension to find the length of the crank (the
radius of the circle) and the distance between ground pins, as shown in Figure 2.18. To
construct the rocker, we must also measure the distance between pin D and point C1, and
the angle between DC1 and C1E1, but we have omitted the angular measurement to keep
the diagram uncluttered.

The complete linkage for the second example is shown in Figure 2.19. The dotted arcs
show the path that the rocker sweeps out when the crank makes a full revolution. The last
step should be to check the Grashof condition of the linkage. The shortest link is the crank,

Rocker in position 2

Rocker in position 1

E1C1

C2

E2

D

FIGURE 2.16
The rocker is formed by extending the line C1E1 to the ground pin D.

60

E2

E1

C2

A

D C1

FIGURE 2.17
Draw a circle that centered at the midpoint between C1 and C2 that passes through C1 and C2.

52 Introduction to Mechanism Design

with S = 9.01 mm. The longest link is the ground, with L = 60.67 mm. The remaining two
links are P = 60 mm and Q = 12.75 mm so that

 S L 9.01 60.67 69.68 mm+ = + =

 P Q 60 12.75 72.75 mm+ = + =

The linkage is Grashof and we have completed the design problem. A few points to ponder:

 1. What would happen if C1E1 and C2E2 were parallel?
 2. Is it possible to use this method to design for three different positions of the

rocker?
 3. If the linkage had not been Grashof, what could we alter to make it Grashof?

Answers: (1) This would result in the ground pin D residing at an infinite distance from
the other links. If C1E1 and C2E2 are parallel, you should use one of the coupler design
methods outlined in the next section. (2) No, because the point D is uniquely defined by
the intersection of the perpendicular bisectors. If three positions are required, use one
of the coupler design methods outlined in the next section. (3) There are two possible

12.75

60.673

60

E2

C2

D
C1

A

E1

R9.01

FIGURE 2.18
Finding the length of the crank and the distance between ground pins.

D
C1 E1

A

FIGURE 2.19
The completed linkage for the second example.

53Graphical Linkage Synthesis Using SOLIDWORKS®

approaches: change the length of the coupler (i.e., the 60 mm dimension that we chose arbi-
trarily in this example) or modify the location where the coupler is pinned to the rocker
(point C). Once we have found the proper shape for the rocker, we can attach the coupler
at any point we wish.

2.2.2 Quick-Return Mechanisms

In the preceding example, we didn’t worry about how long it took for the rocker to sweep
out its angle. In the case of the windshield wiper mechanism, for example, it is probably
best for the linkage to spend an equal time pushing the wipers to the left as to the right.
But for some mechanisms, timing is critical. Consider the lifting mechanism shown in
Figure 2.20. The purpose of this mechanism is to lift a fragile object from one conveyor
belt to another. We wish to lift the object slowly and gently, so as not to damage it, but the
return stroke (when the object is not on the platform) should be quick, so that the platform
can be ready to receive another object as soon as possible.

To see how we might accomplish this, consider the equal time mechanism shown in
Figure 2.21. As you can see, the rocker spends an equal amount of time moving forwards
as backwards because the crank sweeps out 180° for each motion.

To change the timing, we need to change the angle that the crank sweeps through for the
forward and return motions, as shown in Figure 2.22.

By simply lowering the fixed crank pivot, we change the portions of the crank’s rotation
that are spent moving forward or backward. As shown in Figure 2.23, the crank sweeps

Slow lift Quick return

Fragile object

Rocker

Motor

FIGURE 2.20
We wish to lift the fragile object up slowly, but the linkage should return to its bottom position quickly.

180° return
180° lift

FIGURE 2.21
The equal time mechanism spends the same amount of time pushing the rocker forward as it does returning
the rocker to its original position.

54 Introduction to Mechanism Design

out angle β in moving the rocker forward and angle α returning the rocker to its original
position. Now define the time ratio as

α
β

=TR

The time ratio gives the ratio of the return time to the forward time and is less than one
for a quick-return mechanism. In general, we will design the linkage to meet a specific
time ratio, although in some instances it is handy to be able to calculate the time ratio for
a given linkage.

Let us define the construction angle δ as shown in Figure 2.24. Then we have

 β δ α δ− = ° + = °180 180

Slow lift

Quick return

FIGURE 2.22
In this linkage, the crank sweeps out a larger angle in moving the rocker forward than it does in returning the
rocker to its original position.

β

α

FIGURE 2.23
The crank sweeps out angle β moving the rocker forwards and sweeps out angle α returning the rocker to its
original position.

δ

FIGURE 2.24
We use the construction angle δ to design the linkage.

55Graphical Linkage Synthesis Using SOLIDWORKS®

Using these and the definition of the time ratio given in Equation (2.1) we can solve for the
construction angle δ as

 δ = ° ⋅ −
+

180
1
1

T
T

R

R
 (2.1)

The construction angle is useful for laying out a quick-return mechanism, as we will see
in the next example.

Example 2.2: Quick-Return Mechanism

Design a fourbar linkage whose rocker sweeps out 40° with a time ratio of 1:1.25.

Solution
First, draw the rocker in its two positions as shown in Figure 2.25. The second position
is drawn at an angle of 70° horizontally to make the two positions symmetric, but we
could have chosen any other angle. Make sure to place a Fixed relation at the lowermost
point so that the drawing is fully defined. Now solve for the time ratio as a decimal

 TR = =1
1.25

0.8

The construction angle is then

 δ = ° ⋅ −
+

= °180
1 0.8
1 0.8

20

Now draw intersecting lines from C1 and C2 as shown in Figure 2.26. Dimension the
angle between the lines at δ, or 20°. The drawing should be underdefined at present,
because we have not specified the length between C1 and A.

Now examine the dimensions shown in Figure 2.27. In this figure, a is the crank length
and b is the coupler length. In order for the rocker to take on the required positions, we
must have

 AC b a= −1

 AC b a= +2

C2C1

Fixed

70°

50

40°

FIGURE 2.25
First draw the rocker in its two positions.

56 Introduction to Mechanism Design

or, solving for b and a, we have

 a
AC AC= −

2
2 1

 b
AC AC= +

2
2 1

Let us arbitrarily choose a length of 60 mm for AC1 as shown in Figure 2.28. When you
use Smart Dimension to find the length AC2 you will find that it is a driven dimension
that cannot be changed. The crank length is then

 a = − =83.743 60
2

11.87 mm

and the coupler length is

 b = + =83.743 60
2

71.87 mm

Finally, draw a circle centered at A with radius (not diameter) equal to the crank length.
The circle shows the path traced out by the end of the crank. The coupler (shown as
thick dashed blue lines) is seen in Figure 2.29 in its two extreme positions.

To finish the design, we must find the distance between ground pins, as shown in
Figure 2.30. The figure shows the completed linkage in its right-most extreme position.
The lengths of each link are then

 Crank : 11.87 mm Coupler : 71.87mm Rocker : 50 mm Ground: 50 mm

C2

A

20°C1

FIGURE 2.26
Draw intersecting lines from C1 and C2.

C2
b

b A

a a

C1

FIGURE 2.27
The crank and coupler lengths are determined by the distance between A and C1.

57Graphical Linkage Synthesis Using SOLIDWORKS®

A

20°

60

83.743

C2C1

FIGURE 2.28
Choose 60 mm for the length AC1. The length AC2 is now driven and we cannot change it.

A

R11.87

71.87

20° C2C1

71.87

FIGURE 2.29
Draw a circle with the radius of the crank length. The coupler is shown in its two positions.

A

C2C1

50

FIGURE 2.30
The last step is to find the distance between ground pins.

58 Introduction to Mechanism Design

For completeness we should also check to make sure that the linkage is Grashof, so that
the crank can make a full revolution. Since S + L = 83.74 and P + Q = 100 the linkage is
Grashof, and we are finished!

2.3 Two Specified Positions of the Coupler

In the preceding three examples, we learned techniques for designing a linkage such that
the rocker passed through two specified positions. In this section, we wish to find a link-
age that passes the coupler through two specified positions, as shown in Figure 2.31. To
complete the exercise, we must find the lengths of the rocker and crank, as well as the
locations of the two ground pins at A and D.

Begin by opening a new Drawing in SOLIDWORKS and constructing the diagram
shown in Figure 2.32. For this example, the coupler must move from B1C1 to B2C2, and we
are required to find the crank and rocker lengths and ground pin positions to effect this
motion (Figure 2.33).

Next, draw construction lines B1B2 and C1C2. Create perpendicular bisectors for these
lines. The lengths of the bisectors are arbitrary for now, and we will fix them in the next
step. Remember that any point on a perpendicular bisector can be the center of a circle that

Coupler in position 1

Coupler in position 2

Ground pin A in
unknown position

Ground pin D in
unknown position

A D

C1
C2

B1

B2

FIGURE 2.31
For this exercise we wish to design a linkage such that the coupler passes through the two specified positions.

Fixed
45°20

C2

C1 B1

B2

30 50

FIGURE 2.32
The coupler must move from B1C1 to B2C2.

59Graphical Linkage Synthesis Using SOLIDWORKS®

passes through both B1 and B2 (or C1 and C2), so any point on the perpendicular bisectors
can serve as ground pins for the crank and rocker.

As a final step, we use the NewLinks layer to draw lines from the ends of the perpendic-
ular bisectors to either end of the coupler, as shown in Figure 2.34. These new lines are the
crank and rocker, and we may dimension them to any convenient length. Thus, we have
two free choices in this problem: the length of the crank and the length of the rocker. The
length between ground pins (118.81 mm in the figure) is determined once we have chosen
the crank and rocker lengths.

The completed linkage, along with ground pins, is shown in Figure 2.35. You might
be wondering why we have chosen the upper link to be the crank rather than the lower
one. Try creating each link as a SOLIDWORKS Part, and then building the linkage in an

Perpendicular
bisector

Perpendicular
bisector

C1 B1

B2

C2

FIGURE 2.33
Draw perpendicular bisectors for the lines B1B2 and C1C2.

45

118.81

50B2

Crank

Rocker

C2

C1 B1

FIGURE 2.34
Draw the crank and rocker links from the ends of the coupler to the ends of the perpendicular bisectors.

60 Introduction to Mechanism Design

Assembly. You will find that driving the linkage with the lower link results in “binding
up” before B1C1 is reached. If we drive the linkage from the upper bar, on the other hand,
the coupler can pass from B2C2 to B1C1 without binding. Thus, the logical choice for a driv-
ing link (the crank) is the upper bar. Design is an iterative process, and it is almost never
possible to arrive at the best design on the first try.

As a final step, you may wish to construct a driver dyad linkage as was done in Example 1.
This will permit the coupler to pass back and forth from B1C1 to B2C2 in a continuous motion.

2.4 Three Specified Positions of the Coupler

In this final section, we will consider the problem of designing a linkage when there are
three specified positions of the coupler. In each case, we must determine the lengths of
the crank and rocker links, as well as the locations of the ground pins. We will start with
a very simple case in which the locations of the moving pins B and C are known. In the
second example we will move the pins B and C to more convenient locations, and in the
final example we will design a linkage for three specified coupler positions using specified
locations of the ground pins.

Example 2.3: 3 Positions of the Coupler with Specified Moving Pins B and C

In this example, we wish to design a linkage that moves the coupler through three
specified positions, and we assume that the moving pins B and C have been attached to
specified locations on the coupler, as shown in Figure 2.36.

Begin by creating a SOLIDWORKS Drawing and construct the diagram shown in
Figure 2.37. The two lines on the left have vertical relations, while the rightmost coupler
position is inclined at an angle of 60°. Do not proceed until your drawing is Fully Defined.

Three points are required to fully define a circle. The three specified points that
B passes through define a circle whose center is the ground pivot A, and the three

D

C2

C1 B1

B2

A

Crank

Rocker

FIGURE 2.35
The completed linkage. The dotted blue arcs show the paths taken by points B and C.

61Graphical Linkage Synthesis Using SOLIDWORKS®

specified points for C define the ground pin D. Create lines B1B2 and B2B3 as shown
in Figure 2.38, and construct perpendicular bisectors. The intersection of the bisectors
defines the ground pin at A.

In a similar fashion, construct perpendicular bisectors for lines C1C2 and C2C3, as
shown in Figure 2.39. The intersection of the bisectors defines the ground pin at D.

To conclude the exercise, draw the crank and rocker along lines AB and DC as shown
in Figure 2.40. Since there were three specified positions for B and C, we have no free
choices in this problem.

The complete linkage is shown in Figure 2.41. This was a relatively straightforward
exercise since we had no free choices for link length or ground pin position.

Coupler in position 1

Coupler in position 2
Coupler in position 3

Ground pin A in
unknown position

Ground pin D in
unknown position

D

B3

B2

B1

A

C2

C1
C3

FIGURE 2.36
The coupler has three specified positions, and we must find the lengths of the rocker and crank, as
well as the positions of the ground pins.

50

10

60.00°

45

100

35

Fixed

C3

C2

C1

B3

B2

B1

FIGURE 2.37
SOLIDWORKS Drawing showing the three specified positions of the coupler.

62 Introduction to Mechanism Design

Example 2.4: 3 Positions with Unspecified Moving Pivots

In the previous example, a line on the coupler moved through three specified positions
and the moving pins B and C were located at either end of the line. It may happen that
we need a line on the coupler to move through three positions, but the moving pins B
and C must be located away from the line to prevent the crank and rocker from interfer-
ing with whatever action the coupler is intended to perform. For this situation, which
is illustrated in Figure 2.42, we must find the lengths of the crank and rocker, as well as

B2

A

B3

C3

C2

B1

C1

FIGURE 2.38
Construct perpendicular bisectors for lines B1B2 and B2B3.

D

A

B3

B2

B1

C1

C2

C3

FIGURE 2.39
Construct perpendicular bisectors for lines C1C2 and C2C3.

63Graphical Linkage Synthesis Using SOLIDWORKS®

the location of the ground pins. We have free choice of location for the moving pins, but
once we have chosen their location on the coupler the rest of the linkage is determined.

First, construct the drawing shown in Figure 2.43, and make sure that it is Fully Defined
before proceeding. This drawing shows the three locations that a line on the coupler
must pass through, but does not yet show the location of the moving pivots B and C.

The next step is to choose the location of the moving pivots on the coupler, as shown
in Figure 2.44. These have been chosen arbitrarily for this example, but would be chosen
to avoid interference in a practical setting. Place the lines B1C1 and C1E1 that define the
moving pivots in your drawing.

D

A

B2

B3

C3

C2

B1

C1

FIGURE 2.40
The crank and rocker are defined by the lines AB and DC, respectively.

D

B3

B2

C3

C2

B1

C1

A

FIGURE 2.41
The completed linkage showing ground pins, crank, rocker, and coupler.

64 Introduction to Mechanism Design

Now draw the locations of the moving pivots when the coupler has moved to posi-
tions 2 and 3, as shown in Figure 2.45. Make sure that the coupler maintains its shape as
it moves from position to position. Your drawing should still be fully defined when you
have completed this step.

Now that we know the locations of the moving pins in all three positions, we have
reduced the problem to that of Example 2.3. We need only construct perpendicu-
lar bisectors for lines B1B2 and B2B3, as shown in Figure 2.46. The intersection of the
 bisectors defines the position of ground pin A.

Moving pins

B1

C1

E1

F1

F2

F3

E3

D
A

E2
Coupler in position 1

Coupler in position 3

Coupler in position 2

Ground pin A in
unknown position

Ground pin D in
unknown position

FIGURE 2.42
For this example, the line on the coupler moves through three specified positions, but the moving
pins are at a different location on the coupler.

25
60°

Fixed

50

10

50 40

E3

E2

E1

F2

F3

F1

FIGURE 2.43
Construct the drawing that shows the locations of the three positions of a line on the coupler.

65Graphical Linkage Synthesis Using SOLIDWORKS®

Similarly, find the location of ground pin D by constructing perpendicular bisectors
for lines C1C2 and C2C3, as shown in Figure 2.47. All points on the linkage have now been
defined.

To complete the exercise, draw lines for the crank and rocker along lines AB1 and DC1,
as shown in Figure 2.48. All the link lengths and distance between ground pins can now
be measured for the purpose of constructing SOLIDWORKS Parts and an Assembly.

The completed linkage is shown in Figure 2.49 with circular arcs showing the paths of
moving pins B and C. Because we have moved pins B and C away from the specified line
on the coupler, the coupler is now shaped like a badly drawn hockey stick.

25

15

120°

150° E1

F1

F2

F3

E2

E3

B1 C1

FIGURE 2.44
The locations for the moving pivots B and C have been chosen arbitrarily for this example.

25

15

120°

120°

120°

150°

150°

150°
E1

F1

F2

F3

E2

E3C2

C3

C1B1

B2

B3

FIGURE 2.45
The moving pivots have been drawn in locations 2 and 3.

66 Introduction to Mechanism Design

B2

C1

A

B1

B3

E1

F1

F2

F3

E2

E3C2

C3

FIGURE 2.46
Create perpendicular bisectors for lines B1B2 and B2B3.

B1

B2

B3

E3

D

C1

C2

C3

E1

F1

F2

F3

E2

FIGURE 2.47
Perpendicular bisectors have been drawn for lines C1C2 and C2C3.

67Graphical Linkage Synthesis Using SOLIDWORKS®

F1

F2

F3

C1

C2

C3

B1

B2

D

A

B3

E2

E3

E1

FIGURE 2.48
The crank lies along line AB1 and the rocker lies along line DC1.

C1

E1 B2 C2

B3

C3

D

A

E3

F3

E2

F2

F1

B1

FIGURE 2.49
The completed linkage for Example 2.4.

68 Introduction to Mechanism Design

Example 2.5: Three Positions of Coupler with Specified Fixed Pins

For our final example, we will synthesize a linkage with three specified positions of a
line on the coupler. For this example, the positions of the fixed ground pins A and D are
specified in advance, and we must find the positions of the moving pins B and C on the
coupler to create the desired motion. The situation is depicted in Figure 2.50. We might
encounter this situation where the rigid ground pins must be located away from the
coupler line to avoid interference.

To solve this problem, we will pretend for the moment that the line on the coupler is
fixed in one of its positions, and determine where the ground pins would “move” as the
linkage goes through its motion. This is shown in Figure 2.51, where the coupler line has
been temporarily fixed in its third position. If the coupler line is fixed and the ground
pins are freed, then the ground would move through the positions A1D1 and A2D2 as
shown in the figure. To find the locations of A1D1 and A2D2 we must preserve the rela-
tionships between the coupler and ground in each position and project them onto the
coupler in the third position. For example, the triangles E1F1A and E1F1D must be copied
onto the coupler in the third position to produce the projected “ground” position A1D1.
This process is repeated for the coupler in position two.

To begin, create the drawing shown in Figure 2.52. The drawing should be fully
defined before proceeding to the next step. Be sure to add a fixed relation to the ground
pin D and a horizontal relation to the line between A and D. The line E2F2 has a vertical
relation.

Next, determine the relationship between the ground line AD and the position E2F2,
as shown in Figure 2.53. These dimensions will be driven, since the drawing is already
fully defined. Draw the line A2D2 as shown, and transfer the angular dimensions. Use
an Equal relation to make the line AD equal in length to A2D2 and the line E2D equal to

Moving pins
in unknown location

E3

E2

E1

B1

C1

D

A

F3

F2

F1

Ground pin D in
specified position

Coupler in position 2

Coupler in position 3
Coupler in position 1

Ground pin A in
specified position

FIGURE 2.50
The line on the coupler moves through three specified positions and the ground pins are also
specified.

69Graphical Linkage Synthesis Using SOLIDWORKS®

DA

A2
A1

E1

E2

E3

F1

F2

F3

D2

D1

FIGURE 2.51
In the inversion problem we fix the line on the coupler at one of the positions and determine where
the ground pins would “move.”

25

E1

F1

E2

E3

D

F2

F3

40

65

15

110°

60°

50 20

35

50

Fixed

A

FIGURE 2.52
The three desired positions of a line on the coupler and the fixed ground pins A and D.

70 Introduction to Mechanism Design

E3D2. If you’re feeling ambitious, you can create an equation to force the angular dimen-
sions to be equal to each other, but this is not necessary.

Now repeat the procedure by finding the relationship between AD and E1F1 and trans-
fer this relationship to E3F3 and A1D1, as shown in Figure 2.54. You have now found the
locations that the “moving” ground pins would take if the coupler line were fixed at E3F3.

Draw lines AA2 and A1A2 and construct perpendicular bisectors as shown in
Figure 2.55. The intersection of the bisectors is the location of the moving pivot B3. This
is the position of one of the moving pins on the coupler when the coupler is in its third
position.

Finally, draw the lines DD2 and D1D2 as shown in Figure 2.56. Draw perpendicular
bisectors as shown in the figure. The intersection of the bisectors is the location of the
moving pin C when the coupler is in its third position.

Since we know the location of the moving pivots we can now draw the crank between
points A and B3 and the rocker between points D and C3, as shown in Figure 2.57. The
coupler is the triangle B3C3E3 with the line E3F3 sticking out of it.

The fully formed linkage is shown in its third position in Figure 2.58. It remains only
to find the lengths of the crank and rocker and the dimensions of the coupler. Since
this linkage is likely to be non-Grashof, a driver dyad should be constructed using the
 techniques of Example 2.1 or 2.2 to drive the linkage through its desired range of motion.

151.70°

61.70°

61.70°

DA

A2

E3

E2

E1

F3

F2

F1

D2

151.70°

FIGURE 2.53
Finding the relationship between AD and E2F2.

71Graphical Linkage Synthesis Using SOLIDWORKS®

Since it might be difficult to visualize the motion of this linkage it has been drawn in
its three positions in Figure 2.59. Note that the coupler is a rigid body and maintains its
shape throughout the motion of the linkage.

2.5 Summary

We have learned several techniques for designing fourbar linkages to create specified motions.
The first few examples were quite simple, but very useful for creating driver dyad linkages
for moving non-Grashof fourbars through their intended ranges of motion. The next few
examples required three specified positions of the coupler and became progressively more
complicated. In the simple examples we had several free choices (coupler length, location of
moving coupler pins) that gave our designs a degree of flexibility. As the number of specified
locations increased, however, our free choices were diminished until, as in the last example,
the linkage was completely defined by our specified coupler positions and ground pins.

125.52° 125.52°

15.52°

A D

A2

D2

E3

E2

E1

F3

F2

F1

D1

A1

15.52°

FIGURE 2.54
Finding the relationship between AD and E1F1.

72 Introduction to Mechanism Design

DA

A2

D2

A1

E3

B3
E2

E1

F2

F1
F3

D1

FIGURE 2.55
Use perpendicular bisectors to find the location of B3.

DA

A1

D1

D2

C3

E3

F3

E2

E1

F1

F2

A2

FIGURE 2.56
Use perpendicular bisectors to find the location of C3.

73Graphical Linkage Synthesis Using SOLIDWORKS®

DA

E3

C3

F3

E2

E1

F2

F1

B3

FIGURE 2.57
The crank is drawn between A and B3 and the rocker is drawn between D and C3.

D
A

E3

F3

E2

E1

F2

F1

B3

C3

FIGURE 2.58
The fully formed linkage shown in position 3.

74 Introduction to Mechanism Design

2.6 Practice Problems

Problem 2.1

Design a crank and coupler that will move the rocker between the two positions
shown in Figure 2.60. The linkage should be Grashof; that is, the crank should be
capable of making a full revolution.

Problem 2.2

A line on the rocker of a fourbar linkage passes through the two locations shown
in Figure 2.61. Find the location of the ground pivot that will make this motion
possible.

Problem 2.3

Design a driver dyad for the rocker in Problem 2.2 that drives it through the two
desired positions. Verify that the resulting linkage is Grashof.

Problem 2.4

Design a quick-return mechanism with a ratio of 1:1.5 for the rocker in Problem 2.1.
Verify that the resulting linkage is Grashof.

Problem 2.5

Design a quick return mechanism with a ratio of 1:1.5 for the rocker in Problem 2.2.
Verify that the resulting linkage is Grashof.

Position 2

Position 1

Position 3

FIGURE 2.59
The linkage in each of its three positions.

75Graphical Linkage Synthesis Using SOLIDWORKS®

Problem 2.6

Design a fourbar linkage that moves the coupler between the two positions speci-
fied in Figure 2.62. Next, design a driver dyad to drive the linkage. Verify that the
driver dyad linkage is Grashof.

Problem 2.7

Design a fourbar linkage that moves the coupler between the three positions speci-
fied in Figure 2.63. Find the required positions of the ground pins.

Problem 2.8

Design a driver dyad linkage to drive the fourbar in Problem 2.7 through its specified
positions. Verify that the driver dyad linkage is Grashof.

Problem 2.9

A “European Hinge” is found in many modern kitchens. While it is more complex
than an ordinary hinge with a single pivot, it has the advantage of allowing the

75

C1

E1

E2

60°

Rocker in position 1

Rocker in position 2

C2

D

FIGURE 2.60
Problem 2.1.

75

75

C1
E1

E2

60°

Rocker in position 1

Rocker in position 2

C2

FIGURE 2.61
Problem 2.2.

76 Introduction to Mechanism Design

door to swing fully open without interfering with neighboring cabinet doors.
Figure 2.64 shows the three desired door positions, designated by line BC. Find
suitable positions for the moving pivots on the hinge that will keep the fixed
 pivots roughly within the target area shown. This problem is more challenging
than it looks, so do not be discouraged if your first few attempts do not succeed.

Problem 2.10

Repeat the European Hinge exercise of Problem 2.9, but this time use the fixed piv-
ots shown in Figure 2.65. Find the locations of the moving pivots on the door
that are necessary to reach the three required positions shown in the figure for
Problem 2.9.

Coupler in position 3

Coupler in position 2

20°

20°

50

2575

60

10

B3

C1

C2

C3

B2

B1

Coupler in position 1

FIGURE 2.63
Problem 2.7.

100

30° 75 Coupler in position 2

Coupler in position 1

25

B1

B2

C1

C2

FIGURE 2.62
Problem 2.6.

77Graphical Linkage Synthesis Using SOLIDWORKS®

Acknowledgments

Several images in this chapter were produced using SOLIDWORKS software.
SOLIDWORKS is a registered trademark of Dassault Systèmes SolidWorks Corporation.

MATLAB is a registered trademark of The MathWorks, Inc.

Coupler in position 1

15
45°

27

23.5

20.5

5

10

36.5

25 B1

C1

C2

B2

B3 C3

Coupler in position 2

Coupler in position 3

FIGURE 2.64
Problem 2.9.

5.2

22°

18

4.8

FIGURE 2.65
Problem 2.10.

http://www.taylorandfrancis.com

79

3
Introduction to MATLAB®

3.1 Introduction

MATLAB (which stands for “MATrix LABoratory”) is one of the most widely used pieces
of engineering software in the world. The main reason for its wide adoption is that it makes
many of the most common tasks in engineering (solving systems of equations, plotting)
very easy. The plots generated by MATLAB are of sufficient quality to be “publication-
ready” and it is easy to recognize MATLAB plots in much of the modern engineering lit-
erature. This book will emphasize the use of MATLAB in Mechanical Design, but you will
find MATLAB to be useful in all your other engineering courses as well.

Despite the power and simplicity of MATLAB, many students find it very frustrating to
use – especially at first. Since much of MATLAB was written during the 1980s, many of
the error messages are cryptic, at best. The online help for MATLAB is thorough and well
organized, but it is sometimes difficult for beginners to understand the “lingo” (e.g. it is
difficult to understand how to use a function handle if you are not clear what a function
handle is!).

This tutorial will introduce you to some of the basic concepts in MATLAB. We will focus
on learning to do things that will be useful later in the textbook such as solving systems of
equations and plotting. If you are already familiar with MATLAB you can safely skip this
chapter and move on to Chapter 4.

3.2 Simple MATLAB® – The Command Window

When you first start up MATLAB you will see a window with a text prompt in it. This
window is called the Command Window, and you can type commands at the prompt and
receive an immediate response. Other common panels include the Current Folder, which
contains a listing of the files in the current folder you are working in, and the Workspace
panel, which lists all the MATLAB variables currently in memory. Since you just started,
this window should be empty.

At its most basic level, you can use MATLAB as a glorified calculator. In the Command
Window type

>> 2*2

and hit Enter. You’ll get the response

80 Introduction to Mechanism Design

ans =

 4

which is reassuring. The Workspace window now holds the variable ans, which stores the
value of whatever you computed last. Instead of typing numbers directly, we can define
variables to carry out the same operation.

>> a=2
a =
 2

>> b=2
b =
 2

>> a*b
ans =
 4

After typing this you should see the variables a and b appear in the Workspace window,
along with their values. The Workspace window is a very handy feature that enables you
to make sure that your variables are storing the values that you think they should be
storing.

The main reason that so many engineers have adopted MATLAB is its ability to work
easily with vectors and matrices. As we will see in the next chapter, a vector is simply a row
(or column) of numbers and a matrix is a two-dimensional array of numbers. To enter a
vector into MATLAB we use square brackets:

>> a=[2 4 6]
a =
 2 4 6

Because we used spaces between the numbers, MATLAB has stored a as a row vector. We
would have achieved the same effect if we had used commas between the numbers. If you
look in the Workspace window you’ll see that a now has the value [2,4,6] and the previous
value of 2 has been overwritten. It is sometimes confusing for beginners that a single letter
(a) can store multiple values like this, but it is one of the things that make MATLAB so
powerful. Another slightly tricky concept is that of the index. The index can be thought of
as the address of a particular number in a vector. Since the number 6 is stored in the third
position of a, its index is 3. If you want to access a particular entry in a, you would use the
index enclosed in regular parentheses. In the Command Window type

>> a(3)
ans =
 6

Now type

>> a(2)
ans =
 4

81Introduction to MATLAB®

In the first case, the index is 3 – we have accessed the third entry in a, and in the second case
the index is 2 – the second entry in a has the value 4. Now let’s try entering a column vector

>> b = [3;5;7]
b =
 3
 5
 7

Note that we have used semicolons to separate each row and that the semicolons have also
appeared in the Workspace window. To emphasize the difference between a and b, type
the following commands in the Command Window

>> size(a)
ans =
 1 3

>> size(b)
ans =
 3 1

The command size() is a built-in MATLAB function that gives the dimensions of a vec-
tor or matrix. The first dimension is the number of rows and the second dimension is the
number of columns. Thus, the vector a has one row and three columns: it is a row vector.
The vector b has three rows and one column: it is a column vector. Now try typing the fol-
lowing (slightly devious) command:

>> b(3)
ans =
 7

Can you see why this is devious? We used the command a(3) to access the third column
in a and b(3) to access the third row in b, but the command worked just fine in both
instances. This behavior is, unfortunately, the source of confusion for many beginning
MATLAB programmers. To understand why this is, we’ll have to look a little closer into
vector operations. At the Command Window type

>> a*b
ans =
 68

Next, type

>> b*a

ans =

 6 12 18
 10 20 30
 14 28 42

Since we are used to the commutative property in multiplication, this result is very strange.
Remember that in multiplying a and b, we are multiplying two vectors, not two numbers.

82 Introduction to Mechanism Design

In the first instance, we have computed the dot product, which we will discuss more thor-
oughly in Chapter 4. The dot product is defined as

 a b a b a b a b= + +· 1 1 2 2 3 3

and if you carry out these operations in your head you’ll find that the answer is, indeed,
68. The other operation is known as an outer product

b a
a b a b a b
a b a b a b
a b a b a b

1 1 2 1 3 1

1 2 2 2 3 2

1 3 2 3 3 3

⊗ =

Please do not memorize the formula for the outer product – this is the last time we’ll see
it! The important thing to observe is the size of the output in each instance. In the first
instance, the size of a*b is 1 × 1, in other words a single number (a scalar). The size of b*a,
on the other hand, is 3 × 3. In the first instance, we carried out the operation

 1 3 * 3 1 1 1() () ()× × → ×

and in the second instance

 3 1 * 1 3 3 3() () ()× × → ×

Thus, the result of a vector multiplication has the size of the outer dimensions of the two
vectors. As we will see in a moment, the inner dimensions of the two vectors must be the
same in order for the multiplication to work.

To convert a row vector into a column vector we can use the transpose operation. In math-
ematical terms this means that

aT
2
4
6

=

 bT 3 5 7{ }=

In MATLAB we perform the transpose using the apostrophe. Thus, we can type

>> a'
ans =
 2
 4
 6

Now try using the transpose operator to multiply two column vectors together.

>> a'*b
Error using *
Inner matrix dimensions must agree.

83Introduction to MATLAB®

Congratulations – you’ve received your first cryptic MATLAB error message! We received
the message because we tried to perform a multiplication that is undefined:

 3 1 * 3 1 undefined() ()× × →

Now that we know what the error message means, it should be a little less cryptic. If you
receive this message when writing a complicated program, it almost always means that
one of the variables that you thought was a row vector is actually a column vector, or vice
versa. To avoid this type of problem in the future we will adopt the following convention.

 1. If a variable has two dimensions – say the x and y coordinates of a point, we will
store the two dimensions as a column vector. Thus, the coordinates of point C will
be stored as

x

x
yC

C

C
=

and not

x x yC C C don’t do this!{ }= ←

 2. When calculating a variable at several instants in time – say the coupler angle for
multiple values of the crank angle, we will store the results in a row vector. Thus,
the coupler angle found at three instants in time is

θ θ θ{ }() () ()θ = 1 2 33 3 3 3

 3. Here’s the tricky one: when we calculate a two-dimensional variable at multiple
instants in time – say the position of point P for multiple crank angles, we will
store each component in its own row, with each column representing a separate
instant in time:

x
x x x

y y y
P

P P P

P P P

1 2 3

1 2 3

() () ()
() () ()

=

If we remain consistent with this convention, then we will avoid the error message shown
above. The fact that you can access the third entry of a row or column vector by typing
a(3) or b(3) can lead to confusion because MATLAB will choose the third entry of either
one. It would have been better in the long run if MATLAB had required the user to type
a(1,3) for the third entry of a row vector and b(3,1) for the third entry of a column vector,
but this is what we are stuck with. The bottom line is this: if you receive an error message
saying that inner matrix dimensions must be equal, the first thing to check is if a row vec-
tor has been entered as a column, or vice versa. The Workspace window is a good place to
check this.

84 Introduction to Mechanism Design

By the way, if you wish to enter a matrix, like the xP array shown above, you would type

>> A =[2 4 6; 3 5 7]
A =
 2 4 6
 3 5 7

Notice that the rows have been separated by a semicolon, and the columns are separated
by spaces. The A matrix has dimension 2 × 3. To access the first row, third column of A, type

>> A(1,3)
ans =
 6

And to access the second row, second column of A type

>> A(2,2)
ans =
 5

Now try entering the following

>> A(3,2)
Index exceeds matrix dimensions.

This is another commonly encountered error message. It means that we’ve asked to see a
part of the A matrix that doesn’t exist since it only has two rows and we asked for an entry
in the third row. When you receive this message you should examine the definition of the
variable in the Workspace to make sure it has the correct dimensions, and also check to
make sure you haven’t accidentally switched the row and column arguments within the
parentheses. If you type

>> A(2,3)
ans =
 7

you get the expected result. To test your understanding of the above concepts, which of the
following operations is defined (i.e., do the inner dimensions match)?

Answer: items 1 and 6 are defined, the rest are not.
By the way, we will adopt the convention of storing vectors as lowercase letters and

matrices as uppercase letters. Both matrices and vectors are written in bold font.

3.3 Vector Notation in MATLAB®

Entering vectors one number at a time is fine for small vectors, but there will be times
when we wish to define vectors with hundreds, or even thousands, of entries. Luckily,

1. A*b 2. A*a
3. b*A 4. a*A
5. b*AT 6. a*AT

85Introduction to MATLAB®

MATLAB has an easy way to do this using the simple colon operator. Try typing in the
Command Window

>> a=0:10
a =
 0 1 2 3 4 5 6 7 8 9 10

The colon tells MATLAB that we are specifying a vector that starts at zero and ends at
ten, with a spacing of one between each entry. If we want a different spacing, we place the
increment between the first and last numbers

>> a=0:2:10
a =
 0 2 4 6 8 10

gives the even numbers starting at zero and ending at ten. What if we wanted the list of
odd numbers between 1 and 11? We could use

>> b=1:2:11
b =
 1 3 5 7 9 11

Or, even better, we could use the definition of a to calculate the odd numbers.

>> b = a + 1
b =
 1 3 5 7 9 11

The second method may be a little bit surprising. After all, a is the vector of even numbers
from zero to ten, but “1” is a scalar. MATLAB interprets this as a command to add 1 to
each entry in the vector a. Similarly, we could use the vector a to calculate the first six even
powers of 2.

>> c=2^a
Error using ^
One argument must be a square matrix and the other must be a scalar. Use
POWER (.^) for elementwise power.

Whoops! Here is another cryptic MATLAB error message. MATLAB uses the caret opera-
tor as a shorthand for multiplying a square matrix by itself, where a square matrix has
the same number of rows and columns. If A is a square matrix, then A^2 = A*A. What we
wanted to do with c = 2^a is to raise the number 2 to the power of each of the numbers in a.
Luckily, MATLAB has given us a hint on how to do this – the dot-carat notation.

>> c=2.^a
c =
 1 4 16 64 256 1024

Much better! Placing the dot before the carat (or a multiplication symbol) tells MATLAB
to perform the operation on each element, rather than on the vector (or matrix) as a
whole. It is not even clear what raising the number 2 to the power of an entire vector
would mean!

86 Introduction to Mechanism Design

3.4 A First Plot

We now have a vector c that contains the first six even powers of 2. It might be interest-
ing to plot this, so as to observe its exponential increase. The command for plotting in
MATLAB is very simple:

plot(c)

After you hit Enter, a new plot window should open that resembles Figure 3.1. It is an
exponentially increasing curve, as we expected. The plot is incomplete as it stands because
we haven’t placed labels on the axes or a title. We’ll learn to do this as part of a script in
the next section.

3.5 Writing a Simple MATLAB® Script

In theory, we could do almost all our modeling in the Command Window by typing a long
series of commands, one after the other. The power of MATLAB, however, lies in its abil-
ity to run scripts. A script is a series of MATLAB commands that we store in a file called
an m-file. For example, we could write a script, called SinePlot.m, that would plot a sine
wave for us and would contain all the commands necessary to make the plot ready to go
in a report (axis labels, title, etc.) Storing the commands in a script enables us to make
minor “tweaks” to the plot without having to retype everything. We will now leave the
Command Window behind, because we’ll be spending the rest of the tutorial in the Editor.
On the Home tab in the Command Window click on the New button and choose Script

1.5 2 2.5 3 3.5 4 4.5 5 5.5 61
0

1200

1000

800

600

400

200

FIGURE 3.1
Our first MATLAB plot – the first six even powers of 2.

87Introduction to MATLAB®

from the pulldown menu. A new window will open: the Editor window. We will use the
Editor window to enter our scripts as text files. When we are done typing the script, we
can hit the Run button (or the F5 key) to execute it. The result will be the same, for the most
part, as if we had typed each command, one after the other, in the Command Window.

The first thing to do when entering a new script is to use Save As to name it. When the
Save As dialog appears, browse to your desired folder (e.g. the Desktop) and save the file
as SinePlot.m. Because MATLAB was originally written in the old days of DOS, it doesn’t
allow spaces or special characters in the file names. In other words, don’t try to save it as
Sine Plot.m – you’ll get a very mysterious error message when you try to run the script
later. MATLAB file names must begin with a letter and cannot contain spaces.

The first part of every script you write should contain a set of comments that describe the
purpose of the program and its function. A comment is a part of the script that is not exe-
cuted, but serves to give the reader important information about the script. Commenting
your code is one of the most important things you will do as a programmer, because if
you write anything useful, somebody else will want to use it. In addition, your future self
will be grateful to your present self for commenting the code, since your future self will
not remember the thought process you went through to create the program. Of course, it is
possible to overdo it in commenting:

a = 2; % set a equal to 2

Your future self will know perfectly well that a = 2 sets the variable a equal to two, so
this particular comment can be left out. Anything that is nontrivial in your programs
deserves a comment, though. At the top of the Editor window type

% SinePlot.m
% makes a nice plot of a sine wave from zero to 360 degrees

Use the percent sign to indicate a comment. Comments are displayed in green font by
default. As the comments describe, the SinePlot program will plot a sine wave between
0° and 360°. The next line you should place in all your MATLAB scripts is the following:

clear variables; close all; clc

This clears all the variables that are in memory so that you can start with a “clean slate.”
Forgetting to do this can result in very mysterious errors if, for example, you forget to set a
variable to its proper value and it still contains values from having run an earlier program.
The command close all closes all open plot windows, and clc clears the Command
Window. The semicolon tells MATLAB that you have finished entering a command (e.g
clear variables) and that it should be ready for the next command (e.g. close all).
We’ll calculate the sine function in 1° increments, just to keep things simple.

x = 0:360;

We have defined x as a vector starting at 0 and counting up (by ones) to 360. How many
elements does x contain? Since it starts at 0 and ends at 360, it contains 361 elements! This is
somewhat counterintuitive, so consider that the first element, x(1) = 0. The second element
is x(2) = 1. And the final element x(361) = 360. A general formula can be written x(i) =
i − 1. Note that the first element in a MATLAB vector (or matrix) has the index 1, not zero
as in many other languages.

88 Introduction to Mechanism Design

The sine function in MATLAB requires that we give the angle in radians, not degrees. To
convert from degrees to radians, simply multiply by π/180.

theta = x*pi/180;

This multiplies each value in the vector x by π/180. Note that pi is a built-in constant in
MATLAB. Now that we have theta in radians, we can calculate the sine of theta using

y = sin(theta);

Remember that theta is a vector with 361 elements; calculating the sine of theta also
results in a vector of 361 elements. Thus, y(1) = sin(0) and y(361) = sin(2π). Plotting the
sine function is simplicity itself:

plot(x,y)

This is the general syntax for the plot command. The first argument is a vector of x values
on the plot and the second argument is a vector of the corresponding y values. In this case,
the x values give the angles (in degrees) and the y values give the sine of each angle. If we
had wanted to have the angle in radians on the x axis we would have typed

plot(theta,y)

Let’s test the program to see if it creates the plot that we expect. The simplest way to save
and run the program is to hit the function key F5. If you hit F5, MATLAB will save all the
currently open files in the Editor window and will execute the file that is on top (in this
case, the SinePlot.m script). If you have typed everything correctly, you should obtain
the plot shown in Figure 3.2. The plot is indeed a sine curve, but it is not very attractive.

100 150 200 250 300 350 400500
–1

–0.8

–0.6

–0.4

–0.2

0

1

0.8

0.6

0.4

0.2

FIGURE 3.2
Our second plot – a sine function.

89Introduction to MATLAB®

There are a few things we should add to make the plot more professional. The first thing
might be to change the width of the line that was used to plot the sine wave. The default
line width is pretty narrow in MATLAB, and a thicker line would be easier to see. Change
the plot command to the following

plot(x,y,'LineWidth',2)

We have set the LineWidth parameter to 2. This is a very common way to modify a plotting
command in MATLAB: we first tell MATLAB what to plot, and then we set the appropriate
parameters for the plot. Since there are so many possible parameters to set, it is difficult to
remember them all. Luckily, help is near at hand: type help plot in the Command Window
and you’ll get a full list of parameters you can set, along with some helpful examples.

The next things we might want to add to the plot are labels for the x and y axes. Below
the plot command add the following lines:

xlabel('theta (degrees)'); xticks(0:60:360); xlim([0 360])
ylabel('sin(theta)')

There are quite a few interesting things going on here, so we’ll take them one by one. The
xlabel and ylabel commands add text to the x and y axes, respectively. The text must be
enclosed in a single quote, otherwise MATLAB will think that you’re trying to use a vari-
able for the label. The x axis of the plot should run from 0° to 360°, but our initial plot went
from 0° to 400°. To set the limits on the x axis, we use the xlim command, which requires
a two-element vector specifying the lower and upper limits. Remember that vectors are
enclosed in square brackets. Finally, we place a number on the x axis every 60° by using
the xticks command. The argument in parentheses is simply another vector that starts at
zero and proceeds in increments of 60° until it reaches 360°.

Finally, let us add a title and grid to the plot:

title('The sine function')
grid on

If you have typed everything correctly, you should obtain the plot shown in Figure 3.3.
Congratulations – you have just created your first MATLAB script! The full script is shown
below.

% SinePlot.m
% makes a nice plot of a sine wave from zero to 360 degrees

clear variables; close all; clc

x = 0:360;
theta = x*pi/180;

y = sin(theta);

plot(x,y,'LineWidth',2)
xlabel('theta (degrees)'); xticks(0:60:360); xlim([0 360])
ylabel('sin(theta)')
title('The sine function')
grid on

90 Introduction to Mechanism Design

3.6 Plotting a Filled Square

The sine wave was a one-dimensional curve, so let us try plotting a filled 2D object: a
square. Open a new MATLAB script and enter the following header:

% SquarePlot.m
% plots a filled square

clear variables; close all; clc

To create the square we will need to enter the coordinates of the vertices. To do this, we will
create a matrix called UnitSquare that has two rows and four columns. The first row will
contain all the x coordinates of the vertices and the second row will contain the y coordi-
nates. It will be a unit square because the sides will have length 1, and it will be centered on
the origin. If we create a table of coordinates for the vertices, it might look like the Table 3.1.

To enter this in MATLAB, type the following lines

UnitSquare = 0.5*[-1 1 1 -1;
 -1 -1 1 1];

The 0.5 in front scales all the ones inside by one-half. The first line gives the x coordinates
and the second line gives the y coordinates. Make sure you enter the semicolon after the
first line so that MATLAB knows that there are two rows in this matrix. To plot the square,
enter the following plotting commands

120 180
Theta (degrees)

The sine function

Si
n

(th
et

a)

240 300 360600
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

FIGURE 3.3
A much better-looking sine plot.

91Introduction to MATLAB®

plot(UnitSquare(1,:),UnitSquare(2,:),'LineWidth',2)

xlabel('x (m)'); xlim([-2 2])
ylabel('y (m)'); ylim([-2 2])
grid on

The plot command may look a little strange at first. Remember that we enter the x coordi-
nates first, followed by the y coordinates. The statement UnitSquare(1,:) tells MATLAB
to use the first row of the UnitSquare matrix for the x coordinates and UnitSquare(2,:)
gives the second row for the y coordinates. The colon in the column placeholder means
that MATLAB should cycle through all the available columns in UnitSquare (in this case,
columns 1–4). Finally, we have included the LineWidth parameter to make the lines stand
out a little more from the grid lines.

When you save and execute the script, you should obtain the plot shown in Figure 3.4.
This plot is unsatisfying for two reasons: first, the square is open on the left side and second,
it appears to be squashed in the y direction. The plot command draws lines between the
points that we specify, and we did not specify that the final point in the square should be
the same as the starting point. Add one more column to the UnitSquare matrix as follows:

TABLE 3.1

Coordinates of Unit Square

x y

1 −0.5 −0.5
2 0.5 −0.5
3 0.5 0.5
4 −0.5 0.5

–2 –1.5

–1.5

–1

–1

–0.5

–0.5

0

0

0.5

0.5

1

1

1.5

1.5

2

2

x (m)

y (
m

)

–2

FIGURE 3.4
This is not a square!

92 Introduction to Mechanism Design

UnitSquare = 0.5*[-1 1 1 -1 -1;
 -1 -1 1 1 -1];

Note that the final column is the same as the first column. When you run the program
again, you should obtain a closed rectangle (but not a square!) The squashing occurs
because MATLAB tries to fill up as much of the plot window as it can with the requested
plot. Since the x axis is much wider than the y axis, the plot ends up stretched in the x
direction. To fix this, add the command

axis equal

at the end of the script.
You should now obtain the plot shown in Figure 3.5. It looks like a square, but it is not

filled as required by the problem statement. To make a filled polygon we can use the fill
command, which works much the same way as the plot command. Comment out the
plot command and type the following fill command. You should obtain the plot shown
in Figure 3.6.

fill(UnitSquare(1,:),UnitSquare(2,:),'b','LineWidth',2)

The fill command requires that you specify a color (in this case ‘b’ means blue) right after
you give the x and y coordinates. We have now achieved the goal of plotting a filled unit
square. What if we wanted to plot a square with side length 2 centered at the coordinates
(1, 1)? We can simply define a new matrix, called NewSquare, as follows:

NewSquare = 2*UnitSquare + [1; 1];

–2–2.5 –1.5

–1.5

–1

–1

–0.5

–0.5

0

0

0.5

0.5

1

1

1.5

1.5

2 2.5

2

x (m)

y (
m

)

–2

FIGURE 3.5
It’s a square, but it’s not filled.

93Introduction to MATLAB®

This command multiplies each entry in the UnitSquare matrix by 2 (i.e., it scales the
matrix by a factor of 2) and adds (1, 1) to each vertex. If you change the fill command to
plot NewSquare instead of UnitSquare, you should obtain the plot shown in Figure 3.7.
The full text of the SquarePlot script is shown below.

–2–2.5 –1.5

–1.5

–1

–1

–0.5

–0.5

0

0

0.5

0.5

1

1

1.5

1.5

2 2.5

2

x (m)

y (
m

)

–2

FIGURE 3.6
The filled square.

–1.5

–1.5

–1

–1

–0.5

–0.5

0

0

0.5

0.5

1

1

1.5

1.5

2 3 3.52.5

2

x (m)

y (
m

)

–2

FIGURE 3.7
A larger square no longer centered at the origin.

94 Introduction to Mechanism Design

% SquarePlot.m
% plots a filled square

clear variables; close all; clc

UnitSquare = 0.5*[-1 1 1 -1 -1;
 -1 -1 1 1 -1];

NewSquare = 2*UnitSquare + [1; 1];

fill(NewSquare(1,:),NewSquare(2,:),'b','LineWidth',2)

xlabel('x (m)'); xlim([-2 2])
ylabel('y (m)'); ylim([-2 2])
grid on
axis equal

3.7 Adding Some Structure – The for Loop

So far, we have used vector operations to perform repeated calculations. This works well
for simple formulas, such as the sine of an angle, but will be extremely difficult for more
complicated computations, such as position and force analysis. Luckily, there is a simple
structure we can use to perform repeated calculations: the for loop. The syntax for this
loop is

for i = 1:N
 do some stuff N times
end

The variable i is called the loop counter, and this set of statements tells MATLAB to perform
whatever is inside the for…end structure a total of N times. The first time it performs the
calculations the variable i takes on the value of 1, the second time it takes on the value of 2,
and so on until it reaches a value of N. After the calculations have been performed N times
the loop is finished and MATLAB goes on to the next statement. Note that every for state-
ment must have a corresponding end statement.

Let us try using a for loop to create a “circle of squares” that orbit the origin. We’ll
use the UnitSquare matrix that we created in the last script to plot a single square, repeat-
ing the process as we move around the origin. The center of a given square lies at the end
of the vector r, shown in Figure 3.8, where

r = θ

θ

2 cos

sin

Create a new script called SquareCircle.m. At the top of the file type the header:

95Introduction to MATLAB®

% SquareCircle.m
% makes a plot of eight squares arranged in a circle

clear variables; close all; clc

UnitSquare = 0.5*[-1 1 1 -1 -1;
 -1 -1 1 1 -1];

We wish to plot eight squares, so type in the following for loop

for i = 1:8

end

The first thing we need to calculate inside the loop is the angle of the vector r, which we
denote by theta. We want theta to start at zero and increment by 45° at each iteration of
the loop. Since i starts at 1, we must subtract 1 if we wish to start at 0. The angle 45° is equal
to 2π/8 in radians. Thus, the first line inside the for loop should read

 theta = (i-1)*2*pi/8; % angle at which to place square

It is customary to indent all the lines inside the for loop so that it is easy to see which com-
mands are executed multiple times. The reader can easily verify that theta begins at 0
(when i = 1) and ends at (7/8) 2π = 315° when i = 8. Next, we calculate the vector r, which
gives the center of a given square

 r = 2*[cos(theta); sin(theta)]; % center of square

The vector r has been given a length of 2. Next, we’ll create a new square centered at r

 NewSquare = UnitSquare + r; % create new square

Since we will be creating filled squares, it would be nice if we could fill each square with
a different color. MATLAB specifies colors as a three-element vector giving the red, green,
and blue components, respectively. The values of R, G, and B must lie between zero and
one with one giving full saturation of a given color. Thus, the triple [1 1 1] specifies the
color white, [1 0 0] gives a red color, [0 0 0] gives black, and [0.5 0.5 0.5] gives the color gray

r

x

y

θ

FIGURE 3.8
The origin of each square lies at the end of the vector r.

96 Introduction to Mechanism Design

halfway between white and black. We’ll plot our squares in grayscale starting with black
for the first square and ending in light gray for the final square. Since the color must be
different for each square we must use the loop counter i to define the colors. On the next
line in the loop, define the variable col (short for color).

 col = (i-1)*[1 1 1]/8; % fill and edge color of square

Note the three-element vector [1 1 1] at the center of the definition. This triple is multiplied
by (i-1)/8, which starts at 0 when i = 1 and ends at 7/8 when i = 8. Thus, the first color is
defined as [0 0 0] (black) and the final color is defined as [0.875 0.875 0.875] (really
light gray). We are now ready to plot the squares

 fill(NewSquare(1,:),NewSquare(2,:),col,'EdgeColor',col,'LineWidth',2)

If you save and execute the program now you’ll find that it seems to have plotted only
the final square in the sequence. This is because the fill command automatically erases
whatever was in the plot window before plotting the new square. Right after the fill
command, type the command

 hold on

This tells MATLAB to preserve everything in the plot window so that the next plotting
command will simply add a new square to the existing plot. After the loop is finished, we
should add the commands that make the plot look professional.

xlabel('x (m)'); xlim([-3 3])
ylabel('y (m)'); ylim([-3 3])
grid on
axis equal

If you save and execute the script (using F5) you will obtain the plot shown in Figure 3.9.
The full listing of the script is shown below.

% SquareCircle.m
% makes a plot of eight squares arranged in a circle

clear variables; close all; clc

UnitSquare = 0.5*[-1 1 1 -1 -1;
 -1 -1 1 1 -1];

for i = 1:8
 theta = (i-1)*2*pi/8; % angle at which to place square
 r = 2*[cos(theta); sin(theta)]; % center of square
 NewSquare = UnitSquare + r; % create new square
 col = (i-1)*[1 1 1]/8; % fill and edge color of square
 fill(NewSquare(1,:),NewSquare(2,:),col,'EdgeColor',col,'LineWidth',2)
 hold on
end

97Introduction to MATLAB®

xlabel('x (m)'); xlim([-3 3])
ylabel('y (m)'); ylim([-3 3])
grid on
axis equal

3.8 A Primitive Animation

Sometimes the best way to visualize the motion of a mechanism is to animate it. MATLAB
has a full suite of features for making movie files, but we will concentrate here on animat-
ing a plot within a normal plot window. For this example, we will animate the motion of
a projectile being thrown in the air at a 45° angle. The projectile has an initial velocity in
both the x and y directions of 50 m/s. Open a new script called Projectile.m and type
the following header:

% Projectile.m
% animates the path of a projectile

clear variables; close all; clc

t = 0:0.1:15; % [s] vector of times
vx0 = 50; % [m/s] initial velocity in the x direction
vy0 = 50; % [m/s] initial velocity in the y direction
g = 9.81; % [m/s^2] acceleration of gravity

–3
–3

–2

–2

–1

–1

0
x (m)

y (
m

)

0

1

1

2

2

3

3

FIGURE 3.9
A circle of multi-colored squares.

98 Introduction to Mechanism Design

We should next tell MATLAB to open a new plot window without placing anything in
it yet.

figure

The default MATLAB plot window size is a little small for our purposes, so we will resize
it using the following command

set(gcf,'Position',[50 50 1200 500])

The argument gcf stands for “graphics current figure” and the command sets the current
plot window to a width of 1200 pixels and a height of 500 pixels. It locates the bottom cor-
ner of the plot window a distance of 50 pixels from the bottom of the screen and 50 pixels
from the left side of the screen.

Now let us begin the for loop. The loop should make one iteration for every element in
the t (time) vector, so we define the loop as

for i = 1:length(t)

end

The length statement gives the number of elements in the vector t. At the beginning of
the loop, we should calculate the current position of the projectile. We do this by using
some basic equations from introductory Physics:

 x v tx0=

y v t gty

1
20

2= −

Translating these equations into MATLAB gives

 x = vx0 * t(i); % x position
 y = vy0 * t(i) - 0.5*g*t(i)^2; % y position

Remember that t is a vector, not a single number. The statement t(i) gives the ith number
in the t vector. Since we have defined the loop such that i ranges from 1 to length(t)
we will use every value of t as we iterate through the loop. The first iteration of the loop
uses the first value within the t vector, the second iteration uses the second value in t,
and so on.

We next plot the current position of the projectile.

 plot(x,y,'o','MarkerFaceColor','b')

Unlike our previous plots, the quantities x and y contain a single number each – the coordi-
nates of the current position of the projectile. At a given time step, we are plotting the posi-
tion of a single point, the current position of the projectile. For this reason, there is no line
or curve to plot, since we don’t have more than one point. The statement ‘o’ tells MATLAB
to plot the current point with a small circular marker, and the ‘MarkerFaceColor’ com-
mand makes the circular marker a solid blue color. Next, enter the commands that make
the plot presentable

99Introduction to MATLAB®

 axis equal
 xlabel('x (m)'); xlim([0 600])
 ylabel('y (m)'); ylim([0 150])
 grid on

The axis limits were found through trial and error, and you will need to change them if
your projectile has a different initial velocity. The final command in the loop is

 drawnow

that tells MATLAB to place everything that is in the graphics buffer onto the plot window.
This concludes the for loop, and you can save and execute the program now. When you
execute the program, you should be rewarded with a beautiful animation of the projectile
flying through the air and then landing (or falling below the x axis). The full listing of the
program is shown below.

% Projectile.m
% animates the path of a projectile

clear variables; close all; clc

t = 0:0.1:15; % vector of times
vx0 = 50; % initial velocity in the x direction
vy0 = 50; % initial velocity in the y direction
g = 9.81; % acceleration of gravity

figure
set(gcf,'Position',[50 50 1200 500])

for i = 1:length(t)
 x = vx0 * t(i); % x position
 y = vy0 * t(i) - 0.5*g*t(i)^2; % y position

 plot(x,y,'o','MarkerFaceColor','b')

 axis equal
 xlabel('x (m)'); xlim([0 600])
 ylabel('y (m)'); ylim([0 150])
 grid on

 drawnow
end

3.9 Summary

We have now learned enough MATLAB to begin conducting position analysis on simple
linkages. Some of what we learned here will be repeated in Chapter 4 when we learn to
do position analysis on the threebar linkage. As you type and execute your programs, you
will undoubtedly encounter many of the error messages described above. In most cases,

100 Introduction to Mechanism Design

the errors are the result of a vector or matrix not having the correct dimension (e.g. what
you thought was a row vector was entered as a column vector, etc.) By using the defini-
tions of the variables in the Workspace window, you can usually track down where the
problem lies.

In other cases, the error is a result of using incorrect syntax for a particular command.
For example, if we typed

 fill(NewSquare(1,:),NewSquare(2,:))

in an effort to obtain a filled square, MATLAB would respond with

Error using fill
Not enough input arguments.

Error in SquareCircle (line 14)
fill(NewSquare(1,:),NewSquare(2,:))

When you encounter an error message of the type error using … the best approach is
to type help fill in the Command Window to see the correct syntax. As it happens, the
fill command requires that we specify a fill color, in addition to the coordinates, which is
what the error message was telling us in its own cryptic manner. Above all, don’t become
discouraged when you try to run your program for the first time and obtain a screen full of
error messages. It is always possible to track down the source of the errors using a combi-
nation of deductive reasoning and the techniques described above. It is entirely normal to
find MATLAB frustrating at first, in the same way that a bicycle or skateboard is frustrat-
ing until you learn to keep your balance. As in all things, practice makes perfect!

Acknowledgments

Several images in this chapter were produced using MATLAB software.
MATLAB is a registered trademark of The MathWorks, Inc.

101

4
Position Analysis of Linkages

4.1 Introduction to Position Analysis

In the previous chapter, we used graphical methods to design fourbar linkages to reach
two or three specified positions. While these methods are handy for designing simple
linkages, it is often the case that we require knowledge of the behavior of the linkage over
its entire range of motion. Some important reasons include:

 1. Timing analysis
It may be important to predict the length of time a link requires to reach each
specified position. Interfacing with other machinery, as done on assembly lines,
often requires precise timing of each part.

 2. Prevention of interference
In most cases linkages must operate within a limited space (e.g. engine bay, assem-
bly plant room, etc.). Knowledge of the “envelope” through which a linkage travels
is therefore critical. A linkage with too large an envelope must be redesigned and
reevaluated.

 3. Failure prevention
This may be divided into three categories:

 a. Failure of the linkage: If stresses within the links or at the joints of a linkage
become too great then the linkage may fail. Example: failure of a crankshaft or
connecting rod in a piston engine.

 b. Failure of parts attached to a linkage: Unless a linkage is properly balanced, its
movement can create vibrations in the surrounding environment. This is
always undesirable.

 c. Failure of the object(s) being moved by the linkage: All linkages are designed to
move something. If the movement is done too quickly or with too much force,
the objects being moved may fail. Examples: amusement park rides, over-
revving an engine.

In Case (1), we need to predict the time it takes for a linkage to reach specified positions.
For Case (2), we need to know the positions of the links at all times. For Case (3), we need
the positions, velocities, and accelerations of each link to predict dynamic forces in and
around the linkage.

As we learned in the design of the quick-return mechanism, we can predict the timing
of a linkage using graphical methods fairly easily. In theory, we could also predict interfer-
ence graphically, although this would quickly become tedious. Prediction and prevention

102 Introduction to Mechanism Design

of failure is very difficult and time-consuming using graphical means alone. Clearly, a
better solution is needed.

In this chapter, we will develop methods for finding the overall configuration of some
common linkages at any time. Since performing the calculations by hand will prove to be
rather involved and time-consuming, our method should admit easy implementation in
software, specifically MATLAB®. The approach we will use will be vectorial and geometric.
For some of the linkages (e.g. inverted slider-crank, fourbar) we will solve for the position
of each link using geometry alone. For others (e.g. the threebar and fourbar slider-crank)
we will adopt the vector loop approach. Others (e.g. the geared fivebar) will use a combina-
tion of the two approaches.

To completely specify the configuration of a linkage, we must know at least one of the
link angles in advance. For example, one of the links may be driven by a motor, as in the
windshield wiper mechanism. In the fourbar linkage, we are given the crank angle (shown
as θ2 in Figure 4.1). The goal is then to find the angles of the other links (θ3 and θ4) as a func-
tion of the crank angle. Note that all angles are measured from the horizontal in the coun-
terclockwise direction, and the ground link (link 1) is assumed to be horizontal. Because
of this, θ1 is always zero. If we wish to model a fourbar linkage that has a non-horizontal
ground, we must employ a coordinate transformation, which will be discussed in a later
section. We will begin our discussion with a review of vectors and matrices. Next, we will
develop a method for calculating the positions of the simplest of linkages: the threebar
slider-crank. From there we proceed to the fourbar linkage, the inverted slider-crank, the
geared fivebar and finally the family of sixbar linkages.

4.2 Review of Vectors and Matrices

To begin our study of position analysis, a review of some basic vector operations is neces-
sary. This will enable us to write our kinematic equations compactly and efficiently, and
is also handy while using MATLAB. We begin with a short review of some properties of
vectors and matrices, and conclude with coordinate transformations.

b

a

d

c

θ3

θ
4θ2

y

x

FIGURE 4.1
A typical fourbar linkage showing the link lengths and angles.

103Position Analysis of Linkages

A vector is simply a row or column of numbers, as shown

v

1

2

v
v

vn

=

 (4.1)

or

 v 1 2v v vn{ }= … (4.2)

A matrix, on the other hand, is a set of numbers arranged in a rectangular grid.

 A 11 12 13

21 22 23

A A A
A A A

=

 (4.3)

Both vectors and matrices will be indicated in bold typeface. Lowercase letters will be
used for vectors, and uppercase will be used for matrices. We specify the dimension of a
vector or matrix by giving the number of rows first, followed by the number of columns.
For example, the vector in Equation (4.1) has dimension (n × 1), the vector in Equation (4.2)
is (1 × n) and the matrix in Equation (4.3) is (2 × 3). The vector in Equation (4.1) is often
called a column vector because it inhabits a single column, while the vector in Equation (4.2)
is called a row vector because it occupies a single row.

Often, we use vectors to represent directed line segments in space. In two dimensions
(i.e. on a plane) vectors take the form:

 r
r
r

x

y
=

 (4.4)

as shown in Figure 4.2. The length or magnitude of a vector, denoted by vertical pipes on
either side of a vector, is found using the Pythagorean theorem.

y

x

r

rx

r y

θ

FIGURE 4.2
A two-dimensional vector has an x and y component.

104 Introduction to Mechanism Design

 r 2 2r rx y= + (4.5)

and the angle θ that a vector makes with the horizontal is

 tan
r
r
y

x
θ = (4.6)

It is frequently the case that we know the length of a vector and its angle, rather than its x
and y components. This will occur, for example, when we perform position analysis on a
linkage, since we know the lengths of each link in advance. The x and y components can
be computed as

 cos
sin

r
r

r
r

x

y

θ
θ

=

 (4.7)

where r = |r| is the length of the vector (see Figure 4.3). Often, we will place the magnitude
in front to more easily distinguish between magnitude and direction

 cos
sin

r
r

r
x

y

θ
θ

=

 (4.8)

In this notation, the magnitude r is multiplied by both the cosine and sine terms. The quan-
tity on the right in brackets is now a unit vector, which we will discuss in more detail below.

4.2.1 Vector Addition

Adding two vectors is equivalent to taking the sums of the individual components of each
vector, as shown in Figure 4.4.

 r s
cos cos
sin sin

r s
r s

r s
r s

x x

y y

r s

r s

θ θ
θ θ

+ =
+
+

=

+
+

 (4.9)

y

x

r

r s
in

θ

r cosθ

θ

FIGURE 4.3
Horizontal and vertical components of a vector as found using trigonometry.

105Position Analysis of Linkages

The result of a vector sum is another vector.
It is often the case that we wish to find the coordinates of a point P, which is attached to

a particular link. If we know the vectors r and s that are associated with links that form a
“chain” to P, then we can write

 = +p r s (4.10)

If the coordinates of point P relative to the origin are needed, then r must start at the origin
(Figure 4.5).

4.2.2 The Vector Loop

Now consider the chain of vectors shown in Figure 4.6. We begin with r2, and proceed
clockwise around the loop. Since the coordinates of the start of the loop and the end of the
loop are the same, the sum of the vector loop is zero.

 02 3 4 1+ − − =r r r r (4.11)

y

x

r

s
r y

S y

rx Sx

θr

θ
s

FIGURE 4.4
Geometric interpretation of adding two vectors.

y

x

p

P

r

s

FIGURE 4.5
Finding the coordinates of point P by adding two vectors.

106 Introduction to Mechanism Design

Note in particular the negative signs associated with r4 and r1. In moving clockwise around
the loop we move in the opposite sense of these two vectors (i.e., from the head to the tail),
so we must subtract them instead of adding them. If we had chosen to move counterclock-
wise around the loop starting with r1 we would have

 01 4 3 2+ − − =r r r r (4.12)

which is the same as the Equation (4.11), except multiplied by −1. It is important to remem-
ber that Equations (4.11) and (4.12) have two components each (an x and y component).
While Equation (4.11) is written as a single equation in vector notation, it contains two
separate equations, both of which must be satisfied. In other words

0

0

2 3 4 1

2 3 4 1

r r r r

r r r r

x x x x

y y y y

+ − − =

+ − − =
 (4.13)

You might be wondering how the direction for each vector was chosen when drawing the
vector loop. In this text, we will strictly maintain the convention of measuring all angles
from the positive x axis. This will make our vector computations much simpler and less
prone to error. Another convention we will adopt is that of placing the tail of a vector on
a ground pin, whenever possible. As shown in Figure 4.7, this convention enables us to

y

x

P

r2

r3

r4

r1

FIGURE 4.6
If a series of vectors ends where it began, its sum is zero.

y

x

r2

r3

r4

r1

θ3

θ4θ2

FIGURE 4.7
The direction of each vector is somewhat arbitrary, but we must remain consistent when we use the vector dia-
gram to write the vector loop equation.

107Position Analysis of Linkages

measure the angles of r2 and r4 directly from the fixed x axis. Unfortunately, the root of r3
is not fixed in space, so we must be content to measure its angle from the horizontal, as
shown in the figure. It is important to understand that the choice of direction for the vec-
tor is arbitrary, but once a direction has been chosen the designer must remain consistent
when developing the vector loop equations.

In other words, it would be perfectly valid to choose the directions for r3 and r4 shown in
Figure 4.8, but the resulting vector loop equation would be changed to

 02 3 4 1− + − =r r r r

and the angles for each vector would need to be measured as shown in the figure. We have
a great deal of flexibility in analyzing mechanisms, but consistency is critical.

4.2.3 The Dot Product

The dot product (or scalar product) of two vectors is defined as

 θ= + =r s r sx x y yr s r s· cos (4.14)

where θ is the angle between the two vectors. Note that if θ = 90° (i.e. if the vectors are
orthogonal to each other) then cosθ = 0 and r · s = 0. This is a good test as to whether two
vectors are perpendicular to each other. We will often find it useful to compute a vector
perpendicular to r. There are two possibilities, given by

 r r
r

r

r

r
y

x

y

x

=
−

=

−

⊥ ⊥ (4.15)

Both of these are perpendicular to r, but point in opposite directions. To prove that these
are perpendicular to r, we can use the dot product

 () ()= − + = = + − =⊥ ⊥r r r r r r r rx y y x x y y xr r r r· 0 · 0 (4.16)

The perpendicular vector on the left in Equation (4.15) represents a rotation of the vector r
counterclockwise by 90°, while the vector on the right represents a clockwise rotation of 90°.

y

x

r2

r3

r4

r1

θ3

θ4

θ2

FIGURE 4.8
The direction of vectors r3 and r4 has been reversed in this diagram.

108 Introduction to Mechanism Design

We will use the expression on the left more frequently, since a counterclockwise rotation is
considered positive in a right-handed coordinate system.

The dot product may be interpreted geometrically as giving the projection of one vector
onto another, as shown in Figure 4.9. If we denote the projection of s onto r as

 cossr θ= s

then the dot product r · s can be written

 sr⋅ =r s r

and a similar expression can be written for rs. If the angle between the two vectors is 90°,
then the projection of one onto the other is zero, as is the dot product.

Example 4.1: Compute the Dot Product a · b for the Following Cases

 1. 5
2

1
6

5 12 17=

=

⋅ = + =a b a b

 2. 1

2

1

2
1 1 2 2=

=

⋅ = +a b a b

a
a

b
b

a b a b

 3. 2
4

4
2

8 8 0=

= −

⋅ = − + =a b a b

 4.
1
2
3

4
5
6

4 10 18 32=

=

⋅ = + + =a b a b

 5.
1
2
3

0
3

2
0 6 6 0=

= −

⋅ = − + =a b a b

 6.
1
2
3

2
1
0

2 2 0 0=

=
−

⋅ = − + + =a b a b

r

|s|cosθ

|r|cosθ

r

s s
θθ

FIGURE 4.9
The dot product gives the projection of one vector onto another.

109Position Analysis of Linkages

 7.

1
1
1
1

1
1

1
1

1 1 1 1 0=

= −

−

⋅ = − + − =a b a b

 8.

1
1
1
1
1

1
1.5
1
1.5
1

1 1.5 1 1.5 1 0=

=
−

−

⋅ = − + − + =a b a b

 As you can see by examples 5–8, orthogonal vectors can be found in 3, 4, or
even 5 dimensions. Note that the result of a dot product is always a scalar,
and not a vector. One common quantity computed with a dot product is work,
which is defined as

 = ⋅F rdW d (4.17)

where F is a force and dr is the distance that the force has caused an object to move.

4.2.4 The Cross Product

Another useful vector tool is the cross product, which is usually denoted by the symbol
“×”. There are probably as many different methods for calculating cross products as there
are math teachers, but one standard formula is

 () ()()× = − − − + −ˆ ˆ ˆr s r s r s I r s r s J r s r s ky z z y x z z x x y y x (4.18)

Where ˆ, ˆ, ˆI J k are the unit vectors (vectors of length 1) in the x, y and z directions, respec-
tively. If both r and s are two-dimensional vectors (i.e. with zero z components) then the
formula is quite simple:

 ˆr s r s kx y y x()× = −r s (4.19)

where k̂ is the unit vector in the z direction. The cross product always produces a vector
that is perpendicular to both of the vectors in the product—this is why we obtain a vector
pointing in the z direction when we compute the cross product of two vectors confined to
the xy plane. If the cross product of two nonzero vectors is zero, it indicates that the two
vectors are parallel or antiparallel. One common quantity computed using a cross product
is torque, where

 = ×T r F (4.20)

where F is the applied force and r is the vector from the center of rotation to the point of
application of the force. Note that if the force is directed inward to the center of rotation
(i.e. it is parallel to r) then the resulting torque is zero. We will use the concept of torque
quite often when we conduct force analysis on mechanisms in Chapter 7.

110 Introduction to Mechanism Design

Example 4.2: Computing Cross Products

 1. =

=

× = − = −1

2
3
4

4 6 2k̂a b a b

 2. ()=

=

× = − = × = − × a3

4
1
2

6 4 2k̂a b a b a b b

 3. ()=

=

× = − =1

2
2
4

4 4 0 ˆ and are parallelka b a b a b

 4. ()=

=

× = −
1
0
0

0
0
5

5ˆ and are both perpendicular to ˆj ja b a b a b

 5. ()=
−

=

× =
1

0
0

0
0
5

5ˆ and are both perpendicular to ˆj ja b a b a b

4.2.5 Unit Vectors

In later chapters on velocity, acceleration, and force analysis, we will find it convenient to
work with unit vectors. Like any vector, a unit vector has a direction and magnitude, but the
magnitude of a unit vector is always one. Figure 4.10 shows a situation where two points, P
and Q, lie on the same link. The vector from the origin to point P is r, and the vector from
the origin to point Q is s, where

 cos
sin

cos
sin

r sθ
θ

θ
θ

=

=

r s (4.21)

Since both of these vectors have the same direction, but different magnitude, it is conve-
nient to define the unit vector e as

y

x

s

r

P

Q

r

s

e

θ

FIGURE 4.10
The unit vector e points in the same direction as r and s.

111Position Analysis of Linkages

 e cos
sin

θ
θ

=

 (4.22)

The reader may verify that the magnitude of this vector is in fact unity, since

 cos sin 12 2θ θ+ = (4.23)

Now r and s can be written

 r s= =r e s e (4.24)

This is an altogether more compact notation, and will save us having to write out a seem-
ingly endless stream of trigonometric functions. Since MATLAB was designed to handle
vectors and matrices easily, we will find it quite simple to use unit vectors in carrying out
our position, velocity, and acceleration analyses.

Any vector can be written as a product of the vector’s length and a unit vector giving
direction. As an example, consider the linkage chain shown in Figure 4.11. The vector from
point A to point B can be written

 r e2aAB = (4.25)

and the vector loop equation in terms of unit vectors is

 02 3 4 1a b c d+ − − =e e e e (4.26)

Now recall the definition of the dot product given earlier

 cosθ⋅ =r s r s (4.27)

If we write a dot product using only unit vectors, say e2 and e3 the result is

 cos2 3 θ⋅ =e e (4.28)

since the magnitude of both vectors in the product is one. Thus, it is quite straightforward
to find the angle between two unit vectors using the dot product.

y

x

B

C

DA

a

b

c

d

e2

e1

e3

e4

FIGURE 4.11
A vector loop using unit vectors to give direction.

112 Introduction to Mechanism Design

Now let us define the unit normal, which is a vector perpendicular to e.

 sin
cos

θ
θ

= −

n (4.29)

We have chosen the vector that is rotated 90° counterclockwise from e as the definition of
the unit normal, as shown in Figure 4.12, for reasons that will become apparent in the next
section. The reader may also wish to verify that

 0⋅ =e n (4.30)

The unit normal is also a unit vector, but is defined as being perpendicular to e. It will
come in handy when conducting velocity and acceleration analysis on linkages.

4.2.5.1 Time Derivatives of Unit Vectors

To conduct velocity and acceleration analysis of linkages, we will need to take time deriva-
tives of unit vectors. Consider the unit vector e.

 e cos
sin

θ
θ

=

 (4.31)

If we differentiate this with respect to time, we have

e cos

sin
d
dt

d
dt

θ
θ

=

 (4.32)

Taking the time derivative of a vector requires taking the derivative of each one of its com-
ponents, in turn. Consider first the x component:

e

cos
d
dt

d
dt

x θ()= (4.33)

y

x

e

n

FIGURE 4.12
The unit normal is perpendicular to the unit vector, rotated 90° counterclockwise.

113Position Analysis of Linkages

Since e is attached to a moving linkage, the angle θ is a function of time, and we must
employ the chain rule of differentiation to take the derivative. If u(x) is a function of x, and
v(u) is a function of u, then the chain rule states that

dv
dx

dv
du

du
dx

= × (4.34)

In our example we have

 cosu x t vθ θ→ → → (4.35)

so that

 cos sin
du
dx

d
dt

dv
du

d
d

θ
θ

θ θ()→ → = − (4.36)

Thus, the derivative of the x term of the unit vector is

e

cos sin
d
dt

d
dt

d
dt

x θ θ θ()= = − (4.37)

The term dθ/dt is the time rate of change of the angle θ, which we will define as the angular
velocity, ω (Greek letter omega).

d
dt

ω θ≡ (4.38)

Thus, the time derivative of the unit vector is

e sin

cos
d
dt

ω θ
θ

= −

 (4.39)

The alert reader may recognize the quantity in brackets as being the unit normal, and the
derivative of the unit vector may be written

 ω=d
dt
e

n (4.40)

Thus, the time derivative of the unit vector is the angular velocity multiplied by the unit
normal.

What happens if we differentiate the unit normal with respect to time?

n

esin
cos

cos
sin

d
dt

d
dt

θ
θ

ω θ
θ

ω= −

= −
−

= − (4.41)

We have obtained unit vector again, multiplied (as before) by the angular velocity. Note
that the minus sign in front of the result indicates that the direction is opposite the original
unit vector direction, as shown in Figure 4.13. Therefore, taking the time derivative of the
unit normal results in changing the direction by 90° counterclockwise and increasing the
magnitude by a factor of ω. The reader may easily verify that

114 Introduction to Mechanism Design

 e n
d
dt

ω()− = − (4.42)

and that taking the time derivative of −n would bring us back where we started, pointing
in the direction of e. Thus, time differentiation of the unit vector or unit normal results in
a rotation of 90° counterclockwise accompanied by a multiplication by ω.

4.2.6 A Very Brief Introduction to Matrix Algebra

Matrices are used when we wish to solve sets of linear equations. In fact, MATLAB (which
is short for “MATrix LABoratory”) was originally developed for just this purpose. Suppose
that we have the following two linear equations:

1 2 3

4 5 6

1 2

1 2

x x

x x

+ =

+ =
 (4.43)

For this simple example, we could solve the second equation for x2, and substitute the result
into the first equation to solve for x1. This procedure works well for two or three equations,
but quickly becomes tedious (and error-prone) for larger systems. Instead, we can arrange
the equations in matrix form, and use software (such as MATLAB) to do the hard work for
us. To do this, we take the coefficients of the variables and arrange them in a square grid,
as shown below

 1 2
4 5

3
6

1

2

x
x

=

 (4.44)

Let us decompose this equation into its constituent parts

 A1 2
4 5

matrix of coefficients

 = =

y

x

e
–e

n

FIGURE 4.13
Differentiating the unit normal gives the unit vector again, but in the opposite direction.

115Position Analysis of Linkages

 x vector of unknowns1

2

x
x

= =

 b3
6

vector of knowns

= =

so that we can rewrite Equation (4.44) as

 Ax b=

Note that everything on the right-hand side of the equation is known; that is, no variables
appear on this side of the equation. The order that we arrange the numbers in the matrix
(the square grid) is very important. Each row in the matrix corresponds to one of the equa-
tions, and each column corresponds to a variable we are solving for. If we rearrange the
order of the vector of unknowns, we must also rearrange the columns of the matrix, so that

 2 1
5 4

3
6

2

1

x
x

=

 (4.45)

Note that the rows have not been affected by changing the order of the vector of unknowns.

Example 4.3: Arrange the following equations into matrix form

5 8 13
8 20 25

1 2

1 2

+ =
+ =

x x
x x → 5 8

8 20
13
25

1

2

=

x
x

8 5 13 0
20 8 25 0

1 2

1 2

+ − =
+ − =

x x
x x → 8 5

20 8
13
25

1

2

=

x
x

6 8 10
8 20 30

+ =
+ =

a b
b a →

6 8
20 8

10
30

=

a
b

1 2 3 4

4 3 2 1

+ + =
+ + =

x y

x y →
1 2
4 3

1
1

=

−

x
y

cos sin

sin cos

and are unknowns

2 2

2 2

θ θ
θ θ

()

+ = ′
− + = ′
x y x

x y y

x y

→
cos sin
sin cos

2 2

2 2

θ θ
θ θ−

=

′
′

x
y

x
y

and are unknowns

1 2

2

1 2()

+ =
=

x x a
x b

x x
→

1 1
0 1

1

2

=

x
x

a
b

01 2 3

1 2

2 3

+ + + =

= +

+ =

ax bx cx d

g ex fx

hx kx m

→ 0

0

1

2

3

=
−

a b c
e f

h k

x
x
x

d
g

m

116 Introduction to Mechanism Design

A few other matrix definitions are in order. Consider the matrix

 A 1 2 3
4 5 6

=

 (4.46)

By exchanging columns and rows, we obtain the transpose

 A
1 4
2 5
3 6

T =

 (4.47)

The inverse of a matrix is defined such that

 A A U1 =− (4.48)

where U is the identity matrix.

�
�

� � � �
U

1 0 0
0 1 0

0 0 1

=

…

 (4.49)

Once we have the matrix equations written out, it is relatively easy to use MATLAB to
solve them. To enter a matrix into MATLAB, we use the square bracket, with a semicolon
separating lines. MATLAB will accept commas or spaces between columns, as shown.

>> A = [1 2;3 4]

A =

 1 2
 3 4

To access a particular entry in the matrix, we use normal parentheses in (row, column)
 format. For example

>> A(1,2)

ans =

 2

gives us the first row and second column of the matrix A. To enter a vector into MATLAB
(e.g. the vector of knowns), use the same technique. A column (vertical) vector has one
column and multiple rows, so we must use a semicolon between each entry

>> b = [5; 6]

b =

117Position Analysis of Linkages

 5
 6

There are two methods for solving the matrix equation Ax = b, the inverse method and
the forward slash method. Of these, MATLAB would prefer that you use the forward slash
method, unless you really need the inverse of matrix A for some reason. To understand
the reasoning behind the two methods, consider for a moment how you would solve the
equation Ax = b if it were not a matrix equation:

 Ax b= (4.50)

The simplest technique would be to divide both sides by A, as shown

 x
b
A

= (4.51)

This is mathematically equivalent to multiplying both sides by the reciprocal (or inverse)
of A.

 1x A b= − (4.52)

In MATLAB, the forward-slash technique is the equivalent of Equation (4.51), while the
inverse technique is the equivalent Equation (4.52). The first technique is computationally
much faster, since calculating the inverse of a matrix can sometimes be rather involved.

>> x = A\b

x =

 -4.0000
 4.5000

or

>> x = inv(A)*b

x =

 -4.0000
 4.5000

When you execute both of these statements, the second takes noticeably longer. Let’s check
to see if MATLAB came up with the correct solution:

1 4 2 4.5 4 9 5

3 4 4 4.5 12 18 6

() ()

() ()

− + = − + =

− + = − + =
 (4.53)

It worked! We now have a convenient and powerful tool for solving sets of linear equa-
tions. We will make frequent use of this in conducting velocity, acceleration, and force
analysis in later chapters.

118 Introduction to Mechanism Design

It is important to observe that while

 1 1x A b bA= =− −

is perfectly valid for scalar operations, it will not work for matrix manipulations. In fact,
the commutative property does not hold for matrix operations, and

 A b bA1 1≠− −

To see why this is true, consider the dimensions of each term in the above equation. The
inverse of the A matrix has the same dimension as the A matrix itself, so that A−1 has
dimension (2 × 2) and b has dimension (2 × 1). In order for a matrix multiplication to be
defined, the inner dimensions must be equal and the size of the result has the outer dimen-
sions. That is, for the operation

 A b 2 2 2 11 () ()→ × × ×−

the inner dimension is 2, and the outer dimensions are 2 and 1 so the result of this opera-
tion is a 2 × 1 vector. If we try

 bA 2 1 2 21 () ()→ × × ×−

the inner dimensions are 1 and 2, which are unequal. Since they are unequal, the multipli-
cation is undefined. To confirm this, try typing

>> b*inv(A)

The result is an error, as expected.

Error using *
Inner matrix dimensions must agree.

This is MATLAB’s way of telling us that the multiplication operation is undefined since
the inner dimensions are unequal. Knowing the meaning of this rather cryptic error
message will be very helpful in debugging the MATLAB programs we will write in later
sections.

4.2.7 Transformation of Coordinates

In some situations, we will find it simplest to use an “auxiliary” or “local” coordinate
system when modeling a linkage. Consider the slider-crank linkage shown in Figure 4.14.
The slider is aligned with the x′ axis, and we will find it relatively simple to perform our
analysis in the local (x′, y′) system, to begin with. We require a method for transforming
the results in the (x′, y′) system back into the “global” (x, y) system.

Consider the simplest case first, in which the moving (local) coordinate system shares
the origin with the fixed (global) coordinate system but is rotated by an angle φ, as shown

119Position Analysis of Linkages

in Figure 4.15. By breaking the vector s into its components in the moving coordinate sys-
tem, we can derive the relationships below:

cos sin

sin cos

s s s

s s s

x x y

y x y

ϕ ϕ

ϕ ϕ

= ′ − ′

= ′ + ′
 (4.54)

y

y'

x'

P

x

FIGURE 4.14
To the figure sitting at the origin and facing in the x’ direction, the piston appears to be directly ahead.

y

y'

S'y
S'x

x'

s

S'y sin x
S'x cos

Sx
y

y'

S'y
S'x

Sy

x'

s
S'y cos

x

S'x sin

FIGURE 4.15
The moving (local) coordinate system is rotated by an angle φ from the fixed (global) coordinate system. The
vector s is assumed known in the primed coordinate system.

120 Introduction to Mechanism Design

It is common to write these relationships in matrix form as

cos sin
sin cos

s
s

s
s

x

y

x

y

ϕ ϕ
ϕ ϕ

=

−

′
′

 (4.55)

or, more compactly

 = ′s As (4.56)

where

cos sin
sin cos

ϕ ϕ
ϕ ϕ

=
−

A (4.57)

is known as a rotation matrix. An interesting thing happens if we multiply the transforma-
tion matrix by its transpose:

cos sin
sin cos

cos sin
sin cos

ϕ ϕ
ϕ ϕ

ϕ ϕ
ϕ ϕ

−

×
−

=

cos sin cos sin sin cos

sin cos cos sin cos sin
1 0
0 1

2 2

2 2

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ

+ −

− +

=

 (4.58)

In other words, AAT = U or the transpose of A is also its inverse. A matrix that has this
property is called “orthogonal.” The property of orthogonality means that if we ever want
to reverse the transformation, that is, go from the global coordinate system to the local
coordinate system, we simply multiply the local coordinates by AT.

 T T

T

= ′

= ′

= ′

s As

A s A As

A s s

 (4.59)

To account for any possible movement of the link, we must also accommodate translation,
as shown in Figure 4.16. The global position of a point on a moving link can be written

P P

P P

= +

= + ′

r r s

r r As
 (4.60)

Where the angle φ is still measured between x and x′ after the translation has occurred.

121Position Analysis of Linkages

Example 4.4: A Simple Link

In Figure 4.17, the link has length r. The vector r gives the position of the point P at the
end of the link. In the local system, we can write r′ as

0

′ =

r r (4.61)

The link is rotated away from the global x axis by an angle φ. To transform the coordi-
nates of point P into the global system, we multiply by the rotation matrix A

 = ′r Ar

 r
cos sin
sin cos 0

ϕ ϕ
ϕ ϕ

=
−

r

 r
cos
sin

ϕ
ϕ

=

r
r

The reader will note that this is the same expression as Equation (4.7) with φ substituted
for θ.

y

x

rP

sP

r

P

C

B

y'

x'

FIGURE 4.16
A link may be translating as well as rotating.

y

x

r
P

y'

x'

FIGURE 4.17
A moving coordinate system is attached to the link.

122 Introduction to Mechanism Design

4.3 Position Analysis of the Threebar Slider-Crank

To begin our study of position analysis we will employ one of the simplest linkages that
is capable of interesting motion: the threebar slider-crank. As seen in Figure 4.18, the
 threebar consists of a crank, a slider and two ground pins. Remember that the ground
counts as one link. A motor is attached to the crank so that it rotates about ground pin A.
Pin D is used to connect the slider to ground in a half-slider joint. The crank and slider
are pinned at point B. The goal of the exercise is to find the position of point P for any
orientation of the crank. Note that point P is not a pin; it is just used to define a point at
the end of the slider.

There are only three fixed dimensions that are important for the position analysis, as
shown in Figure 4.19. The length of the crank is given by a, the overall length of the slider
is p and the distance between ground pins is d. The length b is defined as the distance from
the crank pin A to the ground pin at D. This length will change as the crank rotates, and b
is one of the variables we must solve for in our analysis.

We will now begin the position analysis for the threebar linkage. We assume at the out-
set that the crank length, a, the distance between ground pins d are known. Further, since
we are driving the crank using a motor, we assume that the crank angle, θ2, is also known.
Begin by constructing a vector loop diagram on the linkage, as shown in Figure 4.20. The

Crank

Motor

Slider

B

A
D

P

FIGURE 4.18
The threebar slider-crank is one of the simplest linkages that is capable of interesting motion. A motor is attached
to the crank, which is pinned to the ground. A half-slider joint connects the slider to a second ground pin.

b

a

p

d

FIGURE 4.19
The dimensions of the threebar that are needed for position analysis.

123Position Analysis of Linkages

vector r2 is attached to the crank, and has constant length a. Using unit vector notation, we
can write r2 as

 r e2 2a= (4.62)

where

 e
cos
sin2

2

2

θ
θ

=

 (4.63)

is the unit vector directed along the crank. The vector r3 is attached to the slider and con-
nects the crank pin A to the ground pin D.

 r e3 3b= (4.64)

The length b varies as the crank rotates, and the unit vector e3 is aligned with the slider.

 e
cos
sin3

3

3

θ
θ

=

 (4.65)

Finally, the vector r1 is

 r e1 1d= (4.66)

Since e1 is aligned with the horizontal, it is defined as

 e 1
01 =

 (4.67)

We will now write the vector loop equation for the threebar linkage. A vector loop is created
by traveling around the linkage, one vector at a time, until we return to our starting point.
Since we end at the same point as we began, the total distance traveled is zero. Beginning
at point A, the vector loop can be written

 02 3 1+ − =r r r (4.68)

r2

r3

r1

θ2

θ3

FIGURE 4.20
A vector loop diagram of the threebar linkage. The vector r2 is attached to the crank and r3 is attached to the
slider.

124 Introduction to Mechanism Design

Now expand this equation into its component forms using the definitions above

cos
sin

cos
sin

1
0

0
0

2

2

3

3
a b d

θ
θ

θ
θ

+

−

=

 (4.69)

While Equation (4.69) appears to be a single equation, it is actually composed of two separate
equations with an x component and a y component. Dividing these two equations gives

: cos cos 0

: sin sin 0

2 3

2 3

x a b d

y a b

θ θ

θ θ

+ − =

+ =
 (4.70)

The crank length, a, and distance between ground pins, d, are known quantities, as is the
crank angle θ2. This leaves only the slider angle, θ3, and the distance, b, as unknowns. The
vector loop method has given us two equations, which means that the problem is solvable.
A properly constructed vector loop diagram (or diagrams, for more complicated linkages)
will always provide the same number of equations as unknowns.

To solve for the variables, first rearrange the x component of Equation (4.70) to solve for b.

cos

cos
2

3
b

d a θ
θ

= −
 (4.71)

Insert this expression into the y component of Equation (4.70)

 sin
cos

cos
sin 02

2

3
3a

d aθ θ
θ

θ+ −

= (4.72)

Since

sin
cos

tan3

3
3

θ
θ

θ= (4.73)

We may solve for θ3 as

 tan
sin

cos3
2

2

a
a d

θ θ
θ

=
−

 (4.74)

Once θ3 is known, we may use Equation (4.71) to solve for b. This concludes the hard part
of the position analysis for the threebar. The problem statement, however, asks us to find
the position of point P for any crank angle.

Let us define the vector rBP, which starts at point B and ends at point P. Since this vector
has the same length as the overall length of the slider, p, and points in the same direction
as the slider we may write

 r e3pBP = (4.75)

A vector to point P can be found by adding the vectors r2 and rBP, as shown in Figure 4.21.

 2P BP= +r r r (4.76)

125Position Analysis of Linkages

Or, using the unit vector notation, we have

 2 3a pP = +r e e (4.77)

This formula is important enough to warrant special attention. It is often the case that we
know the position of one point on a link, and desire to know the position of another point.
Consider the link shown in Figure 4.22. If the position of point B is known, then we may
use the relative position formula to find the position of point P.

 P B BP= +r r r (4.78)

We will use the relative position formula quite often in the sections that follow, and it is
important enough that we will define a special MATLAB function to implement it. This
formula can also be used to derive the relative velocity and relative acceleration formulas, as
we will see.

4.4 Position Analysis of the Threebar Slider-Crank Using MATLAB®

Now that we have a set of formulas for calculating the angles and positions of the links on
the threebar linkage, we will put our knowledge to work in writing a MATLAB program
to perform the calculations for us. The goal of the program that we will write is to plot
the position of point B and P as the crank makes a full revolution. Along the way, we will

r2

rP

rBP

B

P

FIGURE 4.21
To find the point P, add the vectors r2 and rBP.

rB

rBP

rP

B

A

P

FIGURE 4.22
If the position of B is known, then the relative position formula can be used to solve for the position of point P.

126 Introduction to Mechanism Design

create a few handy MATLAB functions that we can use in conducting position analysis of
more complicated linkages.

A diagram of the threebar linkage that we will use in developing our program is
shown in Figure 4.23. The crank has length a = 100 mm, the distance between ground
pins is d = 150 mm and the overall slider length is p = 300 mm. We will place the origin
at point A.

This section is written for students who are new to scientific programming, and some
of the concepts will seem fairly basic to more experienced programmers. Many students
seem to have difficulty in translating a set of formulas, as were derived in the previous
section, to a program for evaluating these formulas. This section will demonstrate one
method for writing a scientific program. Of course, each programmer has his or her own
style, and you may feel free to tailor your own program as you see fit (assuming, of course,
that the results are the same!). If you have never used MATLAB before, you should go
through the simple MATLAB tutorial given in Chapter 3.

A program is a set of instructions that a programmer gives to a computer—like a
 recipe—with the goal of executing a particular task. In our case, we desire that the com-
puter solve for the positions of the links of the threebar, and then produce plots of the
paths of various points on the linkage. One of the first things to observe is that some
of these tasks should be executed only once (e.g. defining the lengths of each link) and
some are executed many times (e.g. solving for the slider length, b, and angle, θ3, at a
particular crank angle). We will place the tasks to be executed many times inside a loop,
since we do not wish to repeatedly type in our set of formulas. Everything that should
be executed only once (e.g. defining the link lengths and the plotting commands) will be
placed outside the loop.

When writing a scientific program, the first thing to do is to make a list of its objectives.
This is a good way to give an overall structure to the program; if you make a detailed
enough list, the code will be relatively easy to write. In addition, the list of objectives can be
copied and pasted into the program as comments that help to explain the purpose of each
section of the program. The objectives of our linkage analysis program are to:

B

D

150

(All dimensions in millimeters)

Crank length: 100
Slider length: 300
Distance between ground pins: 150

P

A

300

100

b

FIGURE 4.23
Dimensions of the threebar linkage used in the MATLAB code. We will use this linkage in later sections when
we conduct velocity, acceleration, and force analysis.

127Position Analysis of Linkages

 1. Enter the linkage dimensions.
 2. Conduct each of the following steps for every crank angle
 a. Calculate the angle of the slider, θ3.
 b. Calculate the length b between point A and D.

 c. Use these values to calculate the positions of points B and P.
 3. Once these calculations are complete, the program should generate a plot that

shows the paths of points B and P as the crank makes a complete revolution.

Items (1) and (3) need only be executed once, while the tasks in item (2) are executed several
times—once for each crank angle. Therefore, we will place the tasks in item (2) inside a
loop, and all of the other tasks will be outside the loop.

At the top of every MATLAB program you should type a set of comments that describe
the purpose of the program, its author (you!), and the date on which it was written. You
might need to use this program for another class in a later semester, and it is very helpful
to have a description of the program at the top so that you can remember what it does. At
the top of a new MATLAB script, type:

% Threebar_Position_Analysis.m
% Conducts a position analysis on the threebar crank-slider linkage
% by Eric Constans, June 1, 2017

Note that the first line gives the name of the program: Threebar _ Position _ Analysis.m.
This is not necessary (since it is just a comment) but it is good practice. Remember that MATLAB
file names are not allowed to have spaces (or other special characters) in them, so We have
used the underscore character instead. After you have typed the comments, save the script in
a convenient location (e.g. the Desktop) using this file name. On the next two lines, type:

% Prepare Workspace
clear variables; close all; clc;

These lines should be typed at the top of all of your MATLAB scripts. Its purpose is to clear
any variable definitions out of memory so that you start with a “clean slate.” If you forget to
do this, you will retain all of the variable definitions from the last time you executed the pro-
gram, sometimes with very surprising and unexpected results. The close all command
closes any plot windows that are open (as before, with the idea of starting with a clean slate)
and the clc command clears the command window (clc stands for “command line clear”).

Next, we should tell MATLAB the dimensions of the linkage, as shown:

% Linkage dimensions
a = 0.100; % crank length (m)
d = 0.150; % length between ground pins (m)
p = 0.300; % slider length (m)

These lines specify the lengths of each link. Notice that we have specified the units for
each dimension; this is important so that a reader of your program knows which system
of units you are employing.

Next, we will enter the coordinates of the ground pins, since they do not change as the
linkage moves. There are two ground pins, one at point A and one at point D.

128 Introduction to Mechanism Design

% Ground pins
x0 = [0;0]; % point A (the origin)
xD = [d;0]; % point D

The square brackets indicate that MATLAB should define x0 and xD as vectors. Each vec-
tor has an x and y component. Separating the components by a semicolon defines them as
column vectors with dimension 2 × 1. We will use point A as the origin in our calculations.
Every variable that begins with the letter “x” will be used to store the coordinates of a point
on the linkage. For example, xB will be used to store the position coordinates of the point B.

4.4.1 Data Structure for the Position Calculations

Defining the fixed ground pins was the final task that was to be executed a single time,
other than the plotting commands, which must be done at the end of the program after all
calculations are complete. We are now ready to begin framing the structure of the main
loop, which will execute the set of position calculations for each angle of the crank. First,
we must make an important decision: for how many different crank angles do we wish
to calculate the positions of points B and P? If we tell MATLAB to perform the position
calculations for very fine increments of the crank angle (e.g. every tenth, or hundredth
of a degree) we will produce a very exact plot of the path of point P, but at the cost of a
slow execution time. On the other hand, you can speed up execution of the program by
only performing the position calculations for every ten degrees of rotation of the crank,
but at the cost of a non-smooth, inaccurate position plot. This sort of tradeoff appears in
 programming quite often, and is part of the “art” of engineering.

For this example, we choose to perform the position calculations for every 1°of crank
rotation. Since we will start with the crank-oriented horizontally (at 0°) and end once the
crank is again oriented horizontally (at 360°) we will perform a total of 361 calculations.
That is, if you count from 0 to 360 in increments of 1, you will have a total of 361 position
calculations. Since we may wish to increase or decrease the number of calculations in the
future, we will define a variable, N, to keep track of this number.

N = 361; % number of times to perform position calculations

Next, we must determine how to store the results of our calculations. At each increment of
crank rotation, we will calculate several variables: the slider angle and length (θ3 and b), and
the coordinates of points B and P on the linkage. When we have completed the main loop,
we will have calculated (and stored) 361 values for θ3 and b, as well as 361 x and y coordi-
nates of the points B and P. It is most efficient to preallocate memory for all of these values so
that MATLAB does not need to create new storage space at every iteration of the loop. After
this is done, MATLAB can place newly calculated values into the preallocated space with-
out having to find new space in memory every time it goes through the loop. The simplest
way to preallocate space is to define theta2, theta3, and b as vectors of zeros.

theta2 = zeros(1,N); % allocate space for crank angle
theta3 = zeros(1,N); % allocate space for slider angle
b = zeros(1,N); % allocate space for slider length

These statements initialize theta2, theta3, and b as row vectors of 361 zeros each. As we
work our way through the main loop, the zeros will all be overwritten by the calculated
values for each variable. The statements above take three lines of code, and as we move to

129Position Analysis of Linkages

velocity and acceleration analysis these lines will expand until they consume an inordi-
nate amount of space. A more space-conserving way to preallocate memory is to use the
deal command, as shown:

[theta2,theta3,b] = deal(zeros(1,N)); % allocate space for link angles

The deal command “deals out” a row vector of 361 zeros to each one of the variables in the
square brackets, as a card dealer would distribute cards in a game of poker. In this way, we
can use a single line to preallocate memory for theta2, theta3, and b.

Defining the structure for the position variables is a little trickier. Each point (B and P)
has an x and y coordinate, both of which must be stored for each crank angle. Thus, instead
of using a single row vector as with the angles above, we require two rows for each position
variable. Initialize the position variables using the following commands.

[xB,xP] = deal(zeros(2,N)); % allocate space for position of B,P

It is important that you understand the structure of the variables as defined above.
Table 4.1 gives a graphical representation of the position coordinate xB. The first row gives
the x coordinates while the second row gives the y coordinates. Each column represents
the results of calculation for a single crank angle θ2. Thus, the first column contains the
coordinates of point B for θ2 = 0°, and the sixth column gives the coordinates of point B for
θ2 = 5°, and so on.

If we wish to access the y coordinate of point B for the tenth crank angle (θ2 = 9°), we
would type

>> xB(2,10)

at the command prompt. One of the most useful operators in MATLAB is the ordinary
colon. If we wish to access all of the x coordinates of point B, we would type

>> xB(1,:)

at the command prompt. The result of this statement would be a row vector of length N
containing the x coordinates of point B for each crank angle. Similarly, if we wish to find
the x and y coordinates of point B for the twentieth crank angle we would enter

>> xB(:,20)

at the command prompt. The result of this statement would be a two-element column
vector; the first element would be the x coordinate of point B at the twentieth crank angle

TABLE 4.1

The Structure of the Position Variable xB

1 2 3 4 5 N

1 1()xBx 2()xBx 3()xBx 4()xBx 5()xBx … ()xB Nx

2 1()xBy 2()xBy 3()xBy 4()xBy 5()xBy … ()xB Ny

Each column corresponds to a single crank angle. The first row gives the x coordinate and the second row gives
the y coordinate. The column and row labels represent the indices of the xB matrix; the row label gives the first
index and the column label gives the second index.

130 Introduction to Mechanism Design

and the second element would be the y coordinate. We will use the colon operator quite
frequently in our MATLAB scripts, so it is important that you understand its syntax.

4.4.2 The Main Loop

We will use a for loop to perform the repeated position calculations. MATLAB purists may
frown upon the use of for loops for such calculations, but sometimes readable, understand-
able code is more important than pure execution speed! If you are a MATLAB guru, you may
try to vectorize the position calculations, but you will probably spend more time program-
ming than you will save in execution speed. Type the following for loop into your script:

% Main Loop
for i = 1:N

end

Every for loop requires an end statement and it is a good idea to type it in now, so that
you do not forget it later on. Every statement that we place between the for and the end
will be executed N times. The variable i will take on the values 1, 2, 3 ... N depending upon
which iteration we are currently executing.

The first thing to do inside the loop is to determine the crank angle, since all subsequent
position calculations depend upon it. As stated earlier, we wish to perform the calculations
at increments of 1°. Recall, however, that we wish to begin our calculations at 0°, and end
at 360°. Our first guess at defining the crank angle, theta2, might look something like this

for i = 1:N
 theta2(i) = i-1;

end

This will make theta2 take on the values 0, 1, 2, ... 360, as desired. However, these values are
in degrees, and our calculations must be performed in radians. The conversion between degrees
and radians is a multiplicative factor of π/180, so our next guess at defining theta2 might be

for i = 1:N
 theta2(i) = (i-1)*pi/180;

end

where we have taken advantage of the fact that pi = π is a predefined constant within
MATLAB. There is just one subtle difficulty with this formulation, however. Since i can only
take on integer values, our crank rotation increments are limited to 1°. A better solution would
be to have the crank angle increments be dependent upon the number of position calcula-
tions, N, so that the crank always makes a complete rotation. To do this, we must map the inte-
gers 1, 2, 3, ... N to angular values between 0 and 2π. One simple way to do this is shown below

for i = 1:N
 theta2(i) = (i-1)*(2*pi)/(N-1);

end

131Position Analysis of Linkages

You should confirm that theta2 takes on values between 0 and 2π by substituting i = 0
and i = N into the formula above. Now the crank will make a full revolution, regardless of
how many position calculations we perform. Note the presence of the (i) after theta2.
We use this syntax to store each crank angle in the row vector theta2, overwriting the
zeros that we initialized earlier. Thus, in the first iteration we will calculate theta2(1),
and in the twenty-fifth iteration we will calculate theta2(25). After completing the
calculations in the main loop, we can access the twentiethcrank angle (e.g.) by typing at
the command prompt

>> theta2(20)

ans =

 0.3316

The variable i is known as the index of a particular value in theta2 – think of it as the
address of a particular number in the vector theta2.

4.4.3 Position Calculations

Now that we have the angle theta2 defined, we can begin performing the position calcu-
lations. First solve for the angle theta3, using the formula

 tan
sin

cos3
2

2

a
a d

θ θ
θ

=
−

 (4.79)

Your first approach might be to divide the quantity a sinθ2 by the quantity a cosθ2 – d and
take the inverse tangent. This will give the correct result if the angle θ3 lies within the first
or fourth quadrants. However, as shown in Figure 4.24, the inverse tangent function will
give the same result if θ3 lies in the third quadrant as it will if θ3 lies in the first quadrant,
since

y

y

x–x

–y

x
θ

θ*

FIGURE 4.24
To the ordinary inverse tangent function the angles θ and θ* look the same.

132 Introduction to Mechanism Design

y
x

y
x

= −
−

 (4.80)

Luckily, MATLAB has a built-in function, atan2, which uses separate arguments for y and
x thereby making all four quadrants distinct from one another.

As a further complication we observe that the angle θ3 is drawn using our negative con-
vention (moving CW from the horizontal) while θ2 is positive (CCW from the horizontal),
and vice versa (see Figure 4.25). Thus, instead of the formula given in Equation (4.79), we
should use

 tan
sin
cos3

2

2

a
d a

θ θ
θ

= −
−

 (4.81)

This is the same formula, but the numerator and denominator have both been multiplied
by −1. After the calculating θ3, we find the distance b easily using the Equation (4.71). In
your script add the lines:

 theta3(i) = atan2(-a*sin(theta2(i)),d - a*cos(theta2(i)));
 b(i) = (d - a*cos(theta2(i)))/cos(theta3(i));

Make sure that you place a comma between the two arguments of the atan2 function, and
not a division symbol. Your complete for loop should now look like:

for i = 1:N
 theta2(i) = (i-1)*(2*pi)/(N-1);
 theta3(i) = atan2(-a*sin(theta2(i)),d - a*cos(theta2(i)));
 b(i) = (d - a*cos(theta2(i)))/cos(theta3(i));

end

If you execute the program now, you will be disappointed to find that nothing happens!
we have told MATLAB to perform the position calculations, but not to plot anything. In the
requirements listed above, we were asked to plot the paths of points B and P, so we should
calculate the positions of these points next. Since we will be executing these calculations
once for every crank angle, they should also be placed inside the loop. Before calculating
the positions of B and P, however, we should define the unit vector (and normal) for each
link. We will not use all of the unit vectors and normals for the position calculations,

d – a cosθ2

a sinθ2θ 3

FIGURE 4.25
The angle θ3 is negative in this figure, since it is measured from the horizontal.

133Position Analysis of Linkages

but they will all come in handy later when we conduct velocity and acceleration analysis.
Recall that the formulas for a general unit vector and normal are given by

 cos
sin

sin
cos

θ
θ

θ
θ

=

= −

e n (4.82)

Since we will be calculating several unit vectors in our analysis, it is worthwhile to develop
a general piece of code that we can use repeatedly for any linkage. The most common way
to create reusable code in MATLAB is to create a function, which is a separate file that is
called by the main program as needed. One common example of a function is the humble
sine function

h = c*sin(delta);

which is used to evaluate the sine of an angle. The function sin is a piece of code that
resides deep in the bowels of MATLAB. Luckily, we need never be concerned with the
internal workings of the sin function, we simply supply it with an argument (delta in this
case), and it returns an answer: the sine of the angle delta.

While many languages allow you to define functions within the main program file,
MATLAB would prefer that you define the function in a separate file in the same folder as
the main program. The syntax for a MATLAB function is

function [a, b, c, …] = functionName(A, B, C, …)

The variables A, B, C, etc., are values that we pass to the function in order for it to do its
calculations. Once the calculations are complete, the function returns the variables a, b, c,
etc. We must give the function a name (shown as functionName) that follows the nor-
mal MATLAB file naming conventions (no spaces, must start with a letter, etc.). We will
define a function called UnitVector that will calculate the unit vector and unit normal,
given an input angle theta. Create a new script in MATLAB and type in the following
function:

% UnitVector.m
% Calculates the unit vector and unit normal for a given angle
%
% theta = angle of unit vector
% e = unit vector in the direction of theta
% n = unit normal to the vector e

function [e,n] = UnitVector(theta)

e = [cos(theta); sin(theta)];
n = [-sin(theta); cos(theta)];

This function returns a unit vector e and a unit normal n, given the angle theta. As
expected, each of these vectors has both an x and y component, and each is a column vec-
tor of dimension 2 × 1. Of course this is a very, very simple function, and most MATLAB
functions are more complicated – consider the atan2 function, for example. Save the func-
tion as UnitVector.m in the same folder as the Threebar _ Position _ Analysis.m
script. One very important fact about functions is that it does not matter what you call the

134 Introduction to Mechanism Design

variables inside the function, the variables inside the function are erased as soon as the
function has finished executing. To calculate the unit vector for the crank, we would type
in the main program

 [e2,n2] = UnitVector(theta2(i));

It doesn’t matter that the unit vector for the crank is called e2 in the main program, whereas
it is called e in the function. All that matters is that the order of the arguments matches
between the main program and the function. For example, if we were to mistakenly type

 [n2,e2] = UnitVector(theta2(i));

we would end up with the unit vector being stored in n2, and the unit normal stored in e2.
As our functions get more complicated, be sure to pay attention to the order of the argu-
ments. Having entered and saved the UnitVector.m function, enter the following in the
main program, right after the calculation for b(i).

% calculate unit vectors
 [e2,n2] = UnitVector(theta2(i));
 [e3,n3] = UnitVector(theta3(i));

We can now use these unit vectors to calculate the coordinates of points B and P. The point
B is at the end of the crank, so its position is found by

 2aB =x e (4.83)

where xB is a two-dimensional vector containing the x and y coordinates of point B.
The position of point P is

 3pP B= +x x e (4.84)

where we have used the relative position formula described earlier. Since we will have
much occasion to use the relative position formula, it makes sense to define a separate
function for it. Open a new MATLAB script and enter the following:

% Function FindPos.m
% calculates the position of a point on a link using the
% relative position formula
%
% x0 = position of first point on the link
% L = length of vector between first and second points
% e = unit vector between first and second points
% x = position of second point on the link

function x = FindPos(x0, L, e)

x = x0 + L * e;

Again, this is a very simple function. It returns the position of a point on a link as x
given the position of another point on the link, x0, as well as the length and unit vector

135Position Analysis of Linkages

associated with the link (L and e). For the point B on the crank, x0 would simply be the
origin. Save the function FindPos.m in the same folder as the main program, and enter
the following in the main program after the unit vector calculations

% solve for positions of points B and P on the linkage
 xB(:,i) = FindPos(x0,a,e2);
 xP(:,i) = FindPos(xB(:,i),p,e3);

The syntax in these two statements might be a little confusing at first. Remember that
we are calculating the position of points B and P for every crank angle: 361 calculations
in all. Since each calculation for the position of point B results in two values (the x and y
coordinates) we must use the colon operator for the first index of xB. The quantity xB(:,i)
refers to both the x and y coordinates of the ith calculation for the position of point B. In
other words, the colon tells MATLAB to cycle through all possible values of this first index
(in this case, 1 and 2). At any iteration in the loop, i takes on a single value; thus, the quan-
tity xB(:,i) refers to a single 2 × 1 vector: the coordinates of point B at the current crank
angle. The complete main loop should now be

for i = 1:N
 theta2(i) = (i-1)*(2*pi)/(N-1);
 theta3(i) = atan2(-a*sin(theta2(i)),d - a*cos(theta2(i)));
 b(i) = (d - a*cos(theta2(i)))/cos(theta3(i));

% calculate unit vectors
 [e2,n2] = UnitVector(theta2(i));
 [e3,n3] = UnitVector(theta3(i));

% solve for positions of points B and P on the linkage
 xB(:,i) = FindPos(x0,a,e2);
 xP(:,i) = FindPos(xB(:,i),p,e3);
end

We are now ready to plot the position of the point B. Immediately after the loop, type the
command

plot(xB(1,:),xB(2,:))

Note that the colon is now in the second index in xB. The syntax for the plot command is

plot(vector of x coordinates, vector of y coordinates)

The quantity xB(1,:) gives a vector of the x coordinates for point B, while xB(2,:) gives
all of the y coordinates. When you run the program you are rewarded by the plot of what
appears to be an ellipse. Since we are plotting the path of the point B, which is fixed to the
end of the crank, the expected motion is a circle. Recall that all motion on a link with one
pin grounded is confined to circular arcs. What is happening is that MATLAB is scaling
the x and y axes of the plot to best fit the plot window, and the x axis inevitably ends up
stretched out a little. We can remedy the situation by typing

axis equal

136 Introduction to Mechanism Design

immediately after the plot command. Try this, and your plot should become a circle.
Since we probably want to measure the coordinates of points on the plot, a grid would also
be helpful. Type

grid on

after the axis command to see the grid. To plot the position of point P on the same figure,
modify your plot statement as

plot(xB(1,:),xB(2,:),xP(1,:),xP(2,:))

4.4.4 Making a Fancy Plot and Verifying your Code

When you execute the program described above, you should obtain a set of two curves
as shown in Figure 4.26. We have solved the problem as it was given in the problem state-
ment, but there are still a few things we should add to make the plot more professional.
First, we should add a title and axis labels, as follows:

title('Paths of points B and P on the Threebar Linkage')
xlabel('x-position [m]')
ylabel('y-position [m]')

We should also add a legend to the plot so that a viewer can distinguish between the two
curves.

legend('Point B', 'Point P','Location','SouthEast')

Here we have used the Location property to place the legend at the lower right corner of
the plot. We must be sure to place type the legend titles in the same order as our plot com-
mand. If we had typed ‘Point P’ as the first argument, the colors in the legend would

0.15

0.1

0.05

0

–0.05

–0.05 0 0.05

–0.1

0.1

–0.15

0.15 0.2 0.25 0.3 0.35 0.4

FIGURE 4.26
Paths of the points B and P. This is the plot you should obtain by running the code described above. Your colors
will be different from the plot above, but the shapes of the traces should be the same.

137Position Analysis of Linkages

not properly match the plot. Once the legend is in place, the plot is complete, as shown in
Figure 4.27.

4.4.5 Verifying Your Calculations

But we are not quite finished! As you have been typing in the code, part of your brain
should have been asking, “how do I know that this code accurately models a threebar
linkage? How can I be sure that I haven’t made a typo somewhere that would produce
a valid-seeming, but inaccurate plot?” Checking and verifying calculations is one of the
most important roles you will play as a professional engineer, and should be taken very
seriously. There are a number of methods we could use to verify the code, but the two
methods used by the authors for the code in this chapter are:

 1. Draw a sketch of the linkage in SOLIDWORKS®. Use the SmartDimension tool to
measure the slider angle at a few different crank angles. Compare these dimen-
sions with the ones calculated in the code.

 2. Use MATLAB to draw a “snapshot” of the linkage overlaid on the plot produced
by the code given above. If the linkage and the curves line up, there is a good
chance that the code is producing correct results. This method is described in
more detail below.

4.4.6 Drawing the Linkage in MATLAB®

To overlay a plot of the links on our traces, we must first tell MATLAB to keep plotting in
the same window; otherwise any new plot command will open up a new plot window.
To do this, simply type

0.15

Paths of points B and P on the threebar linkage

y-
Po

sit
io

n
(m

)

x-Position (m)

Point B
Point P

0.1

0.05

0

–0.05

–0.05 0 0.05

–0.1

0.1

–0.15

0.15 0.2 0.25 0.3 0.35 0.4

FIGURE 4.27
Threebar position plot with title, legend, and axis labels.

138 Introduction to Mechanism Design

hold on

after the previous plot command. We can then use the plot command to draw a line for
each link on the linkage in an arbitrary position. Recall that we solved for the coordinates
of points B and P in the loop, and placed these into the vectors xB and xP. Let us define a
variable iTheta to be the index of the “snapshot” we wish to plot.

iTheta = 80;

Here we have chosen the 80th position calculation to plot. Recall that we calculated the
positions 361 times, so iTheta could take on a value between 1 and 361. To plot a line for
the crank, we would type

plot([x0(1) xB(1,iTheta)],...
 [x0(2) xB(2,iTheta)],'Linewidth',2,'Color','k');

The plot command would have spilled onto the next line, since it is longer than 80 char-
acters. Here we have used the ellipses (...) to tell MATLAB that the command continues
on the next line. Remember that the vector x0 gives the coordinates of the origin (0,0). We
have made the line for the crank thicker than the position traces so that it looks more like
a solid link. The color is black, which MATLAB abbreviates ‘k’ (to distinguish from blue,
‘b’). To plot the slider, type

plot([xB(1,iTheta) xP(1,iTheta)],...
 [xB(2,iTheta) xP(2,iTheta)],'Linewidth',2,'Color','k');

If you execute the code, you should see the plot in Figure 4.28. To make the plot even fan-
cier, we might wish to add “pins” to each of the points A, B, D, and P.

Paths of points B and P on the threebar linkage

Point B
Point P

–0.05 0 0.05 0.1

0.15

0.1

0.05

0

–0.05

–0.1

–0.15

0.15 0.2 0.25 0.3 0.35 0.4

y-
Po

sit
io

n
(m

)

x-Position (m)

FIGURE 4.28
Plot of the paths of points B and P with the links overlaid.

139Position Analysis of Linkages

plot([x0(1) xD(1) xB(1,iTheta) xP(1,iTheta)],...
 [x0(2) xD(2) xB(2,iTheta) xP(2,iTheta)],...
 'o','MarkerSize',5,'MarkerFaceColor','k','Color','k');

The ‘o’ argument specifies that only small circles are to be used without lines connecting
them, and the other arguments specify the dimension and color of the circles. As a final
“tweak” we will label each of the points whose paths we are plotting. Use the following
text commands to place text on your plot:

% plot the labels of each pin
text(x0(1), x0(2),'A','HorizontalAlignment','center');
text(xB(1,iTheta),xB(2,iTheta),'B','HorizontalAlignment','center');
text(xD(1), xD(2),'D','HorizontalAlignment','center');
text(xP(1,iTheta),xP(2,iTheta),'P','HorizontalAlignment','center');

The first two arguments give the x and y coordinates of the text. The third argument is the
text itself, and the final arguments specify the alignment of the text relative to the coordi-
nates you have provided. Your final plot should look like Figure 4.29.

To prevent the text from overlapping the pins, thus making it more readable, we can add
small offsets to their position; the author has used a value of 0.015. A complete listing of
the threebar position analysis code is given below. Make sure that your code produces the
same plot as shown in Figure 4.29, as we will use this as a basis for all of the programs in
future chapters.

% Threebar_Position_Analysis.m
% Conducts a position analysis on the threebar crank-slider linkage
% by Eric Constans, June 1, 2017

Paths of points B and P on the threebar linkage

B

A
D

P

Point B
Point P

–0.05 0 0.05 0.1

0.15

0.1

0.05

0

–0.05

–0.1

–0.15

0.15 0.2 0.25 0.3 0.35 0.4

y-
Po

sit
io

n
(m

)

x-Position (m)

FIGURE 4.29
The complete plot with path traces, overlaid linkage, point markers, and labels.

140 Introduction to Mechanism Design

% Prepare Workspace
clear variables; close all; clc;

% Linkage dimensions
a = 0.100; % crank length (m)
d = 0.150; % length between ground pins (m)
p = 0.300; % slider length (m)

% Ground pins
x0 = [0;0]; % point A (the origin)
xD = [d;0]; % point D

N = 361; % number of times to perform position calculations
[xB,xP] = deal(zeros(2,N)); % allocate space for position of B,P
[theta2,theta3,b] = deal(zeros(1,N)); % allocate space for link angles

for i = 1:N
 theta2(i) = (i-1)*(2*pi)/(N-1);
 theta3(i) = atan2(-a*sin(theta2(i)),d - a*cos(theta2(i)));
 b(i) = (d - a*cos(theta2(i)))/cos(theta3(i));

% calculate unit vectors
 [e2,n2] = UnitVector(theta2(i));
 [e3,n3] = UnitVector(theta3(i));

% solve for positions of points B and P on the linkage
 xB(:,i) = FindPos(x0,a,e2);
 xP(:,i) = FindPos(xB(:,i),p,e3);
end

plot(xB(1,:),xB(2,:),'Color',[153/255 153/255 153/255])
hold on
plot(xP(1,:),xP(2,:),'Color',[0 110/255 199/255])

% specify angle at which to plot linkage
iTheta = 80;

% plot crank and slider
plot([x0(1) xB(1,iTheta)],...
 [x0(2) xB(2,iTheta)],'Linewidth',2,'Color','k');
plot([xB(1,iTheta) xP(1,iTheta)],...
 [xB(2,iTheta) xP(2,iTheta)],'Linewidth',2,'Color','k');

% plot joints on linkage
plot([x0(1) xD(1) xB(1,iTheta) xP(1,iTheta)],...
 [x0(2) xD(2) xB(2,iTheta) xP(2,iTheta)],...
 'o','MarkerSize',5,'MarkerFaceColor','k','Color','k');

% plot the labels of each joint
text(x0(1)-0.015, x0(2),'A','HorizontalAlignment','center');
text(xB(1,iTheta),xB(2,iTheta)+0.015,'B','HorizontalAlignment','center');
text(xD(1), xD(2)+0.015,'D','HorizontalAlignment','center');
text(xP(1,iTheta),xP(2,iTheta)+0.015,'P','HorizontalAlignment','center');

141Position Analysis of Linkages

title('Paths of points B and P on the Threebar Linkage')
xlabel('x-position [m]')
ylabel('y-position [m]')
legend('Point B', 'Point P','Location','SouthEast')
axis equal
grid on

4.5 Position Analysis of the Slider-Crank

We will now turn our attention to finding the position of any point on another simple
linkage – the slider-crank. A typical slider-crank mechanism (from a one-cylinder internal
combustion engine) is shown in Figure 4.30. In most cases of interest, we wish to find
the position of the piston in the cylinder as a function of crank angle. We may also be
interested in the angle between the connecting rod and the cylinder, since an excessive
connecting rod angle will create undue friction between the piston and cylinder.

Without loss of generality, we may rotate the cylinder so that it is oriented horizontally,
and place the crank pin at the origin as shown in Figure 4.31. If the cylinder is not horizon-
tal, we may use a coordinate transformation described in Section 4.2.7 to rotate the results
of our calculations as needed. The cylinder is located a vertical distance c from the crank
pin. In an engine, the distance c would be zero (i.e. the crank pin would be aligned with the
axis of the cylinder.) The crank length is a and the connecting rod length is b. The horizon-
tal position of the slider is d. For a given slider-crank mechanism the dimensions a, b, and
c are fixed, and assumed known. The horizontal position of the slider, d, is time varying,
and is one of the quantities we must solve for.

To solve for the positions of the links in the slider-crank, we first construct a vector loop
diagram, as shown in Figure 4.32. In this diagram, the vector r2 is attached to the crank and
r3 is attached to the connecting rod. The vector r1 is horizontal, and connects the ground
pin with the point below the piston pin. The vector r4 is vertical, and slides back and forth
with the piston. The length of each vector is constant, except for r1, which changes as the

y

x

Connecting rod

Cylinder

Crank

Ground pivot

Slider

FIGURE 4.30
The slider-crank mechanism consists of a crank, slider, and connecting rod. The crank is attached to the ground
at one end, and the cylinder is grounded as well.

142 Introduction to Mechanism Design

piston moves. The crank angle is θ2 and the connecting rod angle is θ3. In most cases of
interest we are given the crank angle θ2, and wish to find the connecting rod angle θ3, as
well as the horizontal position of the piston, d.

First, let us write the vector loop equation:

 02 3 4 1+ − − =r r r r (4.85)

As noted in Section 4.2, this equation has both an x and y component, and may be divided
into two separate equations.

cos
sin

cos
sin

0
0

0
0

2

2

3

3

a
a

b
b c

dθ
θ

θ
θ

+

−

−

=

 (4.86)

y

x

b
a

C

B
c

A
d

FIGURE 4.31
Dimensions of the slider-crank linkage. The crank length is a, the connecting rod length is b, the vertical dis-
tance to the slider is c and the horizontal distance to the slider is d. The crank is grounded at pin A, pin B attaches
the crank to the connecting rod, and pin C attaches the connecting rod to the piston.

y

r3

r2
r4

r1

θ2

θ3

x

FIGURE 4.32
The vector loop diagram for the slider-crank linkage.

143Position Analysis of Linkages

Or, more simply

cos cos 0

sin sin 0

2 3

2 3

a b d

a b c

θ θ

θ θ

+ − =

+ − =
 (4.87)

We can use the second equation to solve for θ3

 sin
sin

3
1 2c a

b
θ θ= −

− (4.88)

Once we have solved for θ3, we can use the first equation in (4.87) to solve for the position
of the piston.

 cos cos2 3d a bθ θ= + (4.89)

4.5.1 Extreme Positions of the Slider-Crank

In some cases (as in the design of an internal combustion engine), it is necessary to know
the two extreme positions of the slider as the crank makes its revolution. As seen in
Figure 4.33 and Figure 4.34, both extremes occur when the crank and connecting rod are
in alignment. In this configuration the linkage forms a right triangle, such that

max

2 2

min
2 2

d a b c

d b a c

()

()

= + −

= − −
 (4.90)

Of course, if c = 0 then the extreme positions are given by b ± a. The reader may have
noticed that the second formula in Equation (4.90) gives an imaginary result if c is greater
than b − a. This will be discussed in the section that follows. If c is greater than b + a then
the linkage cannot be assembled!

y

x

dmax

FIGURE 4.33
The piston has its maximum displacement when the crank and connecting rod are aligned.

144 Introduction to Mechanism Design

Example 4.5

The slider-crank shown in Figure 4.35 has a 3 cm crank, 8 cm connecting rod, and the
centerline of the cylinder is mounted 5 cm above the crank pin. What is the position of
the piston when the crank is at 90°?

Solution
From the problem statement we have

 3 cm 8 cm 5 cm and
22θ π= = = =a b c

First, solve for the connecting rod angle

θ θ

θ ()

= −

=
−

= = °

−

−

sin
sin

sin
5 3 1

8
0.253rad 14.5

3
1 2

3
1

c a
b

y

x

dmin

FIGURE 4.34
The piston has its minimum displacement when the crank and connecting rod are anti-aligned.

y

8

53

d
x

FIGURE 4.35
Slider-crank used in Example 4.3. All dimensions are in cm.

145Position Analysis of Linkages

Then the piston position is

 cos cos

3 0 8cos 0.253 7.75 cm

2 3θ θ

() ()

= +

= + =

d a b

d

Example 4.6

Repeat Example 4.3 with crank length 4 cm, connecting rod length 8 cm, slider offset
5 cm, and crank angle 270°.

Solution
From the problem statement we have

 4 cm 8 cm 5 cm and
3
22θ π= = = =a b c

First, solve for the connecting rod angle

sin
sin

sin
5 4 1

8
error

3
1 2

3
1

θ θ

θ ()

= −

=
− −

=

−

−

c a
b

It appears as though something has gone wrong with our formula for the connecting
rod angle! Examining the argument in the arcsine function, we see that

5 4 1

8
1.125

()− −

=

Since the arcsine cannot accept arguments with magnitude greater than 1, the solution
fails.

For a physical interpretation, see Figure 4.36. The crank has two limiting angles, θ2min
and θ2max, beyond which it cannot travel without the linkage “binding up.” In each case,
the connecting rod is trying to push/pull the piston through the cylinder wall; that is,
θ3 is 90°. Substituting this into Equation (4.88) gives

 1
sin 2θ= −c a
b

 (4.91)

or

 sin 2θ = −c b
a

 (4.92)

The arcsine function has two solutions:

sin

sin

2 min
1

2 max
1

θ

θ π

= −

= − −

−

−

c b
a

c b
a

 (4.93)

146 Introduction to Mechanism Design

Then, for the current example

48.6

228.6

2 min

2 max

θ

θ

= − °

= °

The crank is only allowed to range between these two values, and thus the crank angle
of 270° is invalid. This situation is analogous to the Grashof condition for the fourbar
linkage in that a full rotation of the crank is only permitted for certain values of a, b and
c. In particular, we must have

+ ≤ >

≤ =

 if 0

 if 0

a c b c

a b c
 (4.94)

if the crank is to be capable of making a full rotation.

Example 4.7

A slider-crank linkage has crank length 8 cm, connecting rod length 16 cm and slider
offset −5 cm. Is the crank capable of making a full revolution? If not, what is its range of
motion? What are the minimum and maximum positions of the slider?

Solution
Since c is less than zero, we note that a + |c| = 13 cm, and b = 16 cm. Thus, the crank can
make a full revolution. Using Equation (4.90), we have

23.5 cm

6.2 cm

max

min

=

=

d

d
 (4.95)

We have developed a set of formulas for analyzing the position of all links on the slider-
crank. Our next step will be to implement these into a MATLAB code so that we can
conduct a full position analysis at any crank angle.

y

θ2max

θ 2m
in x

FIGURE 4.36
The two limiting positions of the slider-crank in Example 4.4.

147Position Analysis of Linkages

4.6 Position Analysis of the Slider-Crank Using MATLAB®

We will now translate the formulas we derived into a MATLAB code that will conduct a
position analysis of the slider-crank for all crank angles. The goal of the exercise is to pre-
dict the position of the piston within the cylinder as a function of crank angle. Figure 4.37
shows the mechanism that we wish to analyze: a simple one-cylinder compressor. For this
mechanism the crank takes the form of a flywheel, and the slider is the piston. We will
call the pin at A the ground pin, the pin at B the crank pin, and the pin at C the wrist pin.
The shape of the flywheel will not affect our position analysis; only the distance between
the ground pin and crank pin matters. There is no vertical offset for the compressor;
thus the distance c = 0.

Figure 4.38 shows the dimensions of the example slider-crank. We will use the same
dimensions when we conduct velocity, acceleration, and force analysis in later chapters.
The connecting rod is three times the length of the crank, which is a good “rule of thumb”
length to avoid excessive side loads on the cylinder walls.

Open a new MATLAB script and save it as SliderCrank _ Position _ Analysis.m
(no spaces!). You should save it in the same folder as the previous example so that we can
use the MATLAB functions we defined earlier. At the top of the file, type

% SliderCrank_Position_Analysis.m
% performs a position analysis on the slider-crank linkage and
% plots the piston position as a function of crank angle
% by Eric Constans, June 2, 2017

Connecting rod

Cylinder

Crank

A

B

C

Ground pivot

Slider

FIGURE 4.37
The slider-crank mechanism used in the MATLAB example code. Note that the axis of the cylinder is aligned
with the ground pin – there is no vertical offset.

12040

(All dimension in millimeters)

A

B

C

Crack length: 40
Connecting rod length: 120

FIGURE 4.38
Dimensions of the slider-crank mechanism for the MATLAB example code.

148 Introduction to Mechanism Design

% Prepare Workspace
clear variables; close all; clc;

We next enter the dimensions of the linkage. Even though this mechanism has no ver-
tical offset, we will keep the code general so that we may use it with any slider-crank
mechanism.

% Linkage dimensions
a = 0.040; % crank length (m)
b = 0.120; % connecting rod length (m)
c = 0.0; % vertical slider offset (m)

% Ground pins
x0 = [0;0]; % ground pin at A (origin)

Next, allocate space in memory for the position variables that we will calculate. There are
only two pins that move, B and C. We will be solving for the connecting rod angle, theta3,
and the piston position, d.

N = 361; % number of times to perform position calculations
[xB,xC] = deal(zeros(2,N)); % allocate space for pins B and C
[theta2,theta3,d] = deal(zeros(1,N));% allocate space for link angles

Now, we are ready for the main loop. Since the position calculations are simple, the loop
will be very short.

% Main loop
for i = 1:N
 theta2(i) = (i-1)*(2*pi)/(N-1);
 theta3(i) = asin((c - a*sin(theta2(i)))/b);
 d(i) = a*cos(theta2(i)) + b*cos(theta3(i));

% calculate unit vectors
 [e1,n1] = UnitVector(0);
 [e2,n2] = UnitVector(theta2(i));
 [e3,n3] = UnitVector(theta3(i));

% solve for position of point B on the linkage
 xB(:,i) = FindPos(x0, a, e2);
 xC(:,i) = FindPos(xB(:,i), b, e3);
end

You might be wondering why we chose to calculate the position of pin C the hard way,
instead of recognizing the fact that the coordinates of pin C are given by

 d
cC =

x (4.96)

This is indeed a redundant calculation, but we will use it as a check on our solution when
we are finished. Finally, enter the plot commands to plot the position of the piston versus
crank angle.

149Position Analysis of Linkages

% plot the piston position
plot(theta2*180/pi,d*1000,'Color',[0 110/255 199/255])
title('Piston Position versus Crank Angle for Slider-Crank')
xlabel('Crank angle (degrees)')
ylabel('Position (mm)')
grid on
set(gca,'xtick',0:60:360)
xlim([0 360])

Note that the plotting units have been changed to millimeters by multiplying d by 1000 in
the plot command.

Since the piston moves horizontally, its y coordinate remains constant. For this reason
we did not plot the y coordinate of the piston versus the x coordinate – we would have
ended up with a straight line! Instead, it makes more sense to plot the piston position ver-
sus crank angle for the compressor.

Execute the code and admire the resulting plot. If you have entered everything cor-
rectly, you should obtain a plot resembling Figure 4.39. As we expect, the piston reaches
its maximum displacement when the crank angle is 0° (or 360°) and a minimum at a crank
angle of 180°.

4.6.1 Verifying the Code

The first thing to check is whether the maximum and minimum positions agree with the
formulas we derived in Section 4.5. As we found earlier, the extreme positions of the piston
are given by

max

min

d b a

d b a

= +

= −
 (4.97)

170

160

150

140

130

120

110

100

90

80
0 60 120 180 240 300 360

Crank angle (°)

Piston position versus crank angle for slider-crank

Po
sit

io
n

(m
m

)

FIGURE 4.39
Position of the piston versus crank angle for the example mechanism.

150 Introduction to Mechanism Design

when the vertical offset is zero. For our example mechanism, this would give

120 mm 40 mm 160 mm

120 mm 40 mm 80 mm

max

min

d

d

= + =

= − =
 (4.98)

These numbers agree with the plot, so we have passed our first check.
As a second check, let us plot the piston position d versus the x coordinate of pin C. As

discussed above, these should be identical. Change your plotting code to the following,
and execute the program.

% plot the piston position
plot(theta2*180/pi,d*1000,'o','Color',[153/255 153/255 153/255])
hold on
plot(theta2*180/pi,xC(1,:)*1000,'Color',[0 110/255 199/255])
title('Piston Position versus Crank Angle for Slider-Crank')
xlabel('Crank angle (degrees)')
ylabel('Position (mm)')
legend('d','xC')
grid on

As seen in Figure 4.40, the two traces match exactly, and we have a second verification
of the code. Make sure that your code produces identical results before moving on to the
homework exercises.

As a final note, you might wish to incorporate a check at the beginning of your code to
ensure that the linkage can be assembled. Look in Section 4.5 for the discussion on the
extreme positions of the piston and limiting crank angles for the appropriate formulas.

4.7 Position Analysis of the Fourbar Linkage

We will now turn our attention to conducting a position analysis of the fourbar linkage.
A typical fourbar linkage is shown in Figure 4.41. The links have been numbered as
follows: the crank is link 2, the coupler is link 3, the rocker is link 4, and the ground is
link 1. We will adopt a similar numbering scheme for all other linkages in the sections
that follow.

• The ground (or fixed) link is always given the number 1.
• The crank (or driving) link is always given the number 2.
• The links 3 and 4 (and possibly 5 and 6) are those whose positions we wish to find.

We now adopt the convention of drawing the links as lines between pins; this will help
to de-clutter what is about to become a very cluttered diagram. As shown in Figure 4.42,
the crank length is a, the coupler length is b, the rocker length is c, and the length between
ground pins is d. As always, we measure all angles from the positive x axis. We first assume
that all of the link lengths are given (or have been measured). Further, we assume that link

151Position Analysis of Linkages

2 (the crank) is driving the linkage, and that its angle, θ2, is known. Thus, our list of known
quantities is

 known: , , , , 2a b c d θ

Our goal, then, is to find a method for calculating the coupler and rocker angles: θ3 and θ4.

 unknown: ,3 4θ θ

170

160

150

140

130

120

110

100

90

80
0 60 120 180 240 300

d
xC

360
Crank angle (°)

Piston position versus crank angle for slider-crank

Po
sit

io
n

(m
m

)

FIGURE 4.40
Piston position d plotted against the x-coordinate of pin C. The two traces overlay each other.

y

x

2

3

4

1

FIGURE 4.41
A typical fourbar linkage with the origin at the left ground pin.

152 Introduction to Mechanism Design

Once we have found the coupler and rocker angles, it will prove to be a simple matter to
find the position of any point on the linkage using vector addition. The problem of solv-
ing for the coupler and rocker angles is surprisingly challenging, and a wide variety of
solutions have been adopted and can be found in the literature [1–8]. The solution we
provide here is purely geometrical and was developed by the authors [9]. We have found
this method to be simpler (and more computationally efficient) than any other method in
the literature.

Let us define the prime diagonal as the line between the end of the crank and the rocker’s
ground pin. This line is shown as f in Figure 4.43. By drawing this line, we can make
some important observations about the linkage’s geometry. First, using the Pythagorean
Theorem, we note that

 2 2 2f r s= + (4.99)

where

cos

sin

2

2

r d a

s a

θ

θ

= −

=
 (4.100)

Thus,

 2 cos2 2 2
2f a d ad θ= + − (4.101)

Since we are given θ2 and the link lengths, f is simple to calculate. You might recognize the
expression above as a restatement of the Law of Cosines. Now define the angle opposite θ2
as δ. We can also use the Law of Cosines to write

 2 cos2 2 2f b c bc δ= + − (4.102)

or, solving for δ, we have

y

x

b

c

θ2
θ4

θ3

a

d

FIGURE 4.42
The fourbar linkage in its standard configuration showing the link lengths and angles as measured from the
horizontal.

153Position Analysis of Linkages

 cos
2

2 2 2b c f
bc

δ = + −
 (4.103)

In Figure 4.43, we can also see that

 4 3δ θ θ= − (4.104)

which means that we need only solve for θ3, since Equation (4.104) can be used to find θ4.
Now that we know the angle δ, we can use it to calculate a few more interesting quanti-

ties. Project a perpendicular line from the coupler to the rocker pin, as shown in Figure 4.44.
Define the new lengths

cos

sin

g b c

h c

δ

δ

= −

=
 (4.105)

Next, going back to the variables r and s defined earlier, we can write

cos sin

cos sin

3 3

3 3

r g h

s h g

θ θ

θ θ

= +

= −
 (4.106)

as shown in Figures 4.45 and 4.46. We now have two equations with one unknown, θ3. Each
equation is transcendental, and difficult to solve on its own. Therefore, we will employ a
few tricks to isolate θ3. First, divide both equations by cos θ3

cos

tan

cos
tan

3
3

3
3

r
g h

s
h g

θ
θ

θ
θ

= +

= −
 (4.107)

y

x

b δ

f

c

θ2
θ4

θ3

θ3

θ
4

as

d
r

FIGURE 4.43
The prime diagonal, f, extends from the crank pin to the opposite ground pin.

154 Introduction to Mechanism Design

Then, solve both for cos θ3

cos
tan

cos
tan

3
3

3
3

r
g h

s
h g

θ
θ

θ
θ

=
+

=
−

 (4.108)

Set the two equations equal to each other

tan tan3 3

r
g h

s
h gθ θ+

=
−

 (4.109)

y

x

b

g δ

h c

FIGURE 4.44
The lengths g and h can be found once the angle δ is known.

y

x

g

h

g cosθ3
r

h sinθ3

θ3

θ
3

c

FIGURE 4.45
The dimensions g and h can be related to r through the angle θ3.

155Position Analysis of Linkages

And finally, solve for tan θ3.

 tan tan3 3hr gr gs hsθ θ− = + (4.110)

 tan 3gr hs hr gsθ()+ = − (4.111)

 tan 3
hr gs
gr hs

θ = −
+

 (4.112)

Once we have calculated θ3, we can use (4.104) to calculate θ4. Thus, we have achieved
our goal of finding the two unknown angles of the fourbar linkage. This method has
the added feature of employing the tangent function (as opposed to sine or cosine).
When we solve these equations using MATLAB or Excel, we can use the atan2 function
to solve for θ3 in any quadrant. Similar four-quadrant functions do not exist for sine
or cosine.

4.7.1 Finding the Position of Any Point on the Linkage

We are often required to trace the path of a point on the coupler that is not at one of the
pins. Such a point is shown as P in Figure 4.47, where the coupler is represented as a
 triangle with internal angle γ. A simple vector sum will do the trick, as shown

 r r r2P BP= + (4.113)

 r e e2a pP BP= + (4.114)

where

 e
cos

sin

3

3
BP

θ γ

θ γ

()
()

=
+

+

 (4.115)

is the unit vector pointing from B to P.

y

x

g

h

S

h
co

sθ
3

g s
in

θ 3

θ3

θ
3

FIGURE 4.46
The dimensions g and h can be related to s through the angle θ3.

156 Introduction to Mechanism Design

Example 4.8: Find the Position of P for One Crank Angle

Let us now conduct a simple example problem for one position of the linkage. For this
linkage the crank length is 2 cm, the coupler is 3.2 cm, the rocker is 3 cm, and the dis-
tance between ground pins is 1.5 cm. The length BP is 2 cm and the angle γ is 20°. Find
the position of point P if the crank angle is 30°.

Solution
First, write out the information given in the problem statement.

 2 cm 3.2 cm 3 cm 1.5 cm 2 cm 20γ= = = = = = °a b c d p

Also, the crank angle is specified as

 302θ = °

We begin by calculating r and s

 cos 0.2321 cm2θ= − = −r d a

 sin 1.0 cm2θ= =s a

Next, calculate f.

 1.0266 cm2 2= + =f r s

And, solving for the angle δ we find

 cos
2

18.70271
2 2 2

δ = + −

= °− b c f
bc

y

x

rBP

r2
a

B

θ2

θ
3

γ

P

p

FIGURE 4.47
The point P moves with the coupler, which is triangular in this linkage. A vector sum can be used to travel from
the origin to the point P.

157Position Analysis of Linkages

We can now solve for g and h

cos 0.3584 cm

sin 0.9620 cm

δ

δ

= − =

= =

g b c

h c

Now solve for the coupler angle, θ3

tan

33.4988

3

3

θ

θ

= −
+

= − °

hr gs
gr hs

The rocker angle is found through Equation (4.104)

 14.79624 3θ θ δ= + = − °

Finally, the coordinates of point P are found through Equation (4.114)

cos
sin

cos

sin
 3.6768
0.5331

cm2

2

3

3

θ
θ

θ γ

θ γ

()
()

=

+

+

+

=

r a pP

Figure 4.48 shows the configuration of the linkage for the present example. As you can
see, the coordinates of point P do appear to lie at (3.68, 0.53) cm.

Example 4.9: Coordinates of Point P for a Slightly Different Linkage

Now consider a slightly modified fourbar linkage, with crank length 2 cm, the
 coupler length 4 cm, rocker length 3 cm, and distance between ground pins 2.5 cm.
The length AP is 2 cm and the angle γ is 20°. Find the position of point P if the crank
angle is 10°.

B

P

C

1.5

1

0.5

0

–0.5

–1

–1.5
0 0.5 1 1.5 2 2.5 3 3.5 4

y-
Po

sit
io

n
(c

m
)

x-Position (cm)

FIGURE 4.48
Configuration of fourbar linkage for Example 4.3.

158 Introduction to Mechanism Design

Solution
As before, write out the information given in the problem statement.

 2 cm 4 cm 3 cm 2.5 cm 2 cm 20γ= = = = = = °a b c d p

Also, the crank angle is specified as

 102θ = °

We begin by calculating r and s

cos 0.5304 cm

sin 0.3473 cm

2

2

θ

θ

= − =

= =

r d a

s a

Next, calculate f.

 0.6340 cm2 2= + =f r s

And, solving for the angle δ we find

 cos
2

ERROR!1
2 2 2

δ = + −

=− b c f
bc

Oh no! We haven’t gotten very far, and already we have encountered an error! If we
examine the argument in the arccosine function, we can see why

2

1.0249
2 2 2+ − =b c f

bc

Since cosine can never return a value greater than one, this will result in an error. To
see what happened, let us take a step back and examine the linkage. First, conduct a
Grashof analysis.

6.0 cm

5.5 cm

+ =

+ =

S L

P Q

The linkage is not Grashof, so the crank can’t make a full revolution. Instead, the crank
binds up at a certain minimum angle, and can’t go beyond this. To see what the mini-
mum and maximum angles of revolution are, we should sketch the linkage as shown
in Figure 4.49.

As seen in the sketch, the linkage “binds up” when the coupler and rocker become
collinear. When this occurs, the linkage forms a triangle with sides (a, b−c, d). We can
again employ the Law of Cosines to find the maximum and minimum crank angles

cos

2
22.33

cos 360 22.33 337.67

2 min

2 2 2

2 max

θ

θ

()=
+ − −

= °

= ° − ° = °

a d b c
ad

Thus, the crank can swing between 22.33° and 337.67°. To continue this example, let us
find the position of point P when the crank angle is 30°.

cos 0.7679 cm

sin 1.0 cm

2

2

θ

θ

= − =

= =

r d a

s a

159Position Analysis of Linkages

Next, calculate f.

 1.2609 cm2 2= + =f r s

And the angle δ

 cos
2

12.72791
2 2 2

δ = + −

= °− b c f
bc

Next, calculate g and h

cos 1.0737 cm

sin 0.6610 cm

δ

δ

= − =

= =

g b c

h c

y

x

b
c

a

d

θ
2

y

x

b

c

a

d

θ 2

FIGURE 4.49
The two extreme positions of the non-Grashof linkage in the example occur when the rocker and
coupler are collinear.

160 Introduction to Mechanism Design

Finally, calculate θ3

 tan 20.86173
1θ = −

+

= − °− hr gs
gr hs

Whenever we make a nontrivial calculation such as the sequence above, it is our duty
as engineers to find some way to check our computations – this is one of the most
important parts of being an engineer! One simple way to do this is to make a sketch
in SOLIDWORKS, as shown in Figure 4.50. Once the crank angle and link lengths are
dimensioned, the sketch is fully defined. Therefore, the coupler angle is a “driven”
dimension, and can be used to confirm our calculations. As you can see, the answer
given by SOLIDWORKS matches our calculations exactly.

Now that we know θ3, we can calculate the position of point P

cos
sin

cos

sin
3.7318
0.9699

cm2

2

3

3

θ
θ

θ γ

θ γ

()
()

=

+

+

+

=

r a pP

The MATLAB plot in Figure 4.51 shows that our calculation is correct, and we will cre-
ate the code that generated this plot in the next section. Of course, we can double-check
this calculation with the SOLIDWORKS sketch as well.

2.500

2.000
4.000

3.000

30°

20
.8

6°

FIGURE 4.50
SOLIDWORKS sketch of the linkage in the example. The angle θ3 is a driven dimension, and it
confirms our calculations.

B P

C

1.5

2

1

0.5

0

–0.5

–1

–1.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y-
Po

sit
io

n
(c

m
)

x-Position (cm)

FIGURE 4.51
MATLAB plot of the non-Grashof linkage in Example 4.4.

161Position Analysis of Linkages

4.7.2 A Digression into Trigonometric Identities

Let us approach the tangent formula given in Equation (4.112) from a different angle, as it
were. If we examine a table of trigonometric identities, we will usually find a tangent sum
formula

tan
tan tan

1 tan tan
u v

u v
u v

()± = ±
 (4.116)

Examining Figure 4.52, we see that

 3θ β α= − (4.117)

so that

 tan
tan tan

1 tan tan3θ β α
β α

= −
+

 (4.118)

where

 tan tan
s
r

h
g

α β= = (4.119)

Substituting these into Equation (4.118) gives

 tan
1

3

h
g

s
r

h
g

s
r

hr gs
gr hs

θ =
−

+ ⋅
= −

+
 (4.120)

as before. There is more than one way to arrive at our position formula!

y

x

g δ

h

α

f

r

S

θ2

θ
3

β

FIGURE 4.52
The fourbar linkage in the open configuration

162 Introduction to Mechanism Design

4.7.3 Open and Crossed Configurations of the Fourbar

Figure 4.53 shows a typical fourbar linkage in its “open” and “crossed” configurations. We
have used the open configuration to define the sense of the angles in our formulas. For
example, the angle δ was defined as the angle from the coupler to the rocker, as shown in
Figure 4.53 at left. Since the direction of this angle is counterclockwise, we consider it to
have a positive value. In the crossed configuration, shown at right, the angle from coupler
to rocker sweeps in the clockwise direction, and is therefore negative. Thus, to switch
between the open and crossed configurations in our calculations, we can simply change
the sign of δ.

cos
2

 for open

cos
2

 for crossed

1
2 2 2

1
2 2 2

b c f
bc

b c f
bc

δ

δ

= + −

= − + −

−

−

 (4.121)

This operation is mathematically valid because the cosine function gives the same result
for positive and negative angles

 cos cosδ δ() ()= − (4.122)

All of the remaining formulas for θ3 and θ4 are the same as before.

4.7.4 Summary

We have developed a simple, yet robust method for finding the coupler and rocker
angles on the fourbar linkage for a specified crank angle. Minimum and maximum

y

x

b

c

c

δ

δ

f

y

x

b

f

FIGURE 4.53
Open and crossed configurations of a fourbar linkage.

163Position Analysis of Linkages

crank angles for non-Grashof linkages were calculated and switching between the
open and crossed configurations was found to be as simple as changing the sign of the
angle δ. Using a handheld calculator to solve the equations was found to be straight-
forward, if tedious. In the next section, we will use MATLAB to quickly and efficiently
 perform the calculations described in this section. This will enable us to create plots of
the trajectories of various points on the linkage to ensure that the linkage is behaving
as desired.

4.8 Position Analysis of the Fourbar Linkage Using MATLAB®

Now that we have a set of formulas for calculating the angles and positions of the various
links on the fourbar linkage we will put our knowledge to work in writing a MATLAB
program to perform the calculations for us. For now, we will limit ourselves to solving the
Grashof Class 2 linkage, where the crank is the shortest link and can make a full revolu-
tion. In a later section, we will extend this to the non-Grashof Classes 5, 8, and 10, which
are also driven by the crank, but have limiting angles.

A diagram of the fourbar linkage that we will use in developing our program is shown
in Figure 4.54. The linkage has link lengths a, b, c, and d, and we will place the origin at
point A. Our goal is to plot the paths of the points B, C, and P on the linkage as the crank
makes a full revolution.

We begin the modeling process by making an outline of the program structure. The
objectives of our fourbar linkage analysis program are to:

 1. Determine whether the linkage is Grashof.
 2. If it is not Grashof, the program should inform the user and then terminate.

p

P

b

B

a

A
d

D
θ2

θ3

θ4

γ

C

c

FIGURE 4.54
Critical dimensions of the fourbar linkage. The coupler has been drawn as a triangle with the point P at its top.

164 Introduction to Mechanism Design

 3. If it is Grashof, then the program should conduct each of the following steps for
every crank angle

 a. Calculate the internal angle δ.

 b. Calculate θ3 and θ4, the coupler and rocker angles, respectively.
 c. Use these angles to calculate the positions of points B, C, and P.
 4. Once these calculations are complete, the program should generate a plot that

shows the paths of points B, C, and P as the crank makes a complete revolution.

Items 1, 2, and 4 need to be executed only once, while the tasks in item 3 are executed sev-
eral times – once for each crank angle. Therefore, we will place the tasks in item 3 inside
a loop, and all of the other tasks will be outside the loop. At the top of a new MATLAB
script, type:

% Fourbar_Position_Analysis.m
% conducts a position analysis of the fourbar linkage and plots the
% positions of points B, C and P.
% by Eric Constans, June 2, 2017

% Prepare Workspace
clear variables; close all; clc;

After you have typed the comments, save the script in a convenient location using this file
name. Next, we should tell MATLAB the dimensions of the linkage, as shown:

% Linkage dimensions
a = 0.2; % crank length (m)
b = 0.4; % coupler length (m)
c = 0.3; % rocker length (m)
d = 0.25; % length between ground pins (m)
p = 0.2; % length from B to P (m)
gamma = 20*pi/180; % angle between BP and coupler (converted to rad)

% ground pins
x0 = [0;0]; % ground pin at A (origin)
xD = [d;0]; % ground pin at D

Note that the angle gamma has been converted to radians. It is simple, as the formula
above shows, to switch between radians and degrees whenever needed (such as when
plotting).

For this programming example, we have chosen the dimensions of the non-Grashof
linkage discussed in the last section. We did this deliberately to test the functionality of
the next section of the program, which will decide whether or not the linkage is Grashof.
Recall that if the linkage is not Grashof, we wish the program to give us a message to this
effect, and for the program to terminate. The Grashof condition is

 if then GrashofS L P Q+ < + (4.123)

so we must first determine which are the shortest and longest links. Luckily, MATLAB has
built-in “minimum” and “maximum” functions, which find the minimum and maximum

165Position Analysis of Linkages

numbers in a vector, respectively. Add a comment denoting a new section of the code for
checking the Grashof Condition and use the min function to find S.

% Grashof Check
S = min([a b c d]); % length of shortest link

This statement will search through the four link lengths (a, b, c and d) and assign the
 minimum value to the variable S. Note that we have enclosed the link lengths in
square brackets to convert them into a single (1 × 4) vector. Similarly, the max function is
written

L = max([a b c d]); % length of longest link

It is probably not immediately obvious how to find P and Q, since these are neither the
minimum nor the maximum links. Instead, we will employ a trick to arrive at the sum of P
and Q, since this is what we really require for the Grashof condition. Let

T = sum([a b c d]); % total of all link lengths

be the total of all the link lengths. The sum function is another built-in MATLAB function
that calculates the sum of all the elements in a vector. Then

PQ = T – S – L; % length of P plus length of Q

will give the sum of P and Q. Make sure that you call the variable PQ, and not P+Q. Now
we are ready to test the Grashof condition. Type the following “if-else” statement into your
script.

if (S+L < PQ) % Grashof condition
 disp('Linkage is Grashof.')
else % if not Grashof, terminate program
 disp('Linkage is not Grashof')
 return
end

If the Grashof condition is met, then MATLAB will write a confirmation message to
the command window and the script will continue executing. If it is not met, MATLAB
will display the appropriate message and the return statement will cause control to be
“returned” to the command window; in other words, the program will terminate. Test
your script now, to make sure that it detects the non-Grashof linkage correctly.

Once you have gotten this part of the script to function correctly, change the link
lengths to a Grashof Class 2 linkage as shown below. The dimensions are also shown in
Figure 4.55.

% Linkage dimensions
a = 0.130; % crank length (m)
b = 0.200; % coupler length (m)
c = 0.170; % rocker length (m)
d = 0.220; % length between ground pins (m)
p = 0.150; % length from B to P (m)
gamma = 20*pi/180; % angle between BP and coupler (converted to rad)

166 Introduction to Mechanism Design

If you run the script again, the command window should inform you that the linkage is
Grashof. Do not continue until this part of your program functions correctly!

4.8.1 Data Structure for the Position Calculations

The Grashof test was the final task that was to be executed a single time, other than
the plotting commands, which must be done at the end of the program after all
 calculations are complete. As before, we choose to perform the position calculations for
every 1° of crank rotation.

N = 361; % number of times to perform position calculations
[xB,xC,xP] = deal(zeros(2,N)); % allocate space for positions
[theta2,theta3,theta4] = deal(zeros(1,N)); % allocate space for angles

4.8.2 The Main Loop

As before, we will use a for loop to perform the repeated position calculations. Type the
following for loop into your script:

P

B

A

220

(All dimension in millimeters)

Crank length: 130
Coupler length: 200
Rocker length: 170
Distance between ground pins: 220
Distance from B to P: 150
Angel PBC: 20°

200

150

20°
170

130

D

C

FIGURE 4.55
Dimensions of the example linkage used in the MATLAB code.

167Position Analysis of Linkages

for i = 1:N
 theta2(i) = (i-1)*(2*pi)/(N-1);

end

Note the presence of (i) after theta2. The other variables within the loop (e.g. r, s, delta,
etc.) will not be given an index; therefore, they are scalars, and are overwritten every time
the loop executes anew. Another way of saying this is that we use the same place in mem-
ory to store the values of r and s every time we conduct a position calculation, so the old
value of r is overwritten by the newest value of r when it is calculated. In contrast, we find
a new place in memory to store the latest value of theta2, so that the previous values are
preserved.

4.8.3 Position Calculations

Now that we have the angle theta2 defined, we can begin performing the position
 calculations. Start by calculating r and s, which we will use to determine the angle delta.

 r = d – a*cos(theta2(i));
 s = a*sin(theta2(i));

We could now calculate the variable f, as given in

 2 2f r s= + (4.124)

but to save a square root operation, we make use of the fact that only the square of f is used
in subsequent calculations. We, therefore, use

 f2 = r^2 + s^2; % f squared

The only difference between the open and crossed configurations was the sign of delta. We
choose the positive sign here (open), but can easily change it if we desire to calculate the
crossed configuration later.

 delta = acos((b^2 + c^2 – f2)/(2*b*c)); % open configuration

The acos function in MATLAB gives the inverse (or arc) cosine. Now that we have delta,
we can calculate g and h

 g = b – c*cos(delta);
 h = c*sin(delta);

We are now ready to solve for the angle theta3, using the formula

 tan 3
hr gs
gr hs

θ = −
+

 (4.125)

As we did with the threebar, we use the atan2 function to calculate the inverse tangent,
since it is valid in all four quadrants. In your script add the lines:

 theta3(i) = atan2((h*r - g*s),(g*r + h*s));
 theta4(i) = theta3(i) + delta;

168 Introduction to Mechanism Design

Make sure that you place a comma between the two arguments of the atan2 function, and
not a division symbol. Your complete for loop should now look like:

for i = 1:N
 theta2(i) = (i-1)*(2*pi)/(N-1); % crank angle

% conduct position analysis to solve for theta3 and theta4
 r = d - a*cos(theta2(i));
 s = a*sin(theta2(i));
 f2 = r^2 + s^2; % f squared
 delta = acos((b^2+c^2-f2)/(2*b*c)); % angle between coupler and rocker

 g = b - c*cos(delta);
 h = c*sin(delta);

 theta3(i) = atan2((h*r - g*s),(g*r + h*s));
 theta4(i) = theta3(i) + delta;
 end

Since we have not calculated the positions of points B, C or P, we still cannot plot anything.
The next step is to ask MATLAB to calculate the appropriate unit vectors (before the end
statement):

% calculate unit vectors
 [e1,n1] = UnitVector(0);
 [e2,n2] = UnitVector(theta2(i));
 [e3,n3] = UnitVector(theta3(i));
 [e4,n4] = UnitVector(theta4(i));
 [eBP,nBP] = UnitVector(theta3(i) + gamma);

In addition to the usual unit vectors that run along each link, we have also defined the unit
vector for the line that extends from point B to point P on the coupler, since

 x e e2a pP BP= + (4.126)

To get from point A to point C, we may choose between two different paths, as shown in
Figure 4.56.

 x e e2 3a bC = + (4.127)

or

 1 4d cC = +x e e (4.128)

We (arbitrarily) choose the second of these expressions, and we can easily calculate the
coordinates of points B, C, and P with the FindPos function.

% solve for positions of points B, C and P on the linkage
 xB(:,i) = FindPos(x0, a, e2);
 xC(:,i) = FindPos(xD, c, e4);
 xP(:,i) = FindPos(xB(:,i), p, eBP);

169Position Analysis of Linkages

The complete loop should now be:

for i = 1:N
 theta2(i) = (i-1)*(2*pi)/(N-1); % crank angle

% conduct position analysis to solve for theta3 and theta4
 r = d - a*cos(theta2(i));
 s = a*sin(theta2(i));
 f2 = r^2 + s^2; % f squared
 delta = acos((b^2+c^2-f2)/(2*b*c)); % angle between coupler and rocker

 g = b - c*cos(delta);
 h = c*sin(delta);

 theta3(i) = atan2((h*r - g*s),(g*r + h*s));
 theta4(i) = theta3(i) + delta;

% calculate unit vectors
 [e1,n1] = UnitVector(0);
 [e2,n2] = UnitVector(theta2(i));
 [e3,n3] = UnitVector(theta3(i));
 [e4,n4] = UnitVector(theta4(i));
 [eBP,nBP] = UnitVector(theta3(i) + gamma);

% solve for positions of points B, C and P on the linkage
 xB(:,i) = FindPos(x0, a, e2);
 xC(:,i) = FindPos(xD, c, e4);
 xP(:,i) = FindPos(xB(:,i), p, eBP);
end

B

A D

C

r3

r2

r1

r4

FIGURE 4.56
To get to point C, we can choose the path ABC or ADC.

170 Introduction to Mechanism Design

To see whether the code is working, type the following plot command immediately after
the loop.

plot(xB(1,:),xB(2,:),xC(1,:),xC(2,:),xP(1,:),xP(2,:))
axis equal
grid on

Upon executing the code, you should obtain the plot shown in Figure 4.57.

4.8.4 Making a Fancy Plot and Verifying your Code

When you execute the program described above, you should obtain a set of three curves as
shown in Figure 4.57. We have solved the problem as it was given in the problem statement,
but there are still a few things we should add to make the plot more professional. You can
copy and paste many of the plot commands from the threebar position analysis program,
with a few tweaks to make it work for the fourbar.

% specify angle at which to plot linkage
hold on
iTheta = 120;

% plot the coupler as a triangular patch
patch([xB(1,iTheta) xC(1,iTheta) xP(1,iTheta)],...
 [xB(2,iTheta) xC(2,iTheta) xP(2,iTheta)],[229/255 240/255
249/255]);

% plot crank and rocker
plot([x0(1) xB(1,iTheta)],[x0(2) xB(2,iTheta)],'Linewidth',2,'Color'
,'k');

0.15

0.15

0.2 0.25

0.2

0.1

0.1

0.05

0.05

0

0

–0.05

–0.05

–0.1

–0.1

FIGURE 4.57
Paths of the points B, C, and P. This is the plot you should obtain by running the code described above. Your
colors will be different from the plot above, but the shapes of the traces should be the same.

171Position Analysis of Linkages

plot([xD(1) xC(1,iTheta)],[xD(2) xC(2,iTheta)],'Linewidth',2,'Color'
,'k');

% plot joints on linkage
plot([x0(1) xD(1) xB(1,iTheta) xC(1,iTheta) xP(1,iTheta)],...
 [x0(1) xD(2) xB(2,iTheta) xC(2,iTheta) xP(2,iTheta)],...
 'o','MarkerSize',5,'MarkerFaceColor','k','Color','k');

% plot the labels of each joint
text(xB(1,iTheta),xB(2,iTheta)+.015,'B','HorizontalAlignment','center');
text(xC(1,iTheta),xC(2,iTheta)+.015,'C','HorizontalAlignment','center');
text(xP(1,iTheta),xP(2,iTheta)+.015,'P','HorizontalAlignment','center');

axis equal
grid on

title('Paths of points B, C and P on Fourbar Linkage')
xlabel('x-position [m]')
ylabel('y-position [m]')
legend('Point B', 'Point C', 'Point P','Location','SouthEast')

The purpose of most of this code, recall, is to make a “snapshot” of the linkage at a single
crank angle (in this case, 120°) so that we have an initial verification that the position
analysis code is working correctly. Figure 4.58 shows the final position plot of the fourbar
linkage used in the example.

Paths of points B, C and P on fourbar linkage

P

C

B

Point B

Point P
Point C

0.15

0.2

0.1

0.05

0

–0.05

–0.1

–0.05–0.1 0 0.05 0.1 0.15 0.2 0.25

y-
Po

sit
io

n
(m

)

x-Position (m)

FIGURE 4.58
Fourbar position plot with title, legend, and axis labels and snapshot.

172 Introduction to Mechanism Design

4.8.5 Plotting the Non-Grashof Linkage

The code given above will generate a plot for Grashof linkages only. Now consider the case
where the crank length is 150 mm, the coupler is 200 mm, the rocker is 170 mm, and the
distance between ground pivots is 250 m. Here we have

400 mm

370 mm

S L

P Q

+ =

+ =

so that the linkage is clearly non-Grashof. If we use these lengths in our code it will inform
us that the linkage is non-Grashof and will terminate without producing a plot. It is likely,
however, that we would prefer that the code produce position plots for the linkage in its
possible range of motion, even if the crank cannot undergo a full revolution.

As seen in Figure 4.59, the linkage binds up when the coupler and rocker are aligned. We
can use the Law of Cosines to determine the angles θ2min and θ2max, which will define the
range of motion for the crank.

 cos
22 max

2 2 2a d b c
ad

θ ()=
+ − +

 (4.129)

Of course, θ2min is the negative of θ2max. If the linkage is Grashof, we would like the code to
plot the motion of the linkage for a full revolution of the crank. If it is not Grashof, we wish
to plot the resulting motion when the crank swings between θ2min and θ2max. Therefore, we
must first modify our Grashof condition checking logic as follows:

if (S+L < PQ) % Grashof condition
 disp('Linkage is Grashof.')
 theta2min = 0;
 theta2max = 2*pi;
else % if not Grashof, calculate range of motion
 disp('Linkage is not Grashof')
 theta2max = acos((a^2 + d^2 - (b + c)^2)/(2*a*d));
 theta2min = -theta2max;
end

b

θ2max

θ2min

a

d

c

b

a

d

c

FIGURE 4.59
Limits of motion for the non-Grashof linkage.

173Position Analysis of Linkages

Next, we must modify our calculation of θ2 in the main loop. For either case, we wish
θ2 to range between θ2min and θ2max. We can use a linear interpolation formula to
effect this:

1

12
2 max 2 min

2 mini
N

iθ θ θ θ() ()= −
−

 − + (4.130)

The reader should verify that the formula produces theta2 = theta2min when i = 1
and theta2 = theta2max when i = N. Modify your theta2 calculation in the main
loop as

 theta2 = (i-1)*(theta2max - theta2min)/(N-1) + theta2min;

One disadvantage of this method is that the index, i, no longer corresponds directly to the
crank angle, theta2, so you must use Equation (4.130) to calculate the crank angle for a
given index.

If you execute the code with iTheta set to 200 (crank angle 14.12°) you should obtain the
plot shown in Figure 4.60. Thus, we now have a MATLAB script that can plot the full range
of motion for both Grashof and (some) non-Grashof linkages.

The linkage shown in Figure 4.59 has the ground as the longest link, and our code will
plot the motion of this type of non-Grashof linkage. In Figure 4.61 we see a non-Grashof
linkage with the coupler as the longest link, and whose limiting positions are quite differ-
ent. It is left as an exercise for the reader to modify the MATLAB code to account for this
type of non-Grashof linkage (hint: use an if statement to check which link is the longest,
and calculate θ2min and θ2max accordingly.)

Paths of points B, C and P on fourbar linkage

P C

B

Point B

Point P
Point C

0.15

0.2

0.1

0.05

0

–0.05

–0.1

–0.05–0.1 0 0.05 0.1 0.15 0.2 0.25 0.3

y-
Po

sit
io

n
(m

)

x-Position (m)

FIGURE 4.60
Plot of the non-Grashof linkage at iTheta = 200.

174 Introduction to Mechanism Design

4.9 Position Analysis of the Inverted Slider-Crank

The next linkage in our program of study is the inverted slider-crank, shown in Figure 4.62.
As with the previous two linkages, the inverted slider-crank has four bars: crank, slider,
rocker, and ground. The major difference between this linkage and the slider-crank is that
the slider rides in a moving slot, which is attached to the end of the rocker. Thus, the angle
of the slot changes as the rocker rotates. In general, the slot may make any angle, δ, with

d

c

b

a

a

d b

c

FIGURE 4.61
Another type of non-Grashof linkage with the coupler as the longest link.

Full slider joint

Slider

Crank

Rocker

FIGURE 4.62
The inverted slider-crank consists of a crank, slider, rocker, and ground. The rocker and slider are connected
with a full-slider joint.

175Position Analysis of Linkages

the rocker, but this angle must remain constant. Despite the obvious differences between
the fourbar linkage and the inverted slider-crank, position analysis of the two linkages
will prove to be remarkably similar.

Figure 4.63 shows the dimensions of the inverted slider-crank. The crank length is a, the
rocker length is c, and the distance between ground pins is d. The point C is defined as the
intersection of the slider and the rocker. This point will travel up and down the slider as
the linkage moves, which will cause the length b to change with time. The angle between
slider and rocker is defined as δ. Recall that the fourbar linkage had four fixed lengths: a, b,
c, and d, and the angle between coupler and rocker was variable. In contrast, the inverted
slider-crank as fixed lengths a, c, and d, and a fixed angle δ, while the length b is variable.
Following a similar line of reasoning as with the fourbar, we can write:

 4 3θ θ δ= + (4.131)

Thus, we can easily find θ4 once we have found θ3 since δ is known. For the inverted slider-
crank, then, the list of known quantities is

 known : , , , , 2a c d δ θ

and the list of unknowns is

 unknown : , 3b θ

We begin by drawing the prime diagonal, f as shown in Figure 4.64. We also define the
quantities r and s

cos

sin

2

2

r d a

s a

θ

θ

= −

=
 (4.132)

b
δ

D

c

C P

θ2

θ3

θ4
a

B

d

A

FIGURE 4.63
Dimensions of the inverted slider-crank linkage. The distance between points B and C is defined as b, which
changes as the linkage moves.

176 Introduction to Mechanism Design

Using the Pythagorean Theorem, we find again that:

 2 cos2 2 2
2f a d ad θ= + − (4.133)

We can make use of the Law of Cosines with the angle δ

 2 cos2 2 2f b c bc δ= + − (4.134)

Everything in Equation (4.134) is known except the distance b. Let us rearrange this equa-
tion to put it into a more familiar form

 2 cos 02 2 2b c b c fδ ()()− + − = (4.135)

This is a quadratic equation in b, so we can use the quadratic formula to solve it

2 cos 4 cos 4

2

2 2 2 2

b
c c c fδ δ ()

=
± − −

 (4.136)

Using the trigonometric identity

 cos sin 12 2δ δ+ = (4.137)

and factoring like terms out from the under the root, we can simplify this expression to

 cos sin2 2 2b c f cδ δ= ± − (4.138)

b
δ

c

P

θ2

θ3

θ4

a

d
r

f
S

FIGURE 4.64
The prime diagonal stretches from the crank pin to the ground pin of the rocker, as with the fourbar.

177Position Analysis of Linkages

We also define the quantities g and h, by drawing a perpendicular from the slider through
pin D (Figure 4.65).

cos

sin

g b c

h c

δ

δ

= −

=
 (4.139)

The formula for b then simplifies to

 cos 2 2b c f hδ= ± − (4.140)

and once we have solved for b, we can calculate g. Finally, we can calculate the angle θ3 just
as we did for the fourbar

 tan 3
hr gs
gr hs

θ = −
+

 (4.141)

You might be wondering how to interpret the ± symbol in Equation (4.140). It comes about
because there are two different ways to assemble the inverted slider-crank, as shown in
Figure 4.66. The assembly on the left is known as the the open configuration, since none of
the lines cross. The other configuration is called crossed. In the crossed configuration, the
value for b is negative, which means that the slider points in the direction opposite from
the way its angle is defined. Both are valid configurations for the linkage, but we usually
are more interested in the open configuration.

4.9.1 Limiting Positions for the Inverted Slider-Crank

Owing to the fact that the slider and rocker must meet at a specified angle, δ, it is more
challenging to assemble a working inverted slider-crank than it is for the fourbar or

b

g δ

c
h

θ3

f

FIGURE 4.65
The lengths g and h are defined by dropping a perpendicular line from the slider through pin D.

178 Introduction to Mechanism Design

slider-crank. To determine the viability of a given set of link lengths, let us first examine
Equation (4.138), which determines the length of the slider between the crank pin and
the rocker.

 cos sin2 2 2b c f cδ δ= ± −

To obtain a valid solution, the argument inside the radical must be positive (or zero). Using
Equation (4.133), the argument inside the radical can be expanded to

 2 cos sin 02 2
2

2 2a d ad cθ δ+ − − ≥ (4.142)

or

 2 cos sin2 2
2

2 2a d ad cθ δ+ − ≥ (4.143)

Evaluating this inequality at its maximum and minimum values will determine the
lengths of links a, c, and d that will allow the linkage to be constructed. The quantity
on the left-hand side of the equation takes on a maximum value when θ2 = 180°, and cos
θ2 = −1, so that

 2 sin2 2 2 2a d ad c δ+ + ≥ (4.144)

Collecting the three terms on the left gives

 sin2 2 2a d c δ()+ ≥ (4.145)

b

–b

δ

δ

θ3

θ3

FIGURE 4.66
The open and crossed configurations of the inverted slider-crank are found by taking the two different solutions
for the length b.

179Position Analysis of Linkages

And taking the square root

 sina d c δ+ ≥ (4.146)

If this condition is not met, then the linkage cannot be assembled. In this situation, the
rocker is too long so that there is no configuration that the coupler can pass through the
slider at the end of the rocker (Figure 4.67).

Even if the linkage can be assembled, it is still possible for it to be “non-Grashof”; that
is, the crank may not be able to make a full revolution. Evaluating the minimum value of
Equation (4.143) when θ2 = 0, and cos θ2 = 1:

 2 cos sin2 2
2

2 2a d ad cθ δ+ − ≥

Factoring and simplifying as before, we find that

 sina d c δ− ≥ (4.147)

If this condition is not met, then the crank cannot make a full revolution.
If we barely meet the condition by setting the two sides of the equation equal to each

other

 sina d c δ− = (4.148)

then b can equal zero if δ = 90. This is also an undesirable situation since it means that the
crank will collide with the rocker when θ2 = 0 (see Figure 4.68).

a

Can be assembled (barely)

d

c

a

Cannot be assembled

d

c

FIGURE 4.67
In the top figure the combined length of a and d are greater than c sin δ, so the linkage can be assembled. In the
bottom figure a + d < c sin δ so the linkage cannot be assembled.

180 Introduction to Mechanism Design

The limiting positions for the crank are found by setting the argument under the radical
equal to zero in Equation (4.138).

 cos
sin

22

2 2 2 2a d c
ad

θ δ= + −
 (4.149)

The limiting angles are shown in Figure 4.69. It is interesting to note that we have once
again arrived at the Law of Cosines. When the linkage is at its limiting positions a triangle
can be constructed with sides a, d, and c sinδ. As can be seen in Figure 4.69, the length b
takes on the value c cosδ in the limiting position, which is confirmed by Equation (4.138).
It is a good idea to check for the “Grashof” condition of the linkage in your code before
starting the position calculations.

4.10 Position Analysis of the Inverted Slider-Crank Using MATLAB®

The code we develop for the inverted slider-crank will be very similar to the fourbar code.
In fact, you might wish to use Save As instead of retyping the entire program. The example

b = 0

FIGURE 4.68
If (a – d) = c sinδ then the length b will be zero when θ2 = 0, causing a collision between the rocker and crank
if δ = 0.

c
δ

a

d
θ2min

c sinδ c

δ
a

d

θ2max

c sinδ

FIGURE 4.69
Limiting positions for the “non-Grashof” inverted slider-crank.

181Position Analysis of Linkages

linkage used here is shown in Figure 4.70. This linkage is “Grashof”; that is, its crank can
make a full revolution. We will check the Grashof condition to be able to plot non-Grashof
inverted slider-cranks at the end of this section.

Enter the dimensions and allocate space for the variables as below

% InvSlider_Position_Analysis.m
% Conducts a position analysis of the inverted slider-crank linkage and
% plots the positions of points B, C and P
% by Eric Constans, June 5, 2017

% Prepare Workspace
clear variables; close all; clc;

% Linkage dimensions
a = 0.080; % crank length (m)
c = 0.130; % rocker length (m)
d = 0.200; % length between ground pins (m)
p = 0.350; % slider length (m)
delta = 60*pi/180; % angle between slider and rocker (converted to rad)
h = c*sin(delta); % h is a constant, only calculate it once

% ground pins
x0 = [0;0]; % ground pin at A (origin)
xD = [d;0]; % ground pin at D

C

P

B

A

200

130
60°

350

80

b

D
θ2

(All dimension in millimeters)
Crank length: 80
Rocker length: 130
Distance between ground pins: 200
Overall slider length: 350

FIGURE 4.70
Example inverted slider-crank linkage used in the MATLAB code.

182 Introduction to Mechanism Design

Note that the length h is a constant, and does not change with crank angle. Since it only
needs to be calculated once, we enter its formula before the main loop. We now enter the
formulas learned in the previous section inside the main loop.

for i = 1:N
 theta2(i) = (i-1)*(2*pi)/(N-1);
 r = d - a*cos(theta2(i));
 s = a*sin(theta2(i));
 f2 = r^2 + s^2; % f squared

 b(i) = c * cos(delta) + sqrt(f2 - h^2);
 g = b(i) - c*cos(delta);

 theta3(i) = atan2((h*r - g*s),(g*r + h*s));
 theta4(i) = theta3(i) + delta;

% calculate unit vectors
 [e2,n2] = UnitVector(theta2(i));
 [e3,n3] = UnitVector(theta3(i));
 [e4,n4] = UnitVector(theta4(i));

% solve for positions of points B, C and P on the linkage
 xB(:,i) = FindPos(x0,a,e2);
 xC(:,i) = FindPos(xD,c,e4);
 xP(:,i) = FindPos(xB(:,i),p,e3);
end

Most of this code, with the exception of the b calculation, is familiar from the fourbar
code. Finally, modify the plotting commands to plot the links, and point P, of the inverted
slider-crank.

plot(xB(1,:),xB(2,:),xC(1,:),xC(2,:),xP(1,:),xP(2,:))
hold on

% specify angle at which to plot linkage
iTheta = 120;

% plot crank, slider and rocker
plot([x0(1) xB(1,iTheta)],[x0(2) xB(2,iTheta)],...
 'Linewidth',2,'Color','k');
plot([xB(1,iTheta) xP(1,iTheta)],[xB(2,iTheta) xP(2,iTheta)],...
 'Linewidth',2,'Color','k');
plot([xD(1) xC(1,iTheta)],[xD(2) xC(2,iTheta)],...
 'Linewidth',2,'Color','k');

% plot joints on linkage
 plot([x0(1) xD(1) xB(1,iTheta) xC(1,iTheta) xP(1,iTheta)],...
 [x0(2) xD(2) xB(2,iTheta) xC(2,iTheta) xP(2,iTheta)],...
 'o','MarkerSize',5,'MarkerFaceColor','k','Color','k');

% plot the labels of each joint
text(xB(1,iTheta),xB(2,iTheta)+.015,'B','HorizontalAlignment','center');
text(xC(1,iTheta),xC(2,iTheta)+.015,'C','HorizontalAlignment','center');

183Position Analysis of Linkages

text(xP(1,iTheta),xP(2,iTheta)+.015,'P','HorizontalAlignment','center');

axis equal
grid on

title('Paths of points B, C and P on Inverted Slider-Crank')
xlabel('x-position [m]')
ylabel('y-position [m]')
legend('Point B', 'Point C', 'Point P','Location','SouthEast')

The plot in Figure 4.71 shows the paths of important points on an inverted slider-crank
as the crank makes a full revolution. Use this plot to check the results of your own code
before attempting the homework problems.

4.10.1 Position Analysis of the Non-Grashof Linkage

If you change the crank length to 100 mm, you will have created a “non-Grashof” inverted
slider-crank, since

100 mm

sin 113 mm

a d

c δ

− =

=
 (4.150)

Since the condition

 sina d c δ− ≥ (4.151)

is not met, the crank cannot make a full revolution. As we did with the fourbar, let
us check the condition of the linkage at the beginning of the code, right after defining

Paths of points B, C and P on inverted slider-crank

PC

B

Point B

Point P
Point C

0.25

0.3

0.2

0.15

0.1

0.05

–0.05

0

–0.05–0.1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

y-
Po

sit
io

n
(m

)

x-Position (m)

FIGURE 4.71
Position plot for the example inverted slider-crank linkage.

184 Introduction to Mechanism Design

the link lengths. We should first check if the linkage could be assembled at all, using the
condition

 sina d c δ+ ≥ (4.152)

If this condition is not met, we should terminate the program and return control to the
command window. If it is met, we should then check whether or not the linkage is Grashof.
Enter the following lines of code after the definitions of the link lengths

if ((a + d) < c*sin(delta))
 disp('Linkage cannot be assembled')
 return
else
 if (abs(a - d) >= c*sin(delta))
 disp('Linkage is Grashof')
 theta2min = 0;
 theta2max = 2*pi;
 else
 disp('Linkage is not Grashof')
 theta2min = acos((a^2 + d^2 - (c*sin(delta))^2)/(2*a*d));
 theta2max = 2*pi - theta2min;
 end
end

We use the check on the Grashof condition to define minimum and maximum values for
theta2. You have probably noticed that the definition of theta2min and theta2max are
slightly different than they were for the fourbar (Figure 4.72). This is because the crank starts
its motion at an angle theta2min above the horizontal and sweeps counterclockwise until
it reaches theta2max. To ensure that theta2max is greater than theta2min, we have used

 22 max 2 minθ π θ= − (4.153)

Be sure that the definition of theta2 inside the loop is

 theta2(i) = (i-1)*(theta2max - theta2min)/(N-1) + theta2min;

θ2max

θ2min

FIGURE 4.72
Lower and upper limits of the crank angle, θ2, for the non-Grashof inverted slider-crank

185Position Analysis of Linkages

After entering these lines of code, and changing a to a length of 100 mm try running
the code. The classic MATLAB “ping” lets you know that you have encountered an error.
When you switch to the command line window you are greeted with the message:

Linkage is not Grashof
Error using atan2
Inputs must be real.

Error in InvSlider_Position_Analysis (line 50)
 theta3(i) = atan2((h*r - g*s),(g*r + h*s));

It appears that one of the arguments in the atan2 function is imaginary. To find out which
one is the culprit, type each argument (followed by the enter key) at the command line.

>> h
h =
 0.1126
>> r
r =
 0.1067
>> g
g =
 0.0000e+00 + 1.8626e-09i
>> s
s =
 0.0360

Everything looks as expected except for the variable g. The formula for g is

 sing b c δ= − (4.154)

Since c and sin δ are both real, we know that the problem must lie with b. Type b(1) at the
command line to look at a single calculated value within the b vector

>> b(1)
ans =
 0.0650 + 0.0000i

It appears as though b has a small (but finite) imaginary component. Since we calculated b
using the square root function,

 cos 2 2b c f hδ= + − (4.155)

a slight roundoff error must have made h2 greater than f 2. It is relatively straightforward to
prove that the quantity f 2 – h2 should be zero at θ2min such that b = c cos δ. Instead, a slight
numerical error in calculating θ2min has caused b to have an imaginary component, which
results in an error in implementing the atan2 function. If MATLAB’s calculated value for
θ2min is less than the true value by even a tiny amount, b will end up with an imaginary
component. A quick and easy solution to this problem is to add a very small amount to
θ2min (and subtract the same amount from θ2max) to ensure that θ2 stays within bounds.
Immediately after defining the link lengths, add the statement

eps = 0.000001; % tiny number added to theta2 to keep it in bounds

186 Introduction to Mechanism Design

Then change the formula for theta2min to the following

 theta2min = acos((a^2 + d^2 - (c*sin(delta))^2)/(2*a*d)) + eps;

When you run the code again, the error should be gone, and you will be rewarded with the
position plot shown in Figure 4.73. We now have a general purpose program to calculate
the positions of points on a Grashof and non-Grashof inverted slider-crank linkage. Be
sure that your plot matches Figure 4.73 before moving on.

4.11 Position Analysis of the Geared Fivebar Linkage

We now turn our attention to a slightly more complicated linkage, the geared fivebar. As
shown in Figure 4.74, the geared fivebar consists of two gears, two couplers, a crank, and
a rocker. The crank is rigidly attached to the first gear and must rotate with it; the rocker
is attached to the second gear and must rotate with it as well. The two gears are in mesh
so that the rotation of the second gear is proportional to that of the first. We assume that
the input to the linkage is the rotation of the first gear. A quick degree of freedom (DOF)
analysis will reassure us that the geared fivebar has only one DOF, as required. The gear
constraint removes one DOF (rotation) from the second gear and there are five pin joints.
Using the modified Gruebler equation we find that

 3 5 1 2 5 1 1DOF () ()= − − − = (4.156)

As before, we wish to find the location of any point on the linkage for a given input
crank angle.

Paths of points B, C and P on inverted slider-crank

PC

B

Point B

Point P
Point C

0.25

0.3

0.35

0.2

0.15

0.1

0.05

–0.05

0

–0.05–0.1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

y-
Po

sit
io

n
(m

)

x-Position (m)

FIGURE 4.73
Position plot for the non-Grashof inverted slider-crank linkage in the example.

187Position Analysis of Linkages

Figure 4.75 shows the important dimensions of the geared fivebar linkage. The crank
has length a and the first coupler has length b. The second coupler has length c, while the
rocker has length u. The distance between ground pins is d. Suppose that the first gear has
N1 teeth and the second gear has N2 teeth. Then the relationship between θ5 and θ2 is

 5
1

2
2

N
N

θ θ ϕ= − + (4.157)

where φ is a constant offset angle that arises because we may place the two gears into
mesh in any manner we choose. For example, we may decide to assemble the linkage with

Coupler 1

Coupler 2

Crank

Gear 1

Gear 2

Rocker

FIGURE 4.74
The geared fivebar linkage has two gears, two couplers, a crank, and a rocker. The crank is attached to the first
gear and the rocker is attached to the second gear.

a

θ2

θ3

θ4

θ5

b

E

C

u

c

A
d

D

B

FIGURE 4.75
Dimensions of the geared fivebar linkage.

188 Introduction to Mechanism Design

the crank oriented horizontally and the rocker oriented vertically: this would produce an
offset angle of φ = 90°. The ratio N1/N2 is the gear ratio for the linkage – we shall have much
more to say about gear ratios Chapter 8. The negative sign arises from the fact that mesh-
ing external gears rotate in opposite directions.

Assume, as always, that the link lengths are given. Since we have established a simple
relationship between θ2 and θ5, the list of knowns is

 known: , , , , , ,2 5a b c d u θ θ (4.158)

and the list of unknowns is

 unknown: ,3 4θ θ (4.159)

as it was for the fourbar linkage.
Now examine Figure 4.76. We have drawn a diagonal line from the point A to the point

C. This line has length d′ and makes an angle β with the horizontal. Since the angle θ5 is
known, it is simple to calculate the coordinates of point C.

 x e e1 5d uC = + (4.160)

The length d' can be found using the Pythagorean theorem:

 cos sin5
2

5
2d d u uθ θ() ()′ = + + (4.161)

Or

 x x x2 2d C Cx Cy′ = = + (4.162)

and the angle β is seen to be

x
x

tan Cy

Cx
β = (4.163)

a θ'2

θ3

β

β

θ'3

d'
θ5

θ4

b

E

C

u

c

A
d D

B

FIGURE 4.76
A line has been drawn from point A to point C. The links a, b, c, and d′ form a fourbar linkage.

189Position Analysis of Linkages

If we rotate our frame of reference by the angle β, the links a, b, c, and d′ form a simple four-
bar linkage whose solution is known from the previous section. Note that we must use a
slightly modified crank angle, θ′2 as the input to the solution procedure, to account for the
fact that we have rotated an angle β from the horizontal

 2 2θ θ β′ = − (4.164)

We can use the fourbar formulas from earlier to solve for a modified coupler angle, θ ′3, and
then rotate this back into the original coordinate frame by noting that

 3 3θ θ β= ′ + (4.165)

In other words, you may reuse almost all of the MATLAB code developed in Section 4.8 to
conduct the position analysis for the geared fivebar linkage! Of course, the length d′ and
the angle β change with every crank angle so that these calculations must be placed inside
the main loop.

4.12 Position Analysis of the Geared Fivebar Using MATLAB®

We will now implement the formulas we have learned into a MATLAB code for plotting
the positions of all points on the geared fivebar linkage. Figure 4.77 shows the example
linkage we will consider. Begin, as usual, with the initial comments and definitions of link
lengths:

% Fivebar_Position_Analysis.m
% conducts a position analysis on the geared fivebar linkage and
% plots the positions of points P and Q
% by Eric Constans, June 6, 2017

% Prepare Workspace
clear variables; close all; clc;

% Linkage dimensions
a = 0.120; % crank length (m)
b = 0.250; % coupler 1 length (m)
c = 0.250; % coupler 2 length (m)
d = 0.180; % distance between ground pins (m)
u = 0.120; % length of link on gear 2 (m)
N1 = 24; % number of teeth on gear 1
N2 = 24; % number of teeth on gear 2
rho = N1/N2; % gear ratio
phi = 0; % offset angle between gears
gamma3 = 20*pi/180; % angle to point P on coupler 1
gamma4 = -20*pi/180; % angle to point Q on coupler 2
p = 0.200; % distance to point P on coupler 1
q = 0.200; % distance to point Q on coupler 2

190 Introduction to Mechanism Design

% ground pins
x0 = [0;0]; % ground pin at A (origin)
xD = [d;0]; % ground pin at D

% Main Loop
N = 361; % number of times to perform position calculations
[xB,xC,xE,xP,xQ] = deal(zeros(2,N)); % allocate space for
positions
[theta2,theta3,theta4] = deal(zeros(1,N)); % allocate space for angles

To keep things simple at first, we will let the numbers of teeth in the two gears be equal
at 24. Once we have developed and verified a working code, we will change the number of
teeth in the first gear to 48. Note that we have not allocated space for theta5, since

 5 2θ ρθ= − (4.166)

it can be easily calculated at any time. The internal angle of the coupler on the left is set to
positive 20° since we rotate counterclockwise from the line BE to BP. The second coupler
has a negative angle since we rotate −20° from the line CE to CQ.

for i = 1:N
 theta2(i) = (i-1)*(2*pi)/(N-1); % crank angle
 theta5 = -rho*theta2(i) + phi; % angle of second gear
 [e2,n2] = UnitVector(theta2(i)); % unit vector for crank
 [e5,n5] = UnitVector(theta5); % unit vector for second gear

180

(All dimensions in millimeters)

Length of link on gear 1: 120
Coupler 1 length: 250
Coupler 2 length: 250
Length of link on gear 2: 120
Distance between ground pins: 180

Length from B to P: 200
Length from C to Q: 200
Teeth on gear 1: 48
Teeth on gear 2: 24

120

20
0

200

250

20° 20
°

250

12
0

E

C

D

B

A

P Q

FIGURE 4.77
The geared fivebar linkage used in the first example.

191Position Analysis of Linkages

 xC(:,i) = FindPos(xD, u, e5); % coords of pin C

 dprime = sqrt(xC(1,i)^2 + xC(2,i)^2); % distance to pin C
 beta = atan2(xC(2,i),xC(1,i)); % angle to pin C

Next, begin typing the main loop, as shown above. To conduct the position analysis, we
must first determine dprime and beta, which are calculated using the coordinates of
point C. Since we need the unit vector for link 5 in the calculation of xC, we calculate e2
and e5 as soon as the angles theta2 and theta5 are known. The remainder of the main
loop is very similar to that of the fourbar position analysis, except that the angles must be
modified by beta.

 r = dprime - a*cos(theta2(i) - beta);
 s = a*sin(theta2(i) - beta);
 f2 = r^2 + s^2; % f squared

 delta = acos((b^2+c^2-f2)/(2*b*c));
 g = b - c*cos(delta);
 h = c*sin(delta);

 theta3(i) = atan2((h*r - g*s),(g*r + h*s)) + beta;
 theta4(i) = theta3(i) + delta;

 [e3,n3] = UnitVector(theta3(i)); % unit vector for first coupler
 [e4,n4] = UnitVector(theta4(i)); % unit vector for second coupler

 [eBP,nBP] = UnitVector(theta3(i) + gamma3); % unit vec from B to P
 [eCQ,nCQ] = UnitVector(theta4(i) + gamma4); % unit vec from C to Q

 xB(:,i) = FindPos(x0, a, e2);
 xE(:,i) = FindPos(xB(:,i), b, e3);
 xP(:,i) = FindPos(xB(:,i), p, eBP);
 xQ(:,i) = FindPos(xC(:,i), q, eCQ);
end

4.12.1 Verifying Your Code

Of course, no simulation is complete without some form of code verification. As discussed
earlier, quick way to check your results is to make a sketch of the linkage in SOLIDWORKS
(without the gears) and see if the coordinates produced by your code match the ones in
the sketch. A second method of verification is to note that there are two vector paths to the
point E, as shown in Figure 4.78.

2 3

1 5 4

a b

d u c

E

E

= +

= + +

r e e

r e e e
 (4.167)

As a first check on the accuracy of your code, create a plot of the trajectory of point E calcu-
lated in both of the ways given in Equation (4.167). If both traces are exactly alike, then you
can have some confidence that your code is producing accurate results.

As seen in Figure 4.79 both methods for reaching point E produce the same result. The
resulting curve resembles the symbol for infinity or a sideways figure eight, and is known
as a lemniscate.

192 Introduction to Mechanism Design

4.12.2 Position of Any Point on the Linkage

As with the fourbar linkage, we may be interested in the trajectory of a point on the fivebar
that is not located at a pin joint. In Figure 4.80, we have a diagram showing vector paths to
two points, P and Q. Both of the couplers are represented as triangles in this diagram, to
show that they may have arbitrary shape. The vector path to points P and Q are

2

1 5

P BP

Q CQ

= +

= + +

x r r

x r r r
 (4.168)

Paths of points E on geared fivebar linkage

Left path
Right path

0.25

0.3

0.35

0.2

0.15

0.1

0.05

0
–0.05–0.1 0 0.05 0.1 0.15 0.2 0.25 0.3

y-
Po

sit
io

n
(m

)

x-Position (m)

FIGURE 4.79
Trajectory of point E for the example fivebar with gear ratio = 1. Both methods for reaching point E produce the
same trace.

E

r3 r4

r2

r1

r5

B

A
D

C

FIGURE 4.78
There are two paths to point C, which can be used as a means of verifying the fivebar code.

193Position Analysis of Linkages

or, using unit vector notation

 2a pP BP= +x e e (4.169)

 1 5d u qQ CQ= + +x e e e (4.170)

The following section contains a few plots of sample geared fivebar linkages. Try to get
your code to match these results before tackling any of the geared fivebar homework
problems.

Example 4.10: Gears with Equal Numbers of Teeth

Figure 4.81 shows the trajectory of points P and Q for the example linkage with equal
numbers of teeth. It is perhaps not surprising that the curves are symmetric, since the
linkage is symmetric and both gears are identical.

Example 4.11: Gears with Unequal Numbers of Teeth

Figure 4.82 shows the trajectory of points P and Q for the example fivebar with gear 1
having 48 teeth and gear 2 having 24 teeth. Note the presence of several cusps in the
trajectories. A cusp (or “tooth”) is a location where a point on the linkage changes direc-
tion suddenly – this will provide some interesting challenges when we conduct velocity
and acceleration analysis. Even a very simple linkage can generate complicated paths!

4.13 Position Analysis of the Sixbar Linkage

As the final mechanism in our study of position analysis we will examine the one DOF
sixbar linkage. There are five types of 1 DOF sixbar linkage, as shown in Figures 4.83
through 4.87. Each linkage consists of four two-pin links and two three-pin links. In the
Stephenson linkages the three-pin links are separated by the two-pin links (two single
links and one two-link pair), while in the Watt linkages the three-pin links are directly

P

p

θ3 θ4

γ3

γ4

B

A D

C

q

rCQ

r1

r5

rBP

r2

E Q

FIGURE 4.80
Finding the coordinates of the points P and Q on the geared fivebar.

194 Introduction to Mechanism Design

connected, and the two-pin links are connected in pairs. The types are distinguished by
which link is grounded.

Four of the five sixbar linkages can easily be analyzed by first solving the fourbar prob-
lem for the lower set of links and then finding the angles of the remaining two links
using another fourbar position analysis. Only the Stephenson Type II sixbar resists solu-
tion using this method, since its lower linkage chain consists of five bars.

Paths of points P and Q on geared fivebar linkage

C

A

B

P

D

Q

Point P
Point Q

0.25

0.3

0.2

0.15

0.1

0.05

0

–0.1

–0.05

–0.05–0.1–0.15 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

y-
Po

sit
io

n
(m

)

x-Position (m)

FIGURE 4.82
Paths of points P and Q with gear 1 = 48 teeth and gear 2 = 24 teeth.

Paths of points P and Q on geared fivebar linkage

C

A

B

P

D
Q

Point P
Point Q

0.25

0.2

0.15

0.1

0.05

0

–0.15

–0.1

–0.05

–0.05–0.1–0.15 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

y-
Po

sit
io

n
(m

)

x-Position (m)

FIGURE 4.81
Paths of points P and Q for the example linkage with gear ratio = 1.

195Position Analysis of Linkages

5 6

4

3

2

1

FIGURE 4.83
Stephenson Type I sixbar linkage.

5

6

4

3

2

1

FIGURE 4.84
Stephenson Type II sixbar linkage

5

6

4

3

2

1

FIGURE 4.85
Stephenson Type III sixbar linkage.

196 Introduction to Mechanism Design

4.13.1 Stephenson Type I Sixbar Linkage

Figure 4.88 shows the critical dimensions of the Stephenson Type I sixbar linkage. Here
we assume that link ABE is the crank and link AD is the ground. The links of dimension
a, b, c, and d form a fourbar, and the angles θ3 and θ4 can be found using the ordinary four-
bar solution developed earlier. Now observe that points BEGF form a second, “virtual”
fourbar linkage on top of the first. As shown in Figure 4.89 the “virtual crank” has length
a′, the “virtual ground” has length d′, the “virtual coupler” has length u and the “virtual
rocker” has length v. The lengths u and v are constant, and are given in the problem
statement.

To find the lengths a′ and d′, it is helpful to determine the coordinates of a few key points
on the linkage. Assume that we have conducted the fourbar position analysis for the link-
age given by ABCD, so that the angles θ3 and θ4 are known. The points B and E are attached
to the three-pin crank, and their coordinates are

 2aB =x e (4.171)

 pE AE=x e (4.172)

5 6

4

3

2

1

FIGURE 4.86
Watt Type I sixbar linkage.

5

6

4
3

2

1

FIGURE 4.87
Watt Type II sixbar linkage.

197Position Analysis of Linkages

The point F is attached to the three-pin rocker, and its coordinates are

 1d qF DF= +x e e (4.173)

Since the virtual link d′ serves as the ground for the upper fourbar, the “virtual crank
angle” θ2′ is given by

 2θ α β′ = − (4.174)

where

 tan
y y
x x

E B

E B
α = −

−
 (4.175)

E

u v

q

F

G

B

A

b

a

γ2 γ4

θ3

θ4

c

d

C

D

p

FIGURE 4.88
Dimensions of the Stephenson Type I sixbar linkage. The links a, b, c, and d form a fourbar linkage.

B

u
v

q

F
E

G

b

a
γ4

γ2

θ2'

θ6θ5

α d'
a'

c

d
A

C

D

p

β

FIGURE 4.89
The upper “virtual” fourbar linkage is formed by a′, u, v, and d′.

198 Introduction to Mechanism Design

and

 tan
y y
x x

F B

F B
β = −

−
 (4.176)

The lengths of the virtual links a′ and d′ can be found using the Pythagorean theorem

 2 2
a x x y yE B E B()()′ = − + − (4.177)

 2 2
d x x y yF B F B()()′ = − + − (4.178)

Once the lengths of the virtual links and crank angle are known, the angles θ5′ and θ6′ can
be found using the ordinary fourbar procedure, with u and v in place of b and c. Since the
ground on the upper fourbar has been rotated an angle β from the horizontal, the angles
of the upper two bars must be adjusted as

5 5

6 6

θ θ β

θ θ β

= ′ +

= ′ +
 (4.179)

4.13.2 The Remaining Sixbar Linkages

Analysis of the remaining sixbar linkages (with the exception of the Stephenson Type II
sixbar) proceeds as with the Stephenson Type I sixbar (see Figures 4.90 through 4.92). First,
the lower fourbar linkage is analyzed, and the angles θ3 and θ4 are found. Then the angles
in the upper “virtual” fourbar are found by rotating the virtual ground by the angle β.
The coordinates for critical points on the linkages have been tabulated in Table 4.2. The
 important angles and lengths used in solving the virtual fourbar linkage are seen in
Table 4.3. A general solution procedure for the sixbar linkages is shown below. Follow this
procedure when developing your MATLAB code to conduct the position analysis of the
sixbar linkages.

B

u

v

q

F

E

G

b

a

γ3

γ1

θ2'α

d'

a'

c

d
A

C

D

p

β

FIGURE 4.90
Critical dimensions of the Stephenson Type III sixbar linkage.

199Position Analysis of Linkages

B

u

v

q

F

E
G

b

a

γ3

γ4

θ2'
α

d'

a'

c

d
A

C

D

p

β

FIGURE 4.91
Critical dimensions of the Watt Type I sixbar linkage.

B
u

v

q

F

E

G

b

a

γ1

γ4

θ2'
α

d'

a',p
c

d
A

C

D

β

FIGURE 4.92
Critical dimensions of the Watt Type II sixbar linkage.

TABLE 4.2

Coordinates of Critical Points on Sixbar Linkages

Stephenson I Stephenson III Watt I Watt II

xB 2ea 2ea 2ea 2ea
xC 3+x ebB 3+x ebB 3+x ebB 3+x ebB

xD 1ed 1ed 1ed 1ed
xE ep AE +x epB BE +x epB BE +x epD DE

xF +x eqD DF eq AF +x eqD DF eq AF

xG 5+x euE 5+x euE 5+x euE 5+x euE

200 Introduction to Mechanism Design

 1. Enter the link lengths a, b, c, d, p, q, u, v, and the three-pin link internal angles γ as
given in the problem statement.

 2. Main Loop
 a. Use the lengths a, b, c, and d, and the crank angle θ2 to conduct a position analy-

sis of the lower fourbar linkage. It is simplest to copy and paste your fourbar
code for this section.

 b. Calculate the coordinates of pins B, C, D, E, and F using the formulas given in
Table 4.2.

 c. Calculate the angles α, β using the formulas in Table 4.3 and then compute the
virtual crank angle θ2′ using Equation (4.174).

 d. Calculate the virtual crank length a′ and virtual ground length d′ using
Table 4.3.

 e. Use the lengths a′, u, v, d′, and the virtual crank angle θ2′ in the fourbar solution
procedure to find the angles θ5′ and θ6′.

 f. Add the angle β to θ5′ and θ6′ to obtain the angles θ5 and θ6 in the fixed coordi-
nate system.

 g. Compute the coordinates of point G.
 3. Create plots of the desired points on the linkage.

In Section 4.14, we will use MATLAB to carry out the procedure described above. We
will develop a code for only one of the linkages (the Stephenson Type I sixbar) since the
remaining three are so similar. Only the Stephenson Type II sixbar cannot be analyzed
using this method.

4.13.3 The Stephenson Type II Sixbar Linkage

As seen in Figure 4.84, the Stephenson Type II sixbar linkage does not contain a grounded
fourbar. Instead, the links 1, 2, 3, 4, and 5 form a grounded fivebar linkage, which cannot
be solved using the algebraic methods discussed thus far. Figure 4.93 shows a vector loop
diagram of the linkage. We may write two loop equations

0

0

2 3 5 4 1

2 3 6 4 1E F

+ + − − =

+ + − − =

r r r r r

r r r r r
 (4.180)

TABLE 4.3

Important Angles and Crank and Ground Lengths of Upper Fourbar for the Sixbar Linkages

Stephenson I Stephenson III Watt I Watt II

tan β
−
−

y y
x x

F B

F B

−
−

y y
x x

F C

F C

−
−

y y
x x

F C

F C

−
−

y y
x x

F D

F D

tanα
−
−

y y
x x

E B

E B

−
−

y y
x x

E C

E C

−
−

y y
x x

E C

E C

−
−

y y
x x

E D

E D

a′ 2 2()()− + −x x y yE B E B
2 2()()− + −x x y yE C E C

2 2()()− + −x x y CE C E y
2 2()()− + −x x y yE D E D

d′ 2 2()()− + −x x y yF B F B
2 2()()− + −x x y yF C F C

2 2()()− + −x x y CF C F y
2 2()()− + −x x y yF D F D

201Position Analysis of Linkages

and the result will be four nonlinear, transcendental equations with four unknown angles,
θ3, θ4, θ5, and θ6. To solve these, we may employ one of the nonlinear equation solvers in
MATLAB, or write a simple Newton–Raphson solver. The Newton–Raphson solver is dis-
cussed in the final section of this chapter, and this method has been used to construct the
animations of the Stephenson Type II sixbar linkages on the website.

4.13.4 Summary

We have presented solution techniques for four of the five types of one DOF sixbar link-
ages. Each of these is based upon performing the fourbar linkage position analysis twice:
once for a grounded lower linkage and again for a “virtual” upper fourbar. MATLAB code
is given in the next section for the Stephenson Type I linkage, but you should try pro-
gramming the remaining linkages (and checking your answers with the plots in the next
section) on your own. Only the Stephenson Type II linkage defies solution using algebraic
techniques.

4.14 Position Analysis of the Sixbar Linkage Using MATLAB®

We will now use the procedure developed in the preceding section to create a MATLAB
script to perform a position analysis on the Stephenson Type I sixbar linkage. This will be
the most complicated script we have developed so far, with more than 100 lines of code! It
is worthwhile to go through the development in some detail, so that writing the programs
for the other sixbar linkages will be relatively straightforward.

r3E

r4F

r5

r3
r4

r1

r2

r6

FIGURE 4.93
Vector loop diagram of the Stephenson Type II sixbar linkage. This linkage cannot be analyzed by algebraic
means alone.

202 Introduction to Mechanism Design

Figure 4.94 gives the dimensions of the sixbar linkage we will analyze. We will closely
follow the procedure outlined in the previous section. The top portion of the code is simi-
lar to the programs we have already written; first define the link lengths and angles, then
allocate space for the position variables as shown in Step 1 of the procedure.

% Sixbar_S1_Position_Analysis.m
% conducts a position analysis of the Stephenson Type I sixbar linkage
% and plots the positions of points E, F and G.
% by Eric Constans, June 2, 2017

% Prepare Workspace
clear variables; close all; clc;

% Linkage dimensions
a = 0.070; % crank length (m)
b = 0.100; % coupler length (m)
c = 0.090; % rocker length (m)
d = 0.110; % length between ground pins (m)
p = 0.150; % length to third pin on crank triangle (m)
q = 0.150; % length to third pin on rocker triangle (m)
u = 0.120; % length of link 5 (m)
v = 0.160; % length of link 6 (m)
gamma2 = 20*pi/180; % internal angle of crank triangle
gamma4 = -20*pi/180; % internal angle of rocker triangle

20°
20°

110
(All dimensions in millimeters)

Crank length: 70 Rocker length: 90

Coupler length: 100
Internal angle of crank: 20° Internal angle of rocker: –20°
Length AE on crank: 150

Distance between ground pins: 110

Length DF on rocker: 150

Length of link 5: 120
Length of link 6: 160

150

100

70 90

120 160

15
0

G

FE

C

D

B

A

FIGURE 4.94
The Stephenson Type I sixbar linkage used in the example.

203Position Analysis of Linkages

% Ground pins
x0 = [0; 0]; % ground pin at A (origin)
xD = [d; 0]; % ground pin at D

% allocate space for variables
N = 361; % number of times to perform position calculations
[xB,xC,xE,xF,xG] = deal(zeros(2,N)); % positions
[theta2,theta3,theta4,theta5,theta6] = deal(zeros(1,N)); % angles

Since the lower fourbar linkage is composed of links with length a, b, c, and d, we can copy
the fourbar position analysis code directly, as given in Step 2a.

% Main Loop
for i = 1:N

% solve lower fourbar linkage
 theta2(i) = (i-1)*(2*pi)/(N-1); % crank angle
 r = d - a*cos(theta2(i));
 s = a*sin(theta2(i));
 f2 = r^2 + s^2;
 delta = acos((b^2+c^2-f2)/(2*b*c));
 g = b - c*cos(delta);
 h = c*sin(delta);

 theta3(i) = atan2((h*r - g*s),(g*r + h*s)); % coupler angle
 theta4(i) = theta3(i) + delta; % rocker angle

We then use the formulas in Table 4.2 to calculate the coordinates of pins B, C, E, and F, as
suggested by Step 2b. The location of pin D is fixed, and was calculated before the main
loop.

% calculate unit vectors
 [e2,n2] = UnitVector(theta2(i));
 [e3,n3] = UnitVector(theta3(i));
 [e4,n4] = UnitVector(theta4(i));
 [eAE,nAE] = UnitVector(theta2(i) + gamma2);
 [eDF,nDF] = UnitVector(theta4(i) + gamma4);

% solve for positions of points B, C, E, F
 xB(:,i) = FindPos(x0,a, e2);
 xC(:,i) = FindPos(xD,c, e4);
 xE(:,i) = FindPos(x0,p,eAE);
 xF(:,i) = FindPos(xD,q,eDF);

Next, we must calculate the angles α and β using the formulas given in Table 4.3, as well as
the virtual crank and ground lengths, a′ and d′. Since these formulas require the repeated
use of differences in coordinates, it will save some computational effort (and make the
code neater) to define the temporary variables xFB, yFB, xEB, and yEB.

% solve upper fourbar linkage
 xFB = xF(1,i) - xB(1,i); yFB = xF(2,i) - xB(2,i);
 xEB = xE(1,i) - xB(1,i); yEB = xE(2,i) - xB(2,i);
 beta = atan2(yFB, xFB);

204 Introduction to Mechanism Design

 alpha = atan2(yEB, xEB);
 aPrime = sqrt(xEB^2 + yEB^2); % virtual crank length on upper fourbar
 dPrime = sqrt(xFB^2 + yFB^2); % virtual ground length on upper fourbar
 theta2Prime = alpha - beta; % virtual crank angle on upper fourbar

As given in Step 2e, we now compute the angles in the upper fourbar linkage

 r = dPrime - aPrime*cos(theta2Prime);
 s = aPrime*sin(theta2Prime);
 f2 = r^2 + s^2;
 delta = acos((u^2+v^2-f2)/(2*u*v));
 g = u - v*cos(delta);
 h = v*sin(delta);

 theta5Prime = atan2((h*r - g*s),(g*r + h*s)); % coupler and rocker
 theta6Prime = theta5Prime + delta; % angles on upper fourbar

Finally, use the angle β to rotate back to the original coordinate system and solve for the
coordinates of point G.

 theta5(i) = theta5Prime + beta; % return angles to fixed
 theta6(i) = theta6Prime + beta; % fixed CS

% calculate remaining unit vectors
 [e5,n5] = UnitVector(theta5(i));
 [e6,n6] = UnitVector(theta6(i));

% calculate position of point G
 xG(:,i) = FindPos(xE(:,i), u, e5);
end

4.14.1 Making the Sixbar Plot

Because of the large number of links, the sixbar position plots will be somewhat crowded.
To make them more readable, we will introduce a few new plotting tricks here. First, it will
be handy to make use of more than the default eight MATLAB colors.

There are multiple methods for handling colors in MATLAB (see, e.g. colormap, etc.),
but the method presented here is simple to implement. It is common in computer systems
to specify a color using an “RGB triple” in the form [R G B] where R, G, and B are values
between 0 and 255 that give the red, green, and blue content of a color, respectively. For
example, pure red would be given by the triple [255 0 0], white is [255 255 255] and medium
gray is [128 128 128]. In our system, we will define a base color, and use a MATLAB func-
tion to calculate the RGB triples for ten shades of that color. The first shade will be the base
color itself, and the remaining shades will be progressively lighter until the final shade is
almost white.

We will use a linear interpolation formula to calculate the RGB value for each shade. If
the base value for a given color is S0, then the formula for shade i is

255

10
10

0S
S

i Si ()= − − + (4.181)

205Position Analysis of Linkages

The reader will confirm that the formula gives Si = S0 when i = 0 and Si = 255 when i = 11.
Let us create a function, DefineColor.m, to create our own custom palette of colors. Open
up a new script, and type the following function.

% DefineColor.m
% makes a palette of custom colors for plotting in MATLAB
% the first color in the palette gives the full base color, and
% the rest fade gradually to white
%
% colorBase = 1x3 input array giving RGB values (between 0 and 255)
% C = 10x3 output array giving RGB values (between 0 and 1)

function C = DefineColor(colorBase)

C = zeros(11,3);
for i = 1:11
 for j = 1:3
 C(i,j) = (i-1)*(255 - colorBase(j))/10 + colorBase(j);
 end
end

C = C/255;

The final line in the function divides the entire array by 255, since MATLAB specifies its
RGB values in the range between 0 and 1. In the main program immediately after the end
of the main loop type

cBlu = DefineColor([0 110 199]); % Pantone 300C
cBlk = DefineColor([0 0 0]); % grayscale

These lines define two color palettes: cBlu and cBlk that give shades of blue and gray-
scales, respectively. Coincidentally, these are the palettes used for the illustrations in this
textbook! Figure 4.95 shows the colors created by the DefineColor function.

To plot the trajectories of points E, F, and G, type

figure; hold on
plot(xE(1,:),xE(2,:),'Color',cBlu(1,:))
plot(xF(1,:),xF(2,:),'Color',cBlu(7,:))
plot(xG(1,:),xG(2,:),'Color',cBlk(5,:))

Instead of using the default MATLAB colors, we have used our newly defined palettes to
customize the traces. Next, plot the two triangular links, the crank and rocker:

iTheta = 120; % specify angle at which to plot linkage
% plot the two three-pin links as triangular patches
patch([x0(1) xB(1,iTheta) xE(1,iTheta)],...
 [x0(2) xB(2,iTheta) xE(2,iTheta)],cBlu(9,:),...
 'EdgeColor',cBlk(6,:),'LineWidth',2,'FaceAlpha',0.5);
patch([xD(1) xF(1,iTheta) xC(1,iTheta)],...
 [xD(2) xF(2,iTheta) xC(2,iTheta)],cBlu(10,:),...
 'EdgeColor',cBlk(6,:),'LineWidth',2,'FaceAlpha',0.5);

206 Introduction to Mechanism Design

Since the triangular links are plotted after the traces, it is likely that some of the traces
have been obscured. To avoid this, we have used the FaceAlpha parameter to make the
links semitransparent. We have also made the edges a medium gray so that the traces will
stand out.

% plot the two-pin links
plot([xB(1,iTheta) xC(1,iTheta)],[xB(2,iTheta) xC(2,iTheta)],...
 'Linewidth',2,'Color',cBlk(5,:));
plot([xE(1,iTheta) xG(1,iTheta)],[xE(2,iTheta) xG(2,iTheta)],...
 'Linewidth',2,'Color',cBlk(5,:));
plot([xF(1,iTheta) xG(1,iTheta)],[xF(2,iTheta) xG(2,iTheta)],...
 'Linewidth',2,'Color',cBlk(5,:));

% plot fixed pins
 plot([x0(1) xD(1)],[x0(2) xD(2)],'o','MarkerSize',5,...
 'MarkerFaceColor',cBlk(1,:),'Color',cBlk(1,:));

% plot joints on linkage
 plot([xB(1,iTheta) xC(1,iTheta) xE(1,iTheta) xF(1,iTheta) xG(1,iTheta)],...
 [xB(2,iTheta) xC(2,iTheta) xE(2,iTheta) xF(2,iTheta) xG(2,iTheta)],...
 'o','MarkerSize',5,'MarkerFaceColor',cBlk(6,:),'Color',cBlk(6,:));

Plotting the two pin links and pin joints is the same as before, although we have changed
the color of the moving pins to medium gray.

% plot the labels of each joint
text(x0(1), x0(2) - 0.012, 'A','HorizontalAlignment','center');
text(xD(1), xD(2) - 0.012, 'D','HorizontalAlignment','center');
text(xB(1,iTheta),xB(2,iTheta)+0.012,'B','HorizontalAlignment','center');
text(xC(1,iTheta)+0.012,xC(2,iTheta),'C','HorizontalAlignment','center');
text(xE(1,iTheta)-0.012,xE(2,iTheta),'E','HorizontalAlignment','center');

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

FIGURE 4.95
Color palette defined by the function DefineColor.m.

207Position Analysis of Linkages

text(xF(1,iTheta),xF(2,iTheta)+0.012,'F','HorizontalAlignment','center');
text(xG(1,iTheta),xG(2,iTheta)+0.012,'G','HorizontalAlignment','center');

axis equal
grid on
title('Paths of points E, F and G on S1 Sixbar Linkage')
xlabel('x-position [mm]')
ylabel('y-position [mm]')
legend('Point E', 'Point F', 'Point G','Location','SouthEast')

Finally, the commands for labeling the points are the same as we used for the previous
linkages. If you have entered everything correctly, you should obtain the position plot
shown in Figure 4.96.

4.14.2 The Remaining Sixbar Linkages

A MATLAB script that solves the Stephenson Type I linkage has been developed above.
Programs for the remaining sixbar linkages (with the exception of the Stephenson Type II)
are left as an exercise for the reader. Figures 4.97 through 4.102 show a set of example plots
of the four types of sixbar linkages that we have discussed. Ensure that your plots match
these before beginning the homework exercises.

4.15 Advanced Topic: The Newton–Raphson Method

We have seen in the preceding sections that there are some linkages whose positions cannot
be analyzed using algebraic methods, most notably the Stephenson Type II sixbar linkage.

Paths of points E, F and G on S1 sixbar linkage

C

A

B
E

G

D

F

Point E
Point F
Point G

–0.05–0.1–0.15–0.2 0 0.05 0.1 0.15 0.2 0.25

0.2

0.15

0.1

0.05

0

–0.1

–0.05

–0.15

y-
Po

sit
io

n
(m

m
)

x-Position (mm)

FIGURE 4.96
Paths of E, F, and G for the example Stephenson Type I sixbar linkage.

208 Introduction to Mechanism Design

B

A

E

C

105

135

195

G

–20°
120

180

18
0

80

20º

225

D

F

(All dimensions in millimeters)

Crank length: 80

Rocker length: 120
Coupler length: 105
Internal angle of coupler: 20°

Internal angle of ground: –20°

Length BE on coupler: 225
Distance between ground pins: 135

Length AF on ground: 195

Length of link 5: 180
Length of link 6: 180

FIGURE 4.97
Dimensions of example Stephenson Type III linkage. The internal angle of the ground triangle is negative since
it sweeps clockwise from the line between ground pivots.

Paths of points E, C and G on S3 sixbar linkage

C

A

B

E

D

G

F

Point E
Point C
Point G

–0.05–0.1 0 0.05 0.1 0.15 0.2 0.25 0.3

0.2

0.25

0.15

0.1

0.05

0

–0.05

y-
Po

sit
io

n
(m

m
)

x-Position (mm)

FIGURE 4.98
Position solution for the example Stephenson Type III linkage.

209Position Analysis of Linkages

This section presents a method for conducting the position analysis for any one DOF link-
age: the Newton–Raphson algorithm. In contrast with the algebraic methods presented
so far, the Newton–Raphson algorithm is iterative, which means that we use a “guess and
check” approach to finding the positions. This means that the Newton–Raphson algorithm
will generally be slower than the algebraic approach, if it is available. As we will see, our

B

A

E

C

18
0

G

120

108

120

120

18
0

84

30º

–50º

132

D

F

(All dimensions in millimeters)

Crank length: 84 Rocker length: 108
Coupler length: 120
Internal angle of coupler: 30°

Internal angle of rocker: –50°

Length BE on coupler: 180
Distance between ground pins: 132

Length DF on rocker: 180
Length of link 5: 120
Length of link 6: 120

FIGURE 4.99
Dimensions of the example Watt Type I sixbar linkage.

Paths of points E, F and G on W1 sixbar linkage

C

A

B

E

D

G

F

Point E
Point F
Point G

–0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0.2

0.25

0.15

0.1

0.05

0

y-
Po

sit
io

n
(m

m
)

x-Position (mm)

FIGURE 4.100
Position solution for the Watt Type I linkage.

210 Introduction to Mechanism Design

B

A

E

C100

15
0

G

110

120

16
0

70

90

–30º

–20º

150

D

F

(All dimensions in millimeters)

Crank length: 70 Rocker length: 90
Coupler length: 100

Internal angle of ground: –20°

Internal angle of rocker: –30°

Length AE on ground: 150

Distance between ground pins: 110 Length DF on rocker: 150
Length of link 5: 120
Length of link 6: 160

FIGURE 4.101
Dimensions of the example Watt Type II linkage. The internal angles of the ground and rocker are negative
since they sweep out in the clockwise direction.

Paths of points E, C and G on W2 sixbar linkage

C

A

B

E

D

G

F Point E
Point C
Point G

0 0.05 0.1 0.15 0.2 0.25

0.1

0.15

0.05

0

–0.05

y-
Po

sit
io

n
(m

m
)

x-Position (mm)

FIGURE 4.102
Position solution for the example Watt Type II linkage.

211Position Analysis of Linkages

guesses will not be completely random, and the algorithm usually converges on the cor-
rect solution after only a few tries. And for some linkages (e.g. the Stephenson Type II
sixbar) we have no choice but to use an iterative approach.

As a first example, we will conduct a position analysis of the fourbar linkage, since
its equations are simpler than the sixbar. Consider the vector loop diagram shown in
Figure 4.103. Adding the vectors around the loop brings us back where we started, so that
the vector sum is zero.

 02 3 4 1+ − − =r r r r (4.182)

Expanding this equation into its x and y components gives

cos cos cos 0

sin sin sin 0

2 3 4

2 3 4

a b c d

a b c

θ θ θ

θ θ θ

+ − − =

+ − =
 (4.183)

These equations are sometimes called constraint equations, since they must both be satisfied
in order for the linkage to be properly assembled. Both equations have the form

 , , 02 3 4f θ θ θ() = (4.184)

In other words, the left-hand sides of both equations are functions of θ2, θ3, and θ4, and both
must equal zero at all times. Since we normally specify the crank angle in advance, it is
more correct to write Equation (4.184) as

 , 03 4f θ θ() = (4.185)

Let us denote the vector of unknowns in this equation as q

 3

4

θ
θ

=

q (4.186)

y

x

a

b

d

c

θ3

θ4θ2

r3

r4

r2

r1

FIGURE 4.103
Vector loop diagram for the fourbar linkage.

212 Introduction to Mechanism Design

Since we have two equations of constraint, which both must equal zero, we can also write
this as a vector in the form

 0q()Φ = (4.187)

where

cos cos cos

sin sin sin

1 2 3 4

2 2 3 4

a b c d

a b c

θ θ θ

θ θ θ

Φ = + − −

Φ = + −
 (4.188)

The Newton–Raphson algorithm is a method for solving systems of nonlinear equations
of the type in Equation (4.187). We will first discuss how the method works with a single
equation and single unknown, and then generalize it for multiple equations and multiple
unknowns.

4.15.1 The One-Dimensional Newton-Raphson Algorithm

Consider a single constraint equation of the form

 0q()Φ = (4.189)

where Φ can be any function of q, for example

sin 0

0

5 3 0

2

q

q

q

=

=

+ =

 (4.190)

In each case, we would like to solve for q such that the left-hand side of the equation equals
zero. In other words, we are interested in finding the root of each equation. For the expres-
sions above, finding the roots is simple, but for more complicated equations, an analytical
solution is not always possible. For this type of equation, we need to develop an automatic
procedure that we can implement in MATLAB. The procedure we will use is the Newton–
Raphson algorithm.

The simplest way to present the Newton–Raphson algorithm is graphically, as shown in
Figure 4.104. The thick blue line shows Ф(q), a function of the variable q. Initially, we don’t
know what the function Ф looks like at all points (i.e. we do not really know enough about
Ф to make the plot above!), but we can make an initial guess, q1, and work from there.
Again, our goal is to find q*, the value of q that makes the function Ф zero.

Assume that our initial guess, q1, was not very good, as in Figure 4.104. We can deduce
the best direction to proceed by examining the slope (or derivative) of Ф at q1

 slope
1

d
dq

q

= Φ
 (4.191)

In Figure 4.105, the slope tells us that a more fruitful place to search for q* would be at a
lower value of q. In fact, we can make a pretty good guess as to the location of q* by noting
that the points Ф(q1), q*, and q1 form a triangle, whose base is (q1 − q*), height is Ф(q1), and
slope is dФ/dq. Using this triangle, we can rewrite the slope at q1 as

213Position Analysis of Linkages

0

*
1

1
1

d
dq

q

q q
q

()Φ ≈
Φ −

−

Solving this equation for q*, we have

 * 1
1

1

q q
q

d
dq

q

()
= −

Φ
Φ

 (4.192)

This is the estimating procedure for the Newton–Raphson algorithm. If the constraint
equation is linear, we can find the root in one step! Of course, our linkage constraint equa-
tions are not linear, and it will take multiple steps to find the roots.

qq1q*

Φ

Initial guess
Φ(q1)

FIGURE 4.104
The initial guess in the Newton–Raphson algorithm.

q
q1q*

Φ dΦ
dq q1

Φ(q1)

FIGURE 4.105
Direction to move for the second guess.

214 Introduction to Mechanism Design

If the equation is nonlinear, as shown in Figure 4.106, we can use Equation (4.192) to
make a guess at q*, and iterate until we find it to sufficient accuracy. Starting at point q1,
we find q2

 2 1
1

1

q q
q

d
dq

q

()
= −

Φ
Φ

 (4.193)

If this point is close enough to q*, we stop there; otherwise we keep estimating until we
have converged upon q*.

 1q q
q

d
dq

i i
i

qi

()
= −

Φ
Φ

+ (4.194)

4.15.2 One Dimensional Examples

Let us try a few examples to become familiar with the algorithm. We’ll start simple,
and work our way to more complicated functions. First, consider the following linear
function:

 2 3qΦ = + (4.195)

We wish to find the value of q that makes the function Φ equal to zero. To start the
 algorithm, we make an initial (random) guess.

 guess : 51q = (4.196)

qq1q2

q*

Φ

dΦ
dq q1

Φ(q1)

dΦ
dq q2

FIGURE 4.106
More than one move is required for nonlinear functions.

215Position Analysis of Linkages

If we substitute this into the function Φ, we have

 5 13()Φ = (4.197)

This isn’t anywhere near zero, so we need to update our guess using the Newton–Raphson
formula. To use the formula, we need to know the derivative of the function

 2 3 2
d
dq

d
dq

q()Φ = + = (4.198)

The next guess is then

 5
13
2

3
22 1

1

1

q q
q

d
dq

q

()
= −

Φ
Φ

= − = − (4.199)

Substituting this into our function, we see that

3
2

2
3
2

3 0Φ −

 = ⋅ −

 + = (4.200)

Thus, with one guess, we have found the value of q that makes Φ zero. This is always the
case for linear functions.

4.15.3 A More Complicated Function

Let us try something a little more complicated: a cubic function that has been plotted in
Figure 4.107.

 103 2q q qΦ = − − (4.201)

φ(
q)

q

q3 – q2 – 10q

100

50

0

–50

–100

–150
–6 –4 –2 0 2 4 6

FIGURE 4.107
The cubic function used in the example. This function crosses the x axis at three locations.

216 Introduction to Mechanism Design

The derivative of this function is

 3 2 102d
dq

q q
Φ = − − (4.202)

As an initial guess, let’s try

 51q = (4.203)

as before. Substituting this into the function, we have

 5 50()Φ = (4.204)

Nowhere near zero! The derivative of the function at q = 5 is

 5 55
d
dq

()Φ = (4.205)

The next guess is then

 5
50
55

4.0912 1
1

1

q q
q

d
dq

q

()
= −

Φ
Φ

= − = (4.206)

If we substitute q = 4.091 into the function, we get

 4.091 10.819()Φ = (4.207)

We are getting closer! The derivative of the function at q = 4.091 is

 4.091 32.025
d
dq

()Φ = (4.208)

The next guess is then

 4.091
10.819
32.025

3.7533 2
2

2

q q
q

d
dq

q

()
= −

Φ
Φ

= − = (4.209)

If we substitute q = 3.753 into our function, we get

 3.753 1.248()Φ = (4.210)

Much closer! Let’s try one last guess. The derivative of the function at q = 3.753 is

 3.753 24.751
d
dq

()Φ = (4.211)

217Position Analysis of Linkages

The next guess is then

 3.753
1.248
24.751

3.7034 3
3

3

q q
q

d
dq

q

()
= −

Φ
Φ

= − = (4.212)

The value of the function here is

 3.703 0.026()Φ = (4.213)

This is close enough to zero! Although this function was considerably more com-
plicated than the first one, it took us only four iterations to find the root. The root is
q* = 3.703. The tables below give examples of what happens when we try different initial
guesses. Table 4.4 shows the initial guess we just tried, q1 = 5.

Next, we’ll try a smaller initial guess, q1 = 1.5. As you can see in Table 4.5, we have
arrived at different root, q* = 0. Since our function is cubic, we can expect there to be
three roots.

Next, we try an initial guess q1 = −1.5. As seen in Table 4.6, the algorithm has some
difficulty in converging to an answer. The reason for this is that the slope at q1 = −1.5 is
very shallow (−0.25). The updated guess is therefore very far away from the initial guess
(q2 = 36). That is, because of the shallow slope, we move very far away from the location of
the roots. This is a danger in using the Newton–Raphson algorithm – if our initial guess
happens to lie at a point of zero slope, the algorithm may have trouble converging.

In our final example, shown in Table 4.7, we converge to the root −2.702. Convergence
occurs very quickly, in four or five iterations.

TABLE 4.4

Initial Guess = 5.0

i qi Φ dΦ/dq

1 5.000 50.000 55.000
2 4.091 10.819 32.025
3 3.753 1.248 24.751
4 3.703 0.026 23.724
5 3.702 0.0000121

TABLE 4.5

Initial Guess = 1.5

i qi Φ dΦ/dq

1 1.500 −13.875 −6.250
2 −0.72 6.308 −7.005
3 0.181 −1.832 −10.263
4 0.00203 −0.02 −10.004
5 4.101 × 10–7 4.101 × 10–6 −10.000

218 Introduction to Mechanism Design

4.15.4 Newton–Raphson in Multidimensional Space

We can use the same type of iterative procedure to solve multiple nonlinear equations
simultaneously. Our task now is to create a version of Equation (4.194) for multiple
 constraint equations.

 1q q
q

d
dq

i i
i

qi

()
= −

Φ
Φ

+ (4.214)

We will need to do some rearranging to get this into a multidimensional form that MATLAB
can work with. First, multiply both sides by the derivative term and rearrange to obtain

 · 1
d
dq

q q q
q

i i i

i

() ()Φ − = −Φ+ (4.215)

Define

 1q q qi i i∆ = −+ (4.216)

Then

d
dq

q q
q

i i

i

()Φ ⋅ ∆ = −Φ (4.217)

TABLE 4.7

Initial Guess = −4.0

i qi Φ dΦ/dq

1 −4.000 −40 46
2 −3.13 −9.172 25.66
3 −2.773 −1.282 18.614
4 −2.704 −0.0439 17.345
5 −2.702 −0.000058 17.298

TABLE 4.6

Initial Guess = −1.5

i qi Φ dΦ/dq

1 −1.500 9.375 −0.25
2 36.000 45,000 3,806
3 24.177 13,305 1,695
4 16.328 3,923 757
5 11.146 1149 340
6 7.771 331.145 155.614
7 5.643 91.403 75.238
8 4.412 22.280 39.562
9 3.848 3.702 26.734
10 3.710 0.1995 23.871

219Position Analysis of Linkages

We can generalize this to multidimensional systems as

q

q q
d
d

q

i i

i

ΦΦ ΦΦ()⋅ ∆ = − (4.218)

Remember that Φ is now a vector of functions, not a single function. You may well wonder
what it means to take the derivative of a vector of functions – with respect to another
 vector! This is actually simpler than it might seem. As an example, let

1

2

3

4

g

g

g

g

x
y

θ

()
()
()
()

=

=

g

q

q

q

q

q (4.219)

Here, g1, g2, etc. are functions of the variables in the vector q. The derivative of g with
respect to q is

g
q

1 1 1

2 2 2

3 3 3

4 4 4

d
d

g
x

g
y

g

g
x

g
y

g

g
x

g
y

g

g
x

g
y

g

θ

θ

θ

θ

=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

 (4.220)

Note that if g has n elements and q has k elements, then dg/dq is a n × k matrix. To reiter-
ate, the derivative of a vector of functions with respect to a vector of variables is a matrix. This
matrix of first derivatives has a special name – it is known as the Jacobian matrix. In this
text, we will denote the Jacobian matrix with a bold J. Thus, at the ith iteration we have

 J
q

q

d
d

i

i

ΦΦ= (4.221)

Example 4.12: The Fourbar Linkage

Earlier, we found the constraint equations for the fourbar linkage

cos cos cos

sin sin sin
2 3 4

2 3 4

3

4
q

a b c d
a b c

θ θ θ
θ θ θ

θ
θ

Φ =
+ − −

+ −

=

 (4.222)

The Jacobian matrix for this is

 J
sin sin

cos cos
3 4

3 4

b c
b c

θ θ
θ θ

=
−

−

 (4.223)

220 Introduction to Mechanism Design

Example 4.13: The Slider-Crank Linkage

The vector loop equations for the slider-crank linkage are

 Φ
θ θ
θ θ

θ
=

+ −
+ −

=

a b d
a b c d

q
cos cos
sin sin

2 3

2 3

3 (4.224)

Thus, the Jacobian matrix for the slider-crank is

 J
sin 1

cos 0
3

3

b
b

θ
θ

=
− −

 (4.225)

4.15.5 The Newton–Raphson Algorithm in MATLAB®

Using the procedure outlined above, we can develop a flowchart for the Newton–Raphson
algorithm as shown in Figure 4.108. As an example, we will conduct the position analysis
on the example fourbar linkage discussed in Section 4.8. Begin by preparing the workspace
and initializing the linkage dimensions, as shown below.

% Fourbar_Position_Analysis.m
% Solves for the positions of the links on a fourbar linkage and
% plots the paths of points on the linkage using the Newton-Raphson
% algorithm.
% by Eric Constans, June 9, 2017

% Prepare workspace
clear variables; close all; clc

Make an initial guess at q
call this qi

Evaluate Φ(qi)

Evaluate J(qi)

Calculate ∆qi using
 ∆qi = –(Ji)–1Φ(qi)

Calculate qi+1 using
 qi+1 = qi + ∆q

yes

no

Done!Φ(qi) < ε?

FIGURE 4.108
Flowchart for the Newton–Raphson algorithm.

221Position Analysis of Linkages

% Linkage dimensions
a = 0.130; % crank length (m)
b = 0.200; % coupler length (m)
c = 0.170; % rocker length (m)
d = 0.220; % length between ground pins (m)
p = 0.150; % length from B to P (m)
gamma = 20*pi/180; % angle between BP and coupler (converted to rad)

% ground pins
x0 = [0;0]; % ground pin at A (origin)
xD = [d;0]; % ground pin at D

N = 361; % number of times to perform position calculations
[xB,xC,xP] = deal(zeros(2,N)); % allocate for pos of B, C, P
[theta2,theta3,theta4] = deal(zeros(1,N)); % allocate space for angles

Before beginning the main loop, we must first give our initial guesses for the unknowns.
These initial guesses will have a significant impact on whether the Newton–Raphson
 algorithm can find a solution to the position equations. The rest of main loop will be
the same as before, but we will replace the position calculations at each time step with a
Newton–Raphson calculation.

t3 = 0; t4 = 0; % initial guesses for Newton-Raphson algorithm
for i = 1:N
 theta2(i) = (i-1)*(2*pi)/(N-1);

% Newton-Raphson Calculations go here

% calculate unit vectors
 [e2,n2] = UnitVector(theta2(i));
 [e3,n3] = UnitVector(theta3(i));
 [e4,n4] = UnitVector(theta4(i));
 [eBP,nBP] = UnitVector(theta3(i) + gamma);

% solve for positions of points B, C and P on the linkage
 xB(:,i) = FindPos(x0, a, e2);
 xC(:,i) = FindPos(xD, c, e4);
 xP(:,i) = FindPos(xB(:,i), p, eBP);
end

Inside the main loop, and after the calculation of theta2 begin typing in the Newton–
Raphson algorithm. Since it is an iterative procedure, we will begin with a second for
loop. We will limit the for loop to 20 iterations, because the algorithm normally converges
very quickly. If we do not reach convergence after 20 iterations, we will probably not reach
convergence at all!

% Newton-Raphson Calculations
 for j = 1:5
 phi(1,1) = a*cos(theta2(i)) + b*cos(t3) - c*cos(t4) - d;
 phi(2,1) = a*sin(theta2(i)) + b*sin(t3) - c*sin(t4);

% If constraint equations are satisfied, then terminate
 if (norm(phi) < 0.000001)

222 Introduction to Mechanism Design

 theta3(i) = t3;
 theta4(i) = t4;
 break
 end

The first statements inside the for loop calculate the constraint equations. We have
included two indices in phi to ensure that it is formed as a column vector, instead of a row
vector. Next, the norm of phi is calculated. Here “norm” is another word for magnitude;
that is the square root of the sum of squares of the vector. This provides an indication as
to whether the algorithm has converged upon a valid solution. If we have reached a valid
solution, then we substitute the values stored in the temporary variables t3 and t4 into
theta3 and theta4, and break out of the inner for loop. If the convergence criterion is
not met, we continue with the algorithm.

% calculate Jacobian matrix
 J = [-b*sin(t3) c*sin(t4);
 b*cos(t3) -c*cos(t4)];

% update variables using Newton-Raphson equation
 dq = -J\phi;
 t3 = t3 + dq(1);
 t4 = t4 + dq(2);
 end

Next, the Jacobian matrix is calculated, and we update the variables t3 and t4 accord-
ing to the Newton–Raphson procedure. The end statement indicates the end of the inner
for loop. The remainder of the program, including the plotting routines, is the same as
for the fourbar position analysis in Section 4.8. Try running the program now to see what
happens.

The results are not encouraging! Instead of a beautiful plot, we obtain the following
error message:

> In Fourbar_NewtonRaphson (line 47)
Warning: Matrix is singular to working precision.

This is MATLAB’s way of telling you that it cannot invert the Jacobian matrix, and in trying
to do so it was forced to divide by zero. Unless there is a typographical error somewhere,
this is usually caused by our initial guesses being too far away from the actual solution.
In many cases, it is difficult to obtain initial estimates by merely guessing, so a common
approach is to draw a sketch of the linkage in SOLIDWORKS with crank angle θ2 = 0 and
then to use the Smart Dimension tool to find the initial values for the other angles. Try
changing the initial guesses to

t3 = pi/4; t4 = pi/2; % initial guesses for Newton-Raphson algorithm

The result should be the plot shown in Figure 4.109. A full listing of the code is given below.
It is left as an exercise for the reader to perform the position analysis on the Stephenson
Type II sixbar linkage using the Newton–Raphson algorithm . The dimensions of a sample
Stephenson Type II linkage are shown in Figure 4.110, and the position plot is shown in
Figure 4.111.

223Position Analysis of Linkages

Paths of points B, C and P on fourbar linkage

C

B

P

Point B
Point C
Point P

0–0.1 –0.05 0.05 0.1 0.15 0.2 0.25

0.1

0.15

0.2

0.05

0

–0.05

–0.1

y-
Po

sit
io

n
(m

)

x-Position (m)

FIGURE 4.109
Fourbar position plot obtained using the Newton–Raphson algorithm.

B

A

E

C

180

22
5G

75

45

19
5

30º
–30º

105

120

165

D

F

(All dimensions in millimeters)

Crank length: 45 Rocker length: 105
Coupler length: 75

Internal angle of coupler: 30°
Internal angle of rocker: –30°Length BE on coupler: 195

Distance between ground pins: 165

Length DF on rocker: 225

Length of link 5: 120
Length of link 6: 180

FIGURE 4.110
Dimensions of example Stephenson Type II sixbar linkage.

224 Introduction to Mechanism Design

4.15.6 Summary

We have presented an alternative method for conducting the position analysis on single
DOF linkages – the Newton–Raphson method. The major advantage to the method is that
it can be made to work for any single DOF linkage, including those (like the Stephenson
Type II sixbar) that are not amenable to algebraic solution methods. The major disadvan-
tage is that the abstract nature of the algorithm can make it difficult to debug, and that
reasonably good initial guesses are required in order for the algorithm to converge. An
example Newton–Raphson code for the fourbar linkage is listed below.

% Fourbar_Position_Analysis.m
% Solves for the positions of the links on a fourbar linkage and
% plots the paths of points on the linkage using the Newton-Raphson
% algorithm.
% by Eric Constans, June 9, 2017

% Prepare workspace
clear variables; close all; clc

% Linkage dimensions
a = 0.130; % crank length (m)
b = 0.200; % coupler length (m)
c = 0.170; % rocker length (m)
d = 0.220; % length between ground pins (m)
p = 0.150; % length from B to P (m)
gamma = 20*pi/180; % angle between BP and coupler (converted to rad)

% ground pins
x0 = [0;0]; % ground pin at A (origin)

Paths of points B, C and P on sixbar linkage

C

E

F

G

B

A
D

Point E
Point F
Point G

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.1

0.15

0.2

0.25

0.05

0

y-
Po

sit
io

n
(m

m
)

x-Position (mm)

FIGURE 4.111
Position plot for example Stephenson Type II sixbar linkage solved using Newton–Raphson algorithm.

225Position Analysis of Linkages

xD = [d;0]; % ground pin at D

N = 361; % number of times to perform position calculations
[xB,xC,xP] = deal(zeros(2,N)); % allocate for pos of B, C, P
[theta2,theta3,theta4] = deal(zeros(1,N)); % allocate space for angles

t3 = pi/4; t4 = pi/2; % initial guesses for Newton-Raphson algorithm

for i = 1:N
 theta2(i) = (i-1)*(2*pi)/(N-1);

% Newton-Raphson Calculations
 for j = 1:5
 phi(1,1) = a*cos(theta2(i)) + b*cos(t3) - c*cos(t4) - d;
 phi(2,1) = a*sin(theta2(i)) + b*sin(t3) - c*sin(t4);
% If constraint equations are satisfied, then terminate
 if (norm(phi) < 0.000001)
 theta3(i) = t3;
 theta4(i) = t4;
 break
 end

% calculate Jacobian matrix
 J = [-b*sin(t3) c*sin(t4);
 b*cos(t3) -c*cos(t4)];

% update variables using Newton-Raphson equation
 dq = -J\phi;
 t3 = t3 + dq(1);
 t4 = t4 + dq(2);
 end

% calculate unit vectors
 [e2,n2] = UnitVector(theta2(i));
 [e3,n3] = UnitVector(theta3(i));
 [e4,n4] = UnitVector(theta4(i));
 [eBP,nBP] = UnitVector(theta3(i) + gamma);

% solve for positions of points B, C and P on the linkage
 xB(:,i) = FindPos(x0, a, e2);
 xC(:,i) = FindPos(xD, c, e4);
 xP(:,i) = FindPos(xB(:,i), p, eBP);
end

plot(xB(1,:),xB(2,:),'Color',[153/255 153/255 153/255])
hold on
plot(xC(1,:),xC(2,:),'Color',[25/255 25/255 25/255])
plot(xP(1,:),xP(2,:),'Color',[0 110/255 199/255])

% specify angle at which to plot linkage
iTheta = 120;

% plot the coupler as a triangular patch
patch([xB(1,iTheta) xC(1,iTheta) xP(1,iTheta)],...

226 Introduction to Mechanism Design

 [xB(2,iTheta) xC(2,iTheta) xP(2,iTheta)],[229/255 240/255
249/255]);

% plot crank and rocker
plot([x0(1) xB(1,iTheta)],[x0(2) xB(2,iTheta)],'Linewidth',2,'Color'
,'k');
plot([xD(1) xC(1,iTheta)],[xD(2) xC(2,iTheta)],'Linewidth',2,'Color'
,'k');

% plot joints on linkage
plot([x0(1) xD(1) xB(1,iTheta) xC(1,iTheta) xP(1,iTheta)],...
 [x0(1) xD(2) xB(2,iTheta) xC(2,iTheta) xP(2,iTheta)],...
 'o','MarkerSize',5,'MarkerFaceColor','k','Color','k');

% plot the labels of each joint
text(xB(1,iTheta),xB(2,iTheta)+.015,'B','HorizontalAlignment','center');
text(xC(1,iTheta),xC(2,iTheta)+.015,'C','HorizontalAlignment','center');
text(xP(1,iTheta),xP(2,iTheta)+.015,'P','HorizontalAlignment','center');

axis equal
grid on

title('Paths of points B, C and P on Fourbar Linkage')
xlabel('x-position [m]')
ylabel('y-position [m]')
legend('Point B', 'Point C', 'Point P','Location','SouthEast')

4.16 Practice Problems

Problem 4.1

Explain the difference between a Grashof and non-Grashof fourbar linkage.

Problem 4.2

The positions of the links on the slider-crank linkage in Figure 4.112 can be solved
using simple hand calculations, and can be checked using SOLIDWORKS. Solve
for the slider position, d, and the connecting rod angle θ3 for the following two
situations:
a. The crank length is 1.4 cm, the coupler length is 4 cm, the vertical offset is 1 cm,

and the crank angle is 45°.
b. The crank length is 7 cm, the coupler length is 25 cm, the vertical offset is 10 cm,

and the crank angle is 330°.

Problem 4.3

Conduct the position analysis of the inverted slider-crank in Figure 4.113 using hand
calculations and verify your solution using SOLIDWORKS. Solve for θ3 and θ4
using the following data:

227Position Analysis of Linkages

 a. Solve the problem using the values shown in the figure. The crank angle is 30°.
 b. Using the same figure, alter the values such that the crank length is 10 cm, the

length of the rocker is 6 cm, and the distance between ground pins is 3 cm. The
crank angle is 45° and δ is 45°.

Problem 4.4

Figure 4.114 shows a common “scissor-lift” linkage that is used to lift heavy objects.
A hydraulic cylinder controls the length d, which raises or lowers the load. Create
the linkage in SOLIDWORKS, then record the height h when d takes on the values
2.5, 2.25, and 2 m.

θ3

θ2

FIGURE 4.112
Problem 4.2.

θ3

90°

2

4

6

θ2
θ4

FIGURE 4.113
Problem 4.3.

228 Introduction to Mechanism Design

Problem 4.5

Figure 4.115 shows an ant crawling outward from the center of a rotating link such
that its distance from point A is given by the function s = 10t (in millimeters). The
crank angle is also a function of time given by θ2 = 4t (in radians). Plot the trajec-
tory of the ant for 10 s.

Problem 4.6

Figure 4.116 shows the ant from Problem 4.5 is now crawling from point C to point B
such that the distance s is given by the function s = 200 – 10t (in millimeters). The
length AB and BC are both 200 mm. The angle θ2 is given by the function θ2 = 2t
(in radians) and the angle θ3 = −4t (in radians). Plot the trajectory of the ant for 10 s.
Hint: this is an excellent application for the FindPos function.

Problem 4.7

Use MATLAB to plot the trajectory of point B at the end of the crank and point P on
the threebar linkage shown in Figure 4.117 for one revolution of the crank.

3 m1.5 m

1.5 m
3 m

h

d

FIGURE 4.114
Problem 4.4.

S

A

B

θ2

FIGURE 4.115
Problem 4.5.

229Position Analysis of Linkages

Problem 4.8

Plot the trajectory of point P on the threebar linkage shown in Figure 4.118 as the
crank makes a single revolution. All dimensions are in meters. Hint: the ground
pins are not horizontally aligned, so you will need to perform a new vector loop
analysis on the linkage.

Problem 4.9

A practical example of a slider-crank linkage is the piston/connecting rod/crank
assembly in an engine. For the linkage shown in Figure 4.119, use MATLAB to plot
the position of the piston as a function of the crank angle.

A
θ2

θ3

s

B

C

FIGURE 4.116
Problem 4.6.

P

b
37 mm

B

22 mm
15 m

m

FIGURE 4.117
Problem 4.7.

P
5

4

3
2

FIGURE 4.118
Problem 4.8.

230 Introduction to Mechanism Design

Problem 4.10

Use MATLAB to plot the paths of points B and C on the fourbar linkage shown in
Figure 4.120 for one revolution of the crank.

Problem 4.11

Plot the paths of points B and C on the fourbar linkage shown in the figure in
Problem 4.10 if the crank length is 50 mm, the coupler length is 75 mm, the rocker
length is 85 mm, and the distance between ground pins is 115 mm. Hint: this is a
non-Grashof linkage, so you must first determine the valid range of motion of the
crank.

Problem 4.12

Conduct a position analysis of the fourbar linkage using the dimensions provided in
Figure 4.121 and plot the paths of points B, C, and P using MATLAB.

Problem 4.13

Conduct a position analysis of a fourbar linkage with the following links: crank
length = 75 mm, coupler length = 100 mm, rocker length = 85 mm, length between
ground pins = 125 mm, distance between points B and P = 75 mm, and internal

A

10 cm 26 cm

2

FIGURE 4.119
Problem 4.9.

B

C

24 cm

θ
4

θ
3

θ2

18 cm

14 cm

FIGURE 4.120
Problem 4.10.

231Position Analysis of Linkages

coupler angle = 15°. Plot the paths of points B, C, and P using MATLAB and refer
to the figure for Problem 4.12. Hint: this is a non-Grashof linkage, so you must first
find the valid range of motion for the crank.

Problem 4.14

For the inverted slider-crank in Figure 4.122 conduct a position analysis using
MATLAB. Plot the paths of points C on the rocker and P at the end of the slider,
using the dimensions provided.

B

A D

P

34°

C

190 mm

140 m
m

240 mm

100 m
m

165 m
m

FIGURE 4.121
Problem 4.12.

B

A D

P

45°

C

90 mm

200 mm

30 m
m

80 m
m

FIGURE 4.122
Problem 4.14.

232 Introduction to Mechanism Design

Problem 4.15

Repeat the analysis of Problem 4.14 for the inverted slider-crank with the following
dimensions: crank length = 45 mm, rocker length = 95 mm, length between ground
pins = 80 mm, overall slider length = 160 mm, and 𝛿 equals 45°. Hint: the crank
cannot make a full revolution for this linkage, so you must first compute its valid
range of motion.

Problem 4.16

For the inverted slider-crank in Figure 4.123 conduct a position analysis using
MATLAB. Plot the paths of points P and Q on the slider as the crank makes a revo-
lution. The bar PQ is rigidly attached to the slider at an angle of 90°.

Problem 4.17

Plot the paths of points E, Q, and P on the geared fivebar linkage as shown in
Figure 4.124 provided for one revolution of gear 1. Both gears have 24 teeth and
there is no angular offset between the gears.

Problem 4.18

Plot the paths of points E, Q, and P on the geared fivebar linkage from Problem 4.17
where the crank length is 10 cm, both coupler lengths are 23 cm, the distance
between ground pins is 17 cm, the length of the link on gear 2 is 11 cm, gear 1 has
50 teeth, gear 2 has 25 teeth, there is no angle offset between the gears. The inter-
nal coupler angles are γ3 = 25° and γ4 = −25° and the distances BP and CQ are 18 cm.

Problem 4.19

Use MATLAB to conduct a position analysis on the geared fivebar linkage shown in
Figure 4.125. The gear at point A has 50 teeth and the gear at point D has 25 teeth.
Gear D is rotated 180° when gear A is at 0°. Plot the trajectories of points E, P,
and Q.

B

A A D

P

Q

45°

C

90 mm

200 mm

30 m
m

80 m
m

50 m
m

FIGURE 4.123
Problem 4.16.

233Position Analysis of Linkages

Problem 4.20

The linkage shown in Figure 4.126 is a claw mechanism. Conduct a position analysis
to plot the paths of the points B, C, P, and Q for one revolution of the crank. All
dimensions are in centimeters.

Problem 4.21

Plot the paths of points E, F, and G of the sixbar linkage with the dimensions in
Figure 4.127. All dimensions are in millimeters.

B

A D

P

E

Q

35°35°

C

25 cm

20 cm

23
 cm

23 cm

10 cm 14
 cm

20 cm

FIGURE 4.124
Problem 4.17.

B

A D

P

E

Q

30° 30
°

C

80

(All dimensions in millimeters)

95

70
70

65 65

95

FIGURE 4.125
Problem 4.19.

234 Introduction to Mechanism Design

Problem 4.22

Use MATLAB to conduct a position analysis on the sixbar linkage shown in
Figure 4.128. Plot the trajectory of points E, F, G, and P for one revolution of the
crank.

Problem 4.23

Plot the paths of points E, C, and G of the sixbar with the dimensions in Figure 4.129.
All dimensions are in millimeters.

Problem 4.24

Plot the paths of points E, F, and G on the sixbar linkage shown in Figure 4.130, using
the given dimensions. All dimensions are in millimeters.

B

A D

P

Q

C

6

6

2

6

6

4

70°

FIGURE 4.126
Problem 4.20.

E
G

A D

F

C
B

12°
12° 90

70

80

110
11

0

100 120

FIGURE 4.127
Problem 4.21.

235Position Analysis of Linkages

Problem 4.25

Plot the paths of Points E, C, and G on the sixbar linkage in Figure 4.131, use the
dimensions provided. All dimensions are in millimeters.

Problem 4.26

Use MATLAB to conduct a position analysis on the sixbar linkage shown in
Figure 4.132. Plot the trajectory of points C, E, G, and P for one revolution of the
crank.

E

G 50°

P

A D

F

C
B

20°
20°

100

110

(All dimension in millimeters)

9070

150 15
0

120

160

100

FIGURE 4.128
Problem 4.22.

G

E

C

B

30°

30°

130

115

21060

205

220

22
0

FIGURE 4.129
Problem 4.23.

236 Introduction to Mechanism Design

Problem 4.27: Design Problem

Design a claw mechanism for the purpose of picking up an object of arbitrary shape.
Your design must include a fourbar linkage, and you must provide a brief descrip-
tion of how the mechanism works.

Problem 4.28

Sixbar linkages are sometimes used in walking mechanisms, as with the Klann link-
age. A modified version of the Klann linkage is shown in Figure 4.133. The link
lengths are as follows:

G

F

E

C

B

20°

65°

122

145

95

45

15
2

108

108

15
2

FIGURE 4.130
Problem 4.24.

G

E

C

B

60°

45°

105

12
5

114

58

86
115

10
5

FIGURE 4.131
Problem 4.25.

237Position Analysis of Linkages

= = = =

= = = =

=

30 mm 50 mm 30 mm 50 mm

40 mm 60 mm 40 mm 30 mm

60 mm

a b c d

q u v w

BE

The angle DAF = 90° and the angle γ5 = 40°. Plot the trajectory of the “foot” at point Q
for one revolution of the crank, AB.

G

F

E
P

C
B

A D

20°

(All dimensions in millimeters)

30°

50°

80

150

16
0

100

110

70

120

15
0

90

FIGURE 4.132
Problem 4.26.

E

w

w

P

γ5

Q

C
B b

ca

d

q

v

A

F

G

u

D

FIGURE 4.133
Problem 4.28.

238 Introduction to Mechanism Design

Problem 4.29

Figure 4.134 shows a common “scissor-lift” linkage that is used to lift heavy objects.
A hydraulic cylinder controls the length d, which raises or lowers the load. Write a
simple MATLAB script that plots the height of the lift, h, as a function of the length
of the hydraulic cylinder. Let d range between 1.5 m and 3 m. Check your answer
with the results of Problem 4.4.

Problem 4.30

The linkage in Figure 4.135 is used as part of a stamping mechanism. As the handle
is rotated, the punch moves upward or downward. Plot the height of the punch,

1.5 m

1.5 m

3 m

3 m

h

d

FIGURE 4.134
Problem 4.29.

Handle

Punch

250

220

θ2 H

50°240

240

21
0

FIGURE 4.135
Problem 4.30.

239Position Analysis of Linkages

H, as a function of the handle angle, θ2. The handle is only capable of moving
between 45° and 135°.

Acknowledgments

Several images in this chapter were produced using SOLIDWORKS software. SOLIDWORKS
is a registered trademark of Dassault Systèmes SolidWorks Corporation.

Several images in this chapter were produced using MATLAB software.
MATLAB is a registered trademark of The MathWorks, Inc.
Excel is a registered trademark of Microsoft Corporation.

Works Cited

 1. A. Cayley, “On three-bar motion,” Proceedings of the London Mathematical Society, vol. VII, pp.
136–166, 1876.

 2. S. Roberts, “On three-bar motion in plane space,” Proceedings of the London Mathematical Society,
vol. VII, pp. 14–23, 1875.

 3. C. W. Wampler, “Solving the kinematics of planar mechanisms,” Journal of Mechanical Design,
vol. 121, no. 3, pp. 387–391, 1999.

 4. R. L. Norton, Design of Machinery, New York: McGraw-Hill, 2012.
 5. K. Waldron and G. Kinzel, Kinematics, Dynamics and Design of Machinery, Hoboken, NJ: Wiley,

2004.
 6. G. Martin, Kinematics and Dynamics of Machines, Prospect Heights, IL: Waveland Press, 1982.
 7. D. Myszka, Machines and Mechanisms, Upper Saddle River, NJ: Prentice Hall, 1999.
 8. C. Wilson and J. Sadler, Kinematics and Dynamics of Machinery, Upper Saddle River, NJ: Prentice

Hall, 2003.
 9. E. Constans, T.R. Chandrupatla, and H. Zhang, “An efficient position solution for the fourbar

linkage,” International Journal of Mechanisms and Robotic Systems, vol. 2, no 3/4, pp. 365–373,
2015.

http://www.taylorandfrancis.com

241

5
Velocity Analysis of Linkages

5.1 Introduction to Velocity Analysis

We have now developed a powerful toolkit for finding the positions of moving links on
several mechanisms. It is time to set the linkages in motion! In this section, we will develop
methods for finding the velocities at various points on the linkage using two different
approaches:

 1. Graphical Approach (pencil and paper or SOLIDWORKS®)
 2. Analytical Approach (MATLAB®)

We will begin with a few general observations about velocity. First, velocity is a vector,
which means that it has a magnitude and a direction. It is common (but inaccurate) to
say that a car moves with a velocity of 100 km/h. To completely specify the velocity
of the car, we must also tell which direction it is moving in. Thus, to state that a car is
 moving at a speed of 100 km/h in a northward direction would completely specify its
velocity. In all of the analysis that follows, we will find both speed and direction for a
point on a linkage.

As we observed with Chasle’s Theorem, there are three general types of motion (see
Figure 5.1). In the case of pure translation, all points on the body move with equal speed,
and in the same direction. Thus, as shown in Figure 5.2, the points A and B have equal
velocity.

 =B Av v (5.1)

This fact will be important when we discuss relative velocities below.

5.1.1 Pure Rotation

Figure 5.3 shows a rigid body pinned to the ground at point A. Because the body is pinned
to the ground, it can only experience pure rotation, and the point B traces a circular arc
centered at point A. The velocity vector, vB, is tangential to the circle, which means that it is
perpendicular to the vector rB. On the right side of Figure 5.3 the magnitude and direction
of the position vector rB are shown.

 θ
θ

= =

a aB
cos
sin

r e (5.2)

242 Introduction to Mechanism Design

To find the velocity of point B, we must take the time derivative of rB.

 = =d
dt

d
dt

aB
Bv

r
e (5.3)

The length a is constant for this vector and, as discussed in Section 4.2.5 the derivative of
the unit vector is the angular velocity multiplied by the unit normal:

 ω= = =d
dt

a
d
dt

aB
Bv

r e
n (5.4)

The magnitude of the velocity is then

 ω= aBv (5.5)

B

vA

vB

A

FIGURE 5.2
In pure translation, the velocities of all points on the body are equal.

B

A

rB

vB

ω
a

θ

FIGURE 5.3
In pure rotation, the point B describes a circular arc about the center of rotation at point A.

Pure translation Complex motionPure rotation

r = Constant

d = Constant

r
B

A

B

A

B

A

FIGURE 5.1
The three types of motion – left: pure rotation, center: pure translation, right: complex motion.

243Velocity Analysis of Linkages

and the direction is

 ⊥B Bv r (5.6)

In other words, the velocity at point B is rotated 90° counterclockwise from the position
vector out to point B. The magnitude of the velocity is the product of the distance from
the center of rotation and the angular velocity as given in Equation (5.5). As we will
encounter this formula quite often in the sections that follow, it is worth committing to
memory.

5.1.2 Complex Motion

Complex motion is, as you might expect, more complex. As Chasles’ theorem states,
any motion can be described as a combination of rotational and translational move-
ments. Consider the motion of the rigid body in Figure 5.4. The point A moves with
velocity vA. Since the body is rigid, the point B must also share this velocity. The rotation
of the body also causes the point B to move relative to A in the same manner as for pure
rotation.

 ω= aBAv (5.7)

 ⊥BA Bv r

The total velocity at point B is then a combination of the translational and rotational
 components, written as a vector sum:

 = +B A BAv v v (5.8)

5.1.3 Velocity of a Point Moving on a Rotating Link

Before we begin graphical methods, let us examine one more configuration. In Figure 5.5,
we see a block mounted in a slider on a rotating link. The block is free to slide up and down
in the slot, and the rotating link is pinned to ground. The distance from point A to point B
is still a, but since the block slides, the quantity a is no longer a constant. Thus, the position
vector looks the same as before:

 = aBr e (5.9)

B

A

B

A

B

A

ω ωa

vA

vA vA

vA

vB

rB rB

vBA vBA

FIGURE 5.4
The velocity in complex motion is a combination of pure rotation and pure translation.

244 Introduction to Mechanism Design

In taking the time derivative, we note that the position vector is the product of two varying
quantities; we must, therefore, employ the product rule from calculus. Given two functions,
u(x) and v(x), the derivative with respect to x is

 ()× = +d
dx

u v
du
dx

v
dv
dx

u (5.10)

Thus, the velocity of point B is

 ()= = +d
dt

d
dt

a
da
dt

a
d
dt

Br e e e (5.11)

The second term is the same derivative as before, and we solve it using the chain rule. In
the first derivative, the term da/dt gives the rate of change of a; that is, it gives the speed
of the block within the slot. To simplify our expressions, we will introduce overdot notation.
A single dot over a quantity indicates differentiation with respect to time. Thus,

 =a
da
dt

 (5.12)

If we were to take the time derivative of a twice (e.g. to find acceleration) we would simply
write

2

2
=a

d a
dt

 (5.13)

Note that the overdot refers only to time differentiation. It is never used to indicate dif-
ferentiation with respect to another variable (e.g. x, θ, etc.). The velocity at point B is then

 ω= +a aBv e n (5.14)

In the first term, the velocity is in the same direction as the position vector. The velocity
in the second term is perpendicular to the position vector, as before. The total velocity
of B is the vector sum of these two as shown in the right-hand side of Figure 5.5. We will
encounter a similar expression when we find the velocity of the threebar slider-crank later

B

B

A A

a
ω

aω a

vB

rB

FIGURE 5.5
The square block slides within the slot at the same time as the link rotates.

245Velocity Analysis of Linkages

in this chapter. To summarize, we have found two expressions for the velocity at the end
of a rotating link that is pinned to ground:

a a

a a a

B

B

v n

v e n

(length is constant)

(length is changing with time)

ω

ω

=

= +
 (5.15)

5.2 The Method of Instant Centers

We now turn our attention to a different graphical method of finding velocities: the method
of instant centers. This method is based upon the following theorem:

Theorem 1:

There exists a point, I, common to two bodies in motion, which has the same instantaneous velocity.

As a simple example, consider the two links joined by a pin shown in Figure 5.6. It is obvi-
ous that the two links have the same velocity at point B, since that is where they are pinned
together. The point B is called the instant center between the two links. A pin joint is always
the instant center between two bodies pinned together, since the pin enforces identical
motion at the joint.

This seems rather obvious, but interestingly, the theorem above applies to any two bodies
on the plane – these may be connected or unconnected. In the case of unconnected bodies,
the instant center may not lie directly on one of the bodies, as in the case of a pin joint, but
may lie off in space somewhere. For some cases, e.g. the slider joint, an instant center may
lie at infinity! More on this later.

B

vB

FIGURE 5.6
The two links have the same velocity at the pin joint.

246 Introduction to Mechanism Design

Since there exists one instant center (IC) per pair of bodies, we may calculate the total
number of ICs with the following formula

1

2
()= −

C
n n

 (5.16)

where C is the number of instant centers and n is the number of bodies (or links). Thus, a
fourbar linkage has six instant centers, and a sixbar linkage has 15. The reasoning behind
this formula is also relatively straightforward. If we have a collection of n bodies, each
body must connect with n−1 links (since it does not connect with itself). We divide by
two because instant center, Iij, is the same point as instant center, Iji, where the subscripts
 indicate the two-paired bodies but order is irrelevant.

The concept of an instant center would be a relatively useless mathematical exercise if it
were not for the following theorem, known as Kennedy’s Rule:

Theorem 2:

Any three bodies in a plane will have exactly three instant centers and all three will lie in a
straight line.

The first part of the theorem is obvious: if we apply n = 3 in Equation (5.16) we get three instant
centers. The second part is not obvious at all, but is quite useful in finding instant centers that
do not lie on pin joints. To see this, let us find the instant centers of a fourbar linkage.

5.2.1 Instant Centers of the Fourbar Linkage

The instant centers at the pin joints are easy to find, as shown in Figure 5.7. According
to Equation (5.16) we may expect to find six instant centers for the fourbar linkage. The
pin joints give us four and we can use Kennedy’s rule to find the other two. Kennedy’s
rule applies to groups of three links each, so let us make a table of all the possible
 permutations of three links on the fourbar. Below each group of three, we will list all the
possible permutations of two links in the group since an instant center occurs between
two bodies (links). This is shown in Table 5.1.

All of the entries in bold are the instant centers that we have not found yet; that is, the
ones that do not lie at pin joints. Kennedy’s rule states that the three instant centers in a
given column must lie on a straight line.

3

1

4
2

I23

I34

I14I12

FIGURE 5.7
The pins on the fourbar linkage give four of its six instant centers. The instant center between bodies 1 and 2 is
labeled I12, etc.

247Velocity Analysis of Linkages

For example, the instant centers for links 2,3,4 must lie on a straight line; as must the
instant centers for 1,2,4. In each case, we know two of the instant centers, but by extending
the lines between these, we can find the third. This is shown in Figure 5.8, where we have
found the location of I24.

The same procedure can be used to find I13, the instant center between ground and link 3
(see Figure 5.9). This instant center is in fact the most important one for our purposes. Since
I13 is the instant center between the coupler and ground, this means that (at this instant

TABLE 5.1

All Instant Centers of the Fourbar Linkage

123 124 134 234

I12 I12 I13 I23

I13 I14 I14 I24

I23 I24 I34 I34

The entries in bold are the ones that are not at pin joints.

2

3

1

4

I34

I14
I12

I23

I24

FIGURE 5.8
The instant center I24 lies at the intersection of the two lines shown.

3

2

1

4

I31

I23

I12I24 I14

I34

FIGURE 5.9
The location of I13 can be found by extending links 2 and 4.

248 Introduction to Mechanism Design

in time) link 3 and ground have the same velocity at this point (which is zero, since the
ground doesn’t move). The only way for this to be possible is that link 3 is in pure rotation
about I13 at this instant in time. We can use this fact to easily find the instantaneous angu-
lar velocity of link 3, since it is easy to move between translational velocities and angular
velocities in the case of pure rotation.

Another way to state this is that at this instant in time we could pin link 3 to ground,
and link 3 would be in pure rotation about this ground pivot. At the next instant in time
the location of the instant center, I13, will be different, and we could pin link 3 to ground
at this new location. The same goes for the other instant centers: at the current instant in
time, the instant center I24 gives the location where we could temporarily pin links 2 and 4
together; that is, link 2 is in pure rotation with respect to link 4 at I24, but only at this instant
in time. At the next instant in time, link 2 will be in pure rotation with respect to link 4 at
a different location.

From Figure 5.10, we see that

 ω= aBv 2 (5.17)

But, since link 3 is in pure rotation about I13, we can also write

 ω= eBv 3 (5.18)

Solving for ω3, we have

 ω ω= =
e

a
e

Bv
3 2 (5.19)

Since we know ω3, we can solve for vC as

 ω= fCv 3 (5.20)

B

C

f

a

e

c

ω2

ω3

ω4

I31

vB
vC

FIGURE 5.10
The instant center I13 can be used to find the remaining velocities on the fourbar, if the crank speed is known.

249Velocity Analysis of Linkages

And finally,

 ω ω= =
c

f
c

Cv
4 3 (5.21)

Thus, the instant center method gives us a quick, graphical method for finding velocities
on a linkage.

5.2.2 SOLIDWORKS® Tutorial – Velocity Analysis of the Fourbar Linkage

We will now present a simple method for using SOLIDWORKS to find the velocities of
important points on the fourbar linkage using the method of instant centers. Figure 5.11
shows a fourbar linkage with crank length 1.5 m, coupler length 2.0 m, rocker length
2.25 m, and ground length 3.0 m. The crank is inclined 60° from the horizontal at this
moment in time, and has angular velocity ω2 = 10 rad/s.

First, draw the linkage as shown in Figure 5.11. It is simplest to use a SOLIDWORKS
Drawing for this purpose, although a sketch in a Part may be used as well. We have used
the Layer toolbar to define four separate layers for the links: the linkage dimensions, the
construction lines used to find the instant centers and the instant center dimensions. We
have also placed a Fix relationship on the lower left ground pin to make the drawing fully
defined.

Now draw construction lines (centerlines) in the direction of the crank and rocker
lengths until they intersect at I13. Control-click the crank and left construction line, and
add a Collinear relationship. Do the same with the rocker and right construction line. Use
an Annotation to label the instant center I13 (Figure 5.12).

Finally, add Smart Dimensions to the construction lines you just drew, as shown in
Figure 5.13. We now have all the information needed to complete the velocity analysis.
First, the velocity at point B is found

 ω= = =aBv (10 rad/s)(1.5 m) 15 m/s2

3.000

60.00°

2.000

2.250

1.500

FIGURE 5.11
The fourbar linkage used in the tutorial.

250 Introduction to Mechanism Design

Next, the angular velocity of the coupler is found with Equation (5.19)

1.5 m

2.892 m
10 rad/s 5.19 rad/s3 2ω ω= = ⋅ =a

e

The velocity at point C is found using Equation (5.20)

 ω= = ⋅ =fCv 1.638 m 5.19 rad/s 8.50 m/s3

113

C

B

FIGURE 5.12
Construction lines used to find instant center I13.

2.892

1.638

113

f

e

B

C

FIGURE 5.13
Finding the dimensions to the instant center I13.

251Velocity Analysis of Linkages

And finally, the angular velocity of the rocker is found with Equation (5.21)

1.638 m
2.25 m

5.19 rad 3.78 rad/s4 3ω ω= = ⋅ =f
c

As you can see, the method of instant centers gives a quick and straightforward way of
finding velocities on a linkage at a given instant in time.

5.2.3 Instant Centers of the Slider-Crank Linkage

Figure 5.14 shows a slider-crank linkage, with a vertically offset slider. The instant centers
that lie at pin joints have been marked. The locations of the other instant centers are a little
more challenging to find.

First, consider the piston inside the full-slider joint. An alternative way of looking at the
joint is to consider it to be at the end of a rocker, whose pivot is an infinite distance above
or below the slider joint. Recall that a link pinned to ground must trace out a circular arc
as it moves. If the radius of the circular arc is sufficiently large (or infinite) then it approxi-
mates a straight line. This is shown in Figure 5.15, where the slider is connected to ground
through a “virtual link” of infinite length (shown in gray). The instant center I14 is on a line
perpendicular to the slider at infinity.

Consulting Table 5.1, we see that the instant center I13 must lie on the line connecting
I14–I34 and also on the line connecting I12–I23. The intersection of these two lines gives the
location of I13, as shown in Figure 5.16.

To find the last instant center, draw another line perpendicular to the slider through I12.
This line passes through the instant centers I14 (at infinity), I12 and I24. Draw another line
through I23 and I34. The intersection of the two lines is I24. It may strike you as odd that we
shifted the perpendicular line to the left to find I24. As it happens, we are making use of a
little-known definition of parallel lines. It is common to define parallel lines as lines that
never intersect, no matter how long we extend them. An alternative definition is that parallel
lines do in fact intersect, but only at infinity. Thus, shifting the location of I14 to the right or left
has no effect, since the length of the virtual link is infinite. We must take care, however, that
the direction of the virtual link remains perpendicular to the direction of travel of the slider.
If we march off to infinity in the wrong direction, we will not find the instant center I14!

2

1

3
4

I34

I23

I12

FIGURE 5.14
The pin joints on the slider-crank give three of the six instant centers.

252 Introduction to Mechanism Design

We may now use the locations of the instant centers to find the velocities of the links on
the slider-crank. As shown in Figure 5.18, the velocity at the end of the crank is

 ω= aBv 2 (5.22)

Since the connecting rod is pinned to ground (at this instant) at I13, we may adopt the same
procedure as with the fourbar, and write

 ω ω= =
e

a
e

Bv
3 2 (5.23)

The velocity of the piston is then

 ω= fCv 3 (5.24)

Of course, the direction of the piston’s velocity is parallel to the axis of the cylinder.

5.2.4 Instant Centers of the Inverted Slider-Crank

The inverted slider-crank linkage is shown in Figure 5.19, along with the instant centers
at the three pin joints. Since the links 3 and 4 are connected with a full-slider joint, they
move in pure translation relative to each other. Because of this, there is no obvious location
where the two links have the same velocity.

2

3
4

1
I12

I23

I34

I14∞

FIGURE 5.15
The slider is attached to a virtual link of infinite length. The virtual link is perpendicular to the slider.

253Velocity Analysis of Linkages

I13

I34

I23

I12

I14∞

FIGURE 5.16
The instant center I13 is found at the intersection of the perpendicular line and link 2.

I12

I24
I23

I34

I14∞

FIGURE 5.17
The instant center I24 lies at the intersection of the perpendicular line and link 3.

a

e f

I13

ω2

ω3

vB
vC

B

C

FIGURE 5.18
Finding the velocity of the slider using the instant center method.

254 Introduction to Mechanism Design

However, we can make use of the same trick we employed for the slider-crank by
extending the links 3 and 4 infinitely in a direction perpendicular to the slot, as shown in
Figure 5.20. Imagine holding link 4 temporarily fixed. By pinning link 3 to link 4 at infin-
ity any point on link 3 will trace out a circular arc of infinite radius; that is, a straight line.
Thus, we may pin link 3 to link 4 at infinity in a direction perpendicular to the slot.

Thus, as seen in Figure 5.21, we draw two lines perpendicular to the slot out to infinity:
one passing through I23 and one passing through I14. The instant center I24 must lie on a
line between I12 and I14, and must also lie along the infinite line between I23 and I34. Finally,
we find the instant center I13 by connecting I12 and I23, and finding its intersection with the
line going between I14 and I34

We use the same procedure as before to find velocities on the inverted slider-crank. The
velocity at point B is

 ω= aBv 2. (5.25)

I23

I12 I14

FIGURE 5.19
The inverted slider-crank, with the instant centers at pin joints shown.

I34∞

FIGURE 5.20
By extending links 3 and 4 infinitely in a direction perpendicular to the slot, we can pin them together.

255Velocity Analysis of Linkages

and the angular velocity of the slider is

 ω ω= =
e

a
e

Bv
3 2 (5.26)

Because the slider and rocker are connected with a full-slider joint, they cannot rotate relative
to one another. Therefore, the angular velocity of the rocker is the same as that for the slider.

 4 3ω ω= (5.27)

Despite having the same angular velocity, the translational velocity of the rocker and slider
are different at point C; that is, they slide relative to one another (see Figure 5.22). The
velocity of the slider at point C is

 ω= fCv 3 3 (5.28)

but the velocity of the rocker at point C is

 ω= cCv 4 4 (5.29)

We are sometimes interested in the relative velocity between the two links at the point C,
known as the velocity of slip:

 = ±slip C Cv v v4 3 (5.30)

The velocities are added if they point in opposite directions, and subtracted if they point in
the same direction. The direction of each velocity must be determined through examina-
tion of the direction of the angular velocities in the diagram.

I14
I24

I12

I23

I13

I34∞I34∞

FIGURE 5.21
The remaining two instant centers are found in a similar fashion as the slider-crank.

256 Introduction to Mechanism Design

5.2.5 Instant Center Example Problems

Example 5.1: Gears in Mesh

Figure 5.23 shows a pair of gears in mesh with one another. Since there are three bodies
(gear 2, gear 3, and ground) we expect to find three instant centers. The easiest to locate,
as always, are at the two pin joints. The third lies at the point of contact of the two gears,
since both gears have the same velocity at this point. Note that all three lie on a straight
line, as dictated by Kennedy’s rule.

Example 5.2: Cam-Follower Mechanism

Figure 5.24 shows a typical cam-follower mechanism. Since there are four bodies in the
mechanism, we must find six instant centers. The pin joints form three instant centers.
The point of contact between the roller and the cam is another instant center, I34, if we
assume that there is no slip between the roller and cam (see next example problem).
Using Kennedy’s rule enables us to find the remaining two instant centers.

I14

I12

ω23

ω2

ω4

c
a

e

B

C

f

vB

vC3

vC4

I13

FIGURE 5.22
The velocity of the slider and rocker are different at point C.

I12
I23

I13

2 3

1

FIGURE 5.23
Two gears in mesh have three instant centers.

257Velocity Analysis of Linkages

Example 5.3: Cam-Follower Mechanism, Part 2

Figure 5.25 shows a cam-follower mechanism in which the follower slides along the sur-
face of the cam, instead of rolling without slipping. Since there are only three bodies, we
must find three instant centers. Your first thought might have been to place an instant
center at the point of contact between the cam and follower, as in the previous example.
This would be incorrect, for two reasons:

 1. The cam slides on the follower as it rotates, which means that the velocities of
the two bodies are different at the point of contact.

 2. Placing an instant center at the point of contact would violate Kennedy’s rule,
since the three instant centers would not be in a straight line.

As with the slider-crank and inverted slider-crank mechanisms, we must draw a line
perpendicular to the line of contact, and instant center I23 lies at the intersection of this
line and the ground line.

Example 5.4: The Threebar Linkage

Figure 5.26 shows the threebar linkage that consists of a crank, slider, and ground. Since
there are three links, we expect to find three instant centers. The first two are simple to
find, since the crank has two pins. The third, unfortunately, is not so simple. Your first
thought might be to place the third instant center at the pin joint between the slider and
ground, but since the slider is free to slide along this pin, it does not have the same (zero)
velocity as the ground at this point. Kennedy’s rule states that the three instant centers
must lie on a straight line, so we should find the third instant center somewhere on the
dashed line shown in Figure 5.26.

I12 I14

I23

I13

I34

I24

2
4

3

1

FIGURE 5.24
The cam-follower mechanism has six instant centers.

I12 I13
I23

2
3

1

FIGURE 5.25
This cam mechanism has a follower that does not roll.

258 Introduction to Mechanism Design

As we have seen in the earlier linkages, the instant center I13 represents the point that
the link 3 (the slider) may be considered pinned to ground at this instant in time – that
is, the slider is in pure rotation about I13 at this moment. We also know, from the analysis
of the inverted slider-crank, that the instant center I13 must lie on a line perpendicular
to the slot. It is not immediately obvious, however, where in the slot we should begin
the perpendicular line.

As a first guess, let us draw a line perpendicular to the slot starting at the arbitrary
point P, as shown in Figure 5.27. Since body 3 is pinned to ground at I13 at this instant
in time, the velocities on body 3 must be perpendicular to radial lines extending from
I13. Thus, the velocity at point P is parallel to the slot, but the velocity at point D (where
the pin is located) has a component normal to the slot. Because the slot is pinned to
ground at point D, there can be no velocity component normal to the slot, and so we
have reached a contradiction.

If we construct a virtual link CD that pins the slider to ground at I13 (see Figure 5.28),
we see that the velocity of the slider at D must be perpendicular to CD since the slider
is in pure rotation about point C at this instant in time. Since CD is perpendicular to the
slot, the velocity vD is parallel to the slot, as required. Thus, the instant center I13 lies at
the intersection of the crank line and a line perpendicular to the slot that passes through
ground pin D. While Kennedy’s rule may seem straightforward at first glance, the rea-
soning behind it may sometimes be used to locate “tricky” instant centers.

I12

I23

I13?

2

3

1

FIGURE 5.26
The threebar linkage has three instant centers, two of which are at the pin joints on the crank.

I23

I12

I13?

D

P
vP

vD

FIGURE 5.27
The instant center I13 has been placed (incorrectly) on an arbitrary line perpendicular to the slot.

259Velocity Analysis of Linkages

Example 5.5: The Geared Fivebar Linkage

A geared fivebar linkage is shown in Figure 5.29. Since there are five bodies, we must
find 10 instant centers. The five pins provide five instant centers, and the point of contact
between the two gears provides a sixth. We may use bodies 235 and 345 to find the loca-
tion of I35, and then use bodies 234 and 245 to find I24.

The remaining two instant centers are found as shown in Figure 5.30. Since these are
the instant centers with ground, they would most likely be the “important” ones used
for velocity analysis.

I23

2

1

3

I12

I13

D

C

vD

FIGURE 5.28
Drawing a line perpendicular to the slot and intersecting the ground pin D lets us find the instant
center I13.

I35

I34

I45

I24

3 4

52

1

I23

I12 I25
I15

FIGURE 5.29
The geared fivebar linkage has ten instant centers.

260 Introduction to Mechanism Design

Example 5.6: Planetary Gearset

Figure 5.31 shows a simple planetary gearset with one sun, one planet, and a fixed ring
gear. Because bodies 2 and 4 are pinned to the ground (and to each other) at the central
axis, the instant centers I12, I14, and I24 lie at this point. The point of contact between gears
2 and 3 gives the location of the instant center I23, and the point of contact between the
planet and the ring gives I13. Finally, the pin joint between the planet and bar 4 gives the
location of I34.

The method of instant centers is a powerful means of performing a quick velocity
analysis on a linkage for one instant in time. This method is often used in automotive

I35

I34 I14

I45

I24

I23

I13

I12 I25
I15

FIGURE 5.30
The remaining two instant centers on the geared fivebar.

I12,I14,I24

I23

2
4

1

3 I13

I34

FIGURE 5.31
This simple planetary gearset has six instant centers, three of which are located at the central axis.

261Velocity Analysis of Linkages

suspension design, and can also be used as a “reality check” when conducting the ana-
lytical velocity calculations that we will develop in later sections. Some instant centers
(e.g. pin joints) are simple to find, but others, particularly where sliding is involved,
require more careful consideration.

5.2.6 Velocity Ratios

Now is a good time to pause and reconsider Kennedy’s rule in a slightly different way.

Any three bodies in a plane will have exactly three instant centers and all three will lie
in a straight line.

In the previous section, we made use of the idea that the instant center I13 gives the point
about which the coupler (link 3) is in pure rotation. We were able to use this to find the
velocities at both moving pins, and the angular velocities of links 3 and 4. We will now
develop a “shortcut” to finding the angular velocity of the rocker (link 4) without first cal-
culating ω3. We will use this technique in the next section to find the mechanical advantage
of the fourbar linkage.

Consider the fourbar linkage shown in Figure 5.32. In the previous section, we learned
that the instant center I24 lies at the intersection of lines drawn between I23–I34 and I12–I14.
The point I24 is the point where links 2 and 4 have the same velocity at this instant in time.
In order for two velocities to be equal, their magnitudes and directions must be the same.

Both links 2 and 4 are in pure rotation about their respective ground pins. Thus, the
velocity at any point must be perpendicular to a line drawn radially from the center of
rotation. A simple example is shown in Figure 5.33: since the links extend radially outward
from the ground pins, the velocities vB and vC are perpendicular to the links.

The next example is a little more complicated – we have expanded the crank and rocker
into triangular shapes without changing the critical dimensions (a, b, c, and d) of the four-
bar linkage. The same principle holds; however, the velocities point in a direction perpen-
dicular to lines drawn radially from the center of rotation. In Figure 5.34, the velocities at
points E and F are clearly in different directions, and cannot be equal. The problem is then
to find a locus of points where the velocity vectors point in the same direction.

Part of the solution to the puzzle is shown in Figure 5.35. Since the radial lines are col-
linear with the line between the two ground pins, both velocity vectors must point per-
pendicular to this line, and thus in the same direction. In fact, the line between ground

I24

I23

ω2
ω4

I12

I34

I12

FIGURE 5.32
The instant center I24 is found at the intersection of lines I23–I34 and I12–I14.

262 Introduction to Mechanism Design

pins is the only location where the velocity vectors will point in the same direction. Thus,
as Kennedy’s rule states, the instant centers between three bodies must lie on a straight
line. We can use a similar (but more complicated) argument for pins that are not grounded.

We have found a locus of points where the velocity directions are the same, but to find a
location where the magnitudes are equal we must go to the instant center I24, as shown in
Figure 5.36. Here, the links have been extended (with strange polygons) so that they reach
I24. Owing to the definition of the instant center (and Kennedy’s rule) the translational
velocity of both links must be equal at this point. For simplicity, let us denote the instant
center I24 as point E. Then

I12

ω4ω2

vB
vC

I12

C

B

FIGURE 5.33
The velocities vB and vC are perpendicular to the lines drawn to their respective centers of rotation.

ω4
ω2

vE

vF

E

F

FIGURE 5.34
The crank and rocker have become triangles, but the velocities are still normal to the lines to the centers of
rotation.

ω4
ω2

vE
vF

E F

FIGURE 5.35
If the lines from the centers of rotation are collinear, then the velocities must be oriented in the same direction.

263Velocity Analysis of Linkages

 = =E E Ev v v2 4

Since each link is in pure rotation about its ground pin, we can easily calculate the
velocity as

 ω ω= =h kEv 2 4

Thus, if we know the location of instant center I24, we can easily calculate the angular
velocity of the rocker

 4 2ω ω= h
k

 (5.31)

In this way, we have found a “shortcut” to calculating the angular velocity of the rocker,
without the intermediate step of finding the angular velocity of the coupler. While this
may not seem like such an important achievement, we will soon find a use for it in calcu-
lating mechanical advantage in the next section.

5.2.7 Mechanical Advantage

Another use for the method of instant centers is in calculating the mechanical advan-
tage produced by a linkage. In many cases, we wish to increase the force delivered by the
linkage to a load, as in the rock crusher linkage shown in Figure 5.37. The purpose of the
rock crusher is to impart sufficient force to a rock to crush it. The input force to the link-
age is applied at the crank pin, and the output force is taken in the middle of the rocker.
In Figure 5.37 we have two different configurations of the same linkage. On the left, the
input link (the crank) is nearly perpendicular to the coupler, while in the linkage at right,
the input link is nearly parallel with the coupler. In the analysis to follow, we assume that
the input and output forces are perpendicular to the input and output links. The distances
from the ground pivots to the points of application of the forces are rin and rout, so that the
input and output torques are:

 = =T F r T F rin in in out out out (5.32)

ω4
ω2

vE

I24

h
k

FIGURE 5.36
Extend the crank and rocker until they meet at I24.

264 Introduction to Mechanism Design

The power transmitted by a linkage can be found in two ways. First, we may multiply
 output force by output velocity:

 =P F Vout out out (5.33)

Alternatively, we may multiply output torque by output angular velocity

 4ω ω= =P T Tout out out out (5.34)

Losses in linkages are typically quite small; here we assume that all input power is trans-
mitted to the output

 =P Pout in (5.35)

so that the input and output powers are equal

 4 2ω ω=T Tout in (5.36)

Substituting the expressions for torque given in Equation (5.32), we have

 4 2ω ω=F r F rout out in in (5.37)

Let us define the mechanical advantage of the linkage as the ratio of output force to input
force. In the case of the rock crusher, this would provide a measure of the usefulness of
the linkage, since we wish to achieve the highest possible output force (for crushing rocks)
with the smallest possible input force.

Fin

Fin

Fout

rin

rin

rout

Fout

rout

FIGURE 5.37
Two possible designs for a “rock crusher”. In the top figure, the crank and coupler are nearly perpendicular. In
the bottom figure they are nearly parallel.

265Velocity Analysis of Linkages

 2

4

ω
ω

=

F
F

r
r

out

in

in

out
. (5.38)

This is the same velocity ratio that we derived in the previous section. Using Equation (5.31),
we find that

 =

F
F

r
r

k
h

out

in

in

out
 (5.39)

We can use Equation (5.39) to design linkages with considerable mechanical advantage.
Consider the rock crusher linkages shown in Figure 5.38, where the ratio of k/h is greater
than one. This indicates that output force will be greater than input force (assuming that
the ratio rin/rout is greater than or equal to one). In the linkage on the right, however, the
value of h is very small, which will make the ratio k/h very large. This linkage has consid-
erable force amplification and would make crushing the rock that much easier.

Now consider what happens when the crank and coupler are aligned, as shown in
Figure 5.39. Here, the instant center I24 is coincident with the fixed pivot O2. The force
 multiplication for this linkage is infinite! Of course, deformation of links and “slop” in the pins
will prevent infinite forces from occurring, but the force multiplication is quite significant.

I24

I23

I34

I12
I14

h

k

I24

I23

I34

I12
I14

h

k

FIGURE 5.38
The ratio k/h is quite different for the two rock crushers shown.

266 Introduction to Mechanism Design

When a linkage has two links in alignment, it is known as “toggle”, and many interesting
things can happen in this configuration. A common example of this is in a pair of “Vise-
Grip” pliers, which is a common example of a fourbar linkage. As shown in Figure 5.40, the
ground of the linkage is the top handle, and the coupler is the bottom handle. The “crank”
is the link between the two handles, and the rocker is the lower jaw. When the crank and
coupler are aligned, the pliers will grip an object with impressive (and sometimes destruc-
tive) force. Because of the (theoretically) infinite mechanical advantage, Vise-Grip pliers
have much stronger grip strength than ordinary, two-jaw pliers.

5.2.7.1 Mechanical Advantage in the Slider-Crank

The input and output forces on the slider-crank are shown in Figure 5.41, along with the
instant center I24. The slider is in pure translation, so all points on the slider must have the
same translational velocity. Since the crank and slider have the same velocity at I24, we
conclude that the translational velocity of the piston must equal vD. The velocity vD on an
imaginary point on the crank at I24 is given by

 ω= hDv 2 (5.40)

Since the slider does not rotate, we must compute the output power using force and veloc-
ity, instead of torque and angular velocity.

 =P Fout out Dv (5.41)

I24

I23

I12

I34

h

k

FIGURE 5.39
When the crank and coupler are collinear, the mechanical advantage is (theoretically) infinite.

Crank

Coupler
Rocker

FIGURE 5.40
A pair of “Vise-Grip” pliers comprises a fourbar linkage, and has nearly infinite mechanical advantage at toggle.

267Velocity Analysis of Linkages

If we apply the input force at the end of the crank as shown in the figure, then the input
power is

 2ω=P F ain in (5.42)

Thus, the mechanical advantage of the slider-crank is

 =F
F

a
h

out

in
 (5.43)

As before, if the crank and connecting rod are collinear, the mechanical advantage becomes
very large or infinite.

5.3 Velocity Analysis of the Threebar Slider-Crank

While the instant-center method shown earlier can be used to easily find the velocities on
a linkage at a single point in time, it is tedious to use if the velocities over the entire range
of motion are needed. For this case, it is much more efficient to use a vectorial/algebraic
method. Here we will take advantage of the ability of MATLAB to solve matrix equations
with a minimum of effort on the part of the user. In addition, MATLAB’s plotting capabili-
ties will allow us to easily visualize the velocities during the entire motion of the linkage.
The tradeoff, of course, is that some physical intuition is lost during this process, since the
method is purely algebraic.

Figure 5.42 shows the threebar linkage with its critical dimensions. Figure 5.43 shows a
vector loop diagram of the threebar linkage, similar to the one we constructed in Chapter 4.
As before, we simply add the vectors going around the loop. Since we end up where we
started, the vector sum is zero.

 + − =r r r 02 3 1 (5.44)

I24

I23
I34

I12
ω2

h
vD

vD

Fin

Fout

I14∞

FIGURE 5.41
The slider-crank linkage showing input and output forces.

268 Introduction to Mechanism Design

If we expand this into unit vector form, we have

 + − =a b de e e 02 3 1 (5.45)

Before we begin the velocity analysis, we must first have conducted a position analysis as
was done in Chapter 4. In the sections that follow, we assume that the position angle θ3
and slider length b are known for every crank angle θ2. To begin the velocity analysis, we
take the time derivative of Equation (5.2). As discussed in Section 4.2.5, we must employ
the chain rule of differentiation to take the derivative.

 ω=d
dt

a ae n()2 2 2 (5.46)

The derivative of the second term is slightly more complicated, since both b and e3 are
functions of time. We must, therefore, use the product rule to differentiate it, since it is a
product of two functions of time:

 ·() = +d
dt

u v
du
dt

v u
dv
dt

 (5.46)

Applying this to the second term gives

 ω() = +d
dt

b
db
dt

be e n3 3 3 3 (5.47)

d

ω2

ω3

b p

a

FIGURE 5.42
The threebar linkage showing critical dimensions.

r2

r1

r3

FIGURE 5.43
Vector loop diagram of the threebar linkage.

269Velocity Analysis of Linkages

Let us define

 =b
db
dt

 (5.48)

so that

 ω() = +d
dt

b b be e n3 3 3 3 (5.49)

The term b represents how quickly the length between points B and D is changing, or
how quickly the slider is moving past the fixed pin at D. Accordingly, we will denote this
 quantity the velocity of slip. Differentiating the final term in Equation (5.45) gives

 () =d
dt

de 01 (5.50)

since both d and e1 are constant. Thus, the final result of differentiating Equation (5.45) is

 ω ω+ + =a b bn e n 02 2 3 3 3 (5.51)

At this point in the analysis it is useful to remember which variables above are known,
and which are unknown. As stated earlier, we have used the position analysis formulas to
solve for the angle θ3 and the length b, thus e3 and n3 are known. The lengths of each link
are known, and we assume that the crank angle, θ2, is given. Further, let us assume that
the crank is connected to a motor whose speed, ω2, is also known. Thus, the list of known
quantities is

 Known : , , , , , 2 3 2θ θ ωa b d

The only unknowns, then, are

 Unknown : ,3
ω b

Since Equation (5.51) is a vector equation with two components, we could solve for ω3 in
the y equation, substitute this into the x equation and solve for b. While this approach is
perfectly feasible and valid, it is also somewhat cumbersome and error-prone. A simpler
approach will be used here. First, put the terms with unknown quantities on one side of
the equation, with the fully known terms on the other side.

 ω ω+ = −b b ae n n3 3 3 2 2 (5.52)

Next, put the above equations into matrix form

 �
�

ω
ω

= −b

b
an e n3 3

3

2 2 (5.53)

Further, if we define

 n e n3 3

3

2 2A b�
�

ω
ωωω= =

= −b

b
a (5.54)

270 Introduction to Mechanism Design

Then we can write the matrix equation more compactly as

 ωω =A b (5.55)

It is now quite simple to enter the above matrix equation into MATLAB, and have MATLAB
solve and plot the velocities of the linkage throughout the range of motion. In fact, this is
what MATLAB was designed to do! Since the matrix/vector notation in Equation (5.54)
may be unfamiliar (and cryptic) to you, you might wish to verify that

θ θ
θ θ

ω θ
ω θ

=
−

=
−

b
b

a
a

sin cos
cos sin

sin
cos

3 3

3 3

2 2

2 2
A b (5.56)

when written out in full.

5.3.1 Velocity of Any Point on the Linkage

We will use an expression similar to the one we used in the instant-center method to find
the velocities at points on the linkage as shown in Figure 5.44. Let us start with a simple
 problem – finding the velocity at point B. First, recall that the position vector of point B is
given by

 = = aBr r e2 2 (5.57)

To find velocity, differentiate the vector rB with respect to time.

 ()= d
dt

aBv e2 (5.58)

 ω= aBv n2 2 (5.59)

The position vector of point P is

 = +P B BPr r r (5.60)

 = +a pPr e e2 3 (5.61)

Differentiating with respect to time gives

rBP

B

P

vP

FIGURE 5.44
Finding the velocity of point P on the threebar linkage.

271Velocity Analysis of Linkages

 ()= +d
dt

a pPv e e2 3 (5.62)

 ω ω= +a pPv n n2 2 3 3 (5.63)

 ω= + pP Bv v n3 3 (5.64)

You may have noticed that this is identical to the relative velocity formula

 = +P B PBv v v (5.65)

with vB given in Equation (5.59) and vPB the velocity of P relative to B. We now have a
simple and powerful method for finding the velocity at any point on the linkage. In fact,
this formula is reminiscent of the relative position formula, and we will define a MATLAB
function to compute it, just as we did for position.

5.3.2 Velocity Analysis of the Threebar Slider-Crank Using MATLAB®

At the end of the last section, we obtained a matrix equation whose unknowns were the
velocities, ω3 and b.

 ωω =A b (5.66)

where

 n e n3 3

3

2 2A b�
�

ω
ωωω { }= =

= −b

b
a (5.67)

We will now develop some MATLAB code to solve the velocity problem using the dimen-
sions shown in Figure 5.45. You should use the threebar position analysis code that you
developed earlier as a starting point. To conduct the velocity analysis we must first know

B

A

P
150

(All dimensions in millimeters)

Crank length: 100
Slider length: 300
Distance between ground pins: 150
Crank angular velocity: 10 rad/s

D

300

100

b

FIGURE 5.45
The threebar linkage used in the example MATLAB code. This is the same threebar that was used in the posi-
tion analysis example.

272 Introduction to Mechanism Design

the angular velocity of the crank, ω2. Enter a value for omega2 at the top of the program,
immediately after the statements that provide link lengths. Also, make sure to allocate
some space in memory for omega3 and bdot, as you did for theta3 and b. The portion of
the code before the main loop should now read

% Threebar_Velocity_Analysis.m
% Conducts a velocity analysis on the threebar crank-slider linkage
% and plots the velocity of point P
% by Eric Constans, June 1, 2017

% Prepare Workspace
clear variables; close all; clc;

% Linkage dimensions
a = 0.100; % crank length (m)
d = 0.150; % length between ground pins (m)
p = 0.300; % slider length (m)

% Ground pins
x0 = [0;0]; % point A (the origin)
xD = [d;0]; % point D
v0 = [0;0]; % velocity of pin A (zero)

% Angular velocity of crank
omega2 = 10; % angular velocity of crank (rad/sec)

N = 361; % number of times to perform position calculations
[xB,xP] = deal(zeros(2,N)); % allocate space for position of B,P
[vB,vP] = deal(zeros(2,N)); % allocate space for velocity of B,P

[theta2,theta3,b] = deal(zeros(1,N)); % allocate space for link angles
[omega3,bdot] = deal(zeros(1,N)); % allocate space for velocities

Note that we have defined a variable v0 to specify that the velocity at pin A is zero. To solve
the velocity problem, we will first calculate ω3 and b. To do this, we need to define the A
matrix and b vector. We will then ask MATLAB to solve the set of matrix equations using
the “\” operator.

% conduct velocity analysis to solve for omega3 and bdot
 A_Mat = [b(i)∗n3 e3];
 b_Vec = -a∗omega2∗n2;
 omega_Vec = A_Mat\b_Vec; % solve for velocities

This set of statements should be inserted inside the main loop immediately before the end
statement. It is not necessary to use the _Mat or _Vec suffixes shown in the code above, but
we have included them to prevent confusion between these and other variables (especially
b, the slider length). The solution vector, omega _ Vec, includes ω3 as its first component
and b as its second component. Thus, after solving the matrix equation, we decompose the
vector into its omega3 and bdot components.

 omega3(i) = omega_Vec(1); % decompose omega_Vec into
 bdot(i) = omega_Vec(2); % individual components

273Velocity Analysis of Linkages

To solve for the translational velocities of points B and P, we will use the relative veloc-
ity formula. Because we will employ this formula so often, it is helpful to create a new
MATLAB function for it. Open up a new MATLAB script and enter the following function:

% Function FindVel.m
% calculates the translational velocity at a point on the linkage
% using the relative velocity formula
%
% v0 = velocity of first point
% L = length of vector to second point on the link
% omega = angular velocity of link
% n = unit normal to vector btw first and second points
% v = velocity of second point

function v = FindVel(v0, L, omega, n)

v = v0 + omega * L * n;

The form of this function is strikingly similar to the FindPos.m function created earlier.
We can now use this function in the main program to calculate the translational velocities
of the points B and P.

% calculate velocity at important points on linkage
 vB(:,i) = FindVel(v0, a, omega2, n2);
 vP(:,i) = FindVel(vB(:,i), p, omega3(i), n3);

The complete velocity analysis code is shown at the end of this section. We have elimi-
nated the position plotting portion of the code for brevity, but it is a good idea to keep it in
your code to ensure it still works.

5.3.2.1 Verifying the Code

Of course, we are not finished yet! We must next verify the code, to make sure we haven’t
made any typographical (or mathematical) errors along the way. We will use the example
threebar linkage in Figure 5.45 as a check on our calculations. We will check our calculations
at a crank angle of θ2 = 120°.

Draw the linkage in a SOLIDWORKS drawing. Next, find the location of the instant cen-
ter I13 and the critical dimensions e and f, as shown in Figure 5.46. The angular velocity of
the slider is found through Equation (5.19).

100 mm
271.43 m

10 rad/s 3.68 rad/s3 2ω ω= = ⋅ =a
e

At the command prompt in MATLAB, type

>> omega3(121)

ans =

 3.6842

274 Introduction to Mechanism Design

Recall that the index 121 corresponds to a crank angle of θ2 = 120° because MATLAB
requires that we start our index numbering at 1, which corresponded to a crank angle of
θ2 = 0°. The MATLAB and SOLIDWORKS values agree with each other with only a small
error, most likely due to roundoff error in the SOLIDWORKS dimensions.

The velocity at point P can be calculated from the instant center diagram as

 ω= = ⋅ =fPv 181.40 mm 3.68 rad/s 668.3 mm/s3

But we have asked MATLAB to calculate the x and y components of vP, so we must take
the magnitude to calculate the total velocity (remember we have specified our code units
in meters so we will need mentally account for the factor of 1000).

>> sqrt(vP(1,121)^2 + vPy(2,121)^2)

ans =

 0.6683

Thus, the MATLAB prediction is in agreement with our instant center analysis, and we can
have confidence that our code is giving correct results.

5.3.2.2 Verifying the Code – An Alternative Approach

When we conduct acceleration analysis in the next chapter, we will be unable to use the
instant center method to verify the code since it can only be used to calculate velocity.
A second method of verifying the code uses the definition of velocity

181.40

271.43

113

112

123

f

e

FIGURE 5.46
Instant center I13 of the threebar linkage is used to verify our velocity analysis code.

275Velocity Analysis of Linkages

 ω θ= =d
dt

b
db
dt

3
3 (5.68)

We can use MATLAB to make a numerical approximation to the derivative as:

 ()
(1) ()

3
3 3ω θ θ≈ + −

∆
i

i i
t

 (5.69)

for i = 1:N − 1. In other words, dividing the difference between the current and previous
slider angles by the change in time between calculations gives an approximation to the
angular velocity at the current time step. Note that this is a forward estimation – we could
also use the backward estimation formula

 ()
() (1)

3
3 3ω θ θ≈ − −

∆
i

i i
t

 (5.70)

but for sufficiently small time steps, it won’t make an appreciable difference. Finding the
time increment between calculations is a little tricky, but recall that the increment in crank
angle between calculations was defined to be

2π

12θ∆ =
−N

 (5.71)

We can find the time increment, Δt, by using the definition of angular velocity

 2
2ω θ= ∆

∆t
 (5.72)

where we assume that the crank has constant angular velocity ω2. The time increment is
then

2π

(1)

2ω
∆ =

−
t

N
 (5.73)

Since we will be verifying several codes by using the derivative estimation technique, it is
worthwhile to develop a derivative-estimating function. The goal of the function will be
to estimate the derivative of a variable, and plot it alongside the calculated derivative. The
function should be general enough that we can use it for verifying velocities, accelerations,
or whatever other derivative we may desire.

Create a new MATLAB script and type the following at the top of the file:

% Function Derivative_Plot.m
% plots an approximation to the derivative of a function along with
% the function itself
%
% crankAngle = used for the x axis of the derivative plots
% theta = the function whose derivative is to be estimated
% omega = the calculated derivative
% dt = time step

Use Save As to save the file as Derivative _ Plot.m (no spaces!). Make sure you save
this file in the same folder as your velocity analysis program, otherwise MATLAB won’t
know where to find it. The first line of code in the function should give the function name,
along with any arguments we need

276 Introduction to Mechanism Design

function Derivative_Plot(crankAngle, theta, omega, dt)

The first argument (crankAngle) provides the vector of crank angles as it sweeps out
its rotation. We will use this as the x axis when we plot the derivatives. The second argu-
ment, theta, gives the vector of angular positions that we will differentiate. When we
calculate accelerations in a later chapter, theta will consist of velocities; this doesn’t mat-
ter as long as we remember that theta is the vector of values that we wish to differentiate.

The third argument gives the calculated values of the derivatives. For the present
situation, this is the omega3 or bdot vector that we are trying to verify. Finally, the dt
argument gives the time increment so that we can calculate our estimate of the derivative.

Below the function declaration, initialize the following variables:

N = length(theta); % length of position and velocity vectors
omegaStar = zeros(N,1); % estimate of derivative

The estimated angular velocities will be stored in the vector omegaStar. Since we wish
our function to be as general as possible, we will not assume that the length of each vec-
tor is 361. For non-Grashof linkages, the vector may be shorter. And if we wish to perform
our calculations on a finer time scale the vector may be longer. Now, begin a for loop to
calculate the derivative estimates

% estimate derivative
for i = 1:N-1
 omegaStar(i) = (theta(i+1) - theta(i))/dt;
end

The for loop must terminate at N−1 because we have used theta(i+1) in the calculation
and theta(N+1) is undefined. Let us assume that the final derivative estimate is the same
as the first estimate:

% assume final derivative is the same as the first
omegaStar(N) = omegaStar(1);

This will not be correct in the case of non-Grashof linkages, and our function will give a
spurious datapoint at the end of the plot in such a situation. However, it will provide correct
plots for most situations we will encounter in this text where the crank runs through a
complete cycle. If you wish, you can make a few simple modifications to the function to
force it to plot only N−1 points; this will make it perfectly general. Finally, add the series of
plot commands shown below.

% plot estimated and analytical derivatives
figure
plot(180*crankAngle/pi, omegaStar,'Color', [0 110/255 199/255])
hold on
plot(180*crankAngle/pi, omega, '.','Color', [51/255 51/255 51/255])
legend('Estimated','Analytical')
title('Comparison of Calculated and Analytical Derivatives')
xlabel('Crank angle (degrees)')
ylabel('Derivative')
grid on

Note that crankAngle has been converted to degrees for plotting purposes.

277Velocity Analysis of Linkages

That completes our first nontrivial function! Make sure you save the file again, and then
go back to the threebar-velocity analysis script. Immediately after the main loop, type the
following two statements:

dt = 2*pi/((N-1)*omega2); % time increment between calculations
Derivative_Plot(theta2, theta3, omega3, dt) % verify derivatives

The first statement calculates the value of dt, and the second calls our newly-created
function. Here we are comparing the calculated values of omega3 against the estimates
provided by the position angle theta3.

When you run the code, you should obtain the plot shown in Figure 5.47. The analytical
and estimated values are almost identical, and we conclude that the code is producing
accurate results.

Now change the function call statement in the main program to the following

Derivative_Plot(theta2, b, bdot, dt) % verify derivatives

This will estimate the derivative of the length b for estimating b. Figure 5.48 shows the
comparison for the velocity of slip. So far, the code seems to be producing accurate results.
As a final check, let us verify the x component of the velocity at point P.

Derivative_Plot(theta2, xP(1,:), vP(1,:), dt) % verify derivatives

The comparison is shown in Figure 5.49. Since the code seems to be producing accurate
results, you may comment out the Derivative _ Plot function call and modify the plot-
ting commands to trace out the x and y velocities of point P, as shown below.

120 180

Estimated
Analytical

240 300 360
Crank angle (°)

Comparison of calculated and analytical derivatives

0 60

5

0

–5

–10

–15

–20

D
er

iv
at

iv
e

FIGURE 5.47
A comparison of the analytical and estimated values for ω3, the angular velocity of the slider.

278 Introduction to Mechanism Design

% plot the velocity of point P
plot(theta2*180/pi,vP(1,:),'Color',[153/255 153/255 153/255])
hold on
plot(theta2*180/pi,vP(2,:),'Color',[0 110/255 199/255])

0

1

0.8

0.6

0.4

0.2

–0.2

–0.4

–0.6

–0.8

–1

0

60 120 180

Comparison of calculated and analytical derivatives

Crank angle (°)

D
er

iv
at

iv
e

Analytical
Estimated

240 300 360

FIGURE 5.48

A comparison of the analytical and estimated values for the velocity of slip, b.

2

1.5

1

0.5

0

–0.5

–1

–1.5

–2
0 60 120 180

Crank angle (°)

Comparison of calculated and analytical derivatives

D
er

iv
at

iv
e

240 300 360

Estimated
Analytical

FIGURE 5.49
The x component of the velocity at point P: estimated and analytical.

279Velocity Analysis of Linkages

legend('vPx','vPy')
title('Velocity of point P on Threebar Slider-Crank')
xlabel('Crank angle (degrees)')
ylabel('Velocity (m/s)')
grid on
set(gca,'xtick',0:60:360)
xlim([0 360])

The plot in Figure 5.50 gives the velocity of point P as the crank makes a full revolution.
Make sure that your own code gives the same results as the example problem before
attempting the homework problems.

To summarize, we have developed a simple code for calculating the velocity of any
point on the threebar linkage. More importantly, we have also developed a robust, general
purpose function for verify our derivative estimates. Remember, verifying your simula-
tion is one of the most important roles you will take on as an engineer. In the next few
sections, we will use the same procedure to find the velocities of the more complicated
linkages we studied in Chapter 4.

% Threebar_Velocity_Analysis.m
% Conducts a velocity analysis on the threebar crank-slider linkage
% and plots the velocity of point P
% by Eric Constans, June 1, 2017

% Prepare Workspace
clear variables; close all; clc;

% Linkage dimensions
a = 0.100; % crank length (m)
d = 0.150; % length between ground pins (m)
p = 0.300; % slider length (m)

0

2

1

0

–1

–2

–3

–4

–5
60 120 180

Crank angle (°)

Ve
lo

ci
ty

 (m
/s

)

Velocity of point P on threebar slider-crank

vPx
vPy

240 300 360

FIGURE 5.50
The velocity of point P in the example problem.

280 Introduction to Mechanism Design

% Ground pins
x0 = [0;0]; % point A (the origin)
xD = [d;0]; % point D
v0 = [0;0]; % velocity of pin A (zero)

% Angular velocity of crank
omega2 = 10; % angular velocity of crank (rad/sec)

N = 361; % number of times to perform position calculations
[xB,xP] = deal(zeros(2,N)); % allocate space for position of B,P
[vB,vP] = deal(zeros(2,N)); % allocate space for velocity of B,P

[theta2,theta3,b] = deal(zeros(1,N)); % allocate space for link angles
[omega3,bdot] = deal(zeros(1,N)); % allocate space for velocities

for i = 1:N
 theta2(i) = (i-1)*(2*pi)/(N-1);
 theta3(i) = atan2(-a*sin(theta2(i)),d - a*cos(theta2(i)));
 b(i) = (d - a*cos(theta2(i)))/cos(theta3(i));

% calculate unit vector
 [e1,n1] = UnitVector(0);
 [e2,n2] = UnitVector(theta2(i));
 [e3,n3] = UnitVector(theta3(i));

% solve for positions of points B, C and P on the linkage
 xB(:,i) = FindPos([0;0],a,e2);
 xP(:,i) = FindPos(xB(:,i),p,e3);

% conduct velocity analysis to solve for omega3 and bdot
 A_Mat = [b(i)*n3 e3];
 b_Vec = -a*omega2*n2;
 omega_Vec = A_Mat\b_Vec; % solve for velocities

 omega3(i) = omega_Vec(1); % decompose omega_Vec into
 bdot(i) = omega_Vec(2); % individual components

% calculate velocity at important points on linkage
 vB(:,i) = FindVel(v0, a, omega2, n2);
 vP(:,i) = FindVel(vB(:,i), p, omega3(i), n3);
end

% plot the velocity of point P
plot(theta2*180/pi,vP(1,:),'Color',[153/255 153/255 153/255])
hold on
plot(theta2*180/pi,vP(2,:),'Color',[0 110/255 199/255])
legend('vPx','vPy')
title('Velocity of point P on Threebar Slider-Crank')
xlabel('Crank angle (degrees)')
ylabel('Velocity (m/s)')
grid on
set(gca,'xtick',0:60:360)
xlim([0 360])

281Velocity Analysis of Linkages

5.4 Velocity Analysis of the Slider-Crank

The vector loop for the slider-crank mechanism is shown in Figure 5.51. In the position
analysis for the slider-crank we found the vector loop equation to be

 + − − =r r r r 02 3 4 1 (5.74)

or, in unit vector form

 + − − =a b c de e e e 02 3 4 1 (5.75)

Let us differentiate each term individually with respect to time. The first two are familiar
from previous examples:

 ω() =d
dt

a ae n2 2 2 (5.76)

 ω() =d
dt

b be n3 3 3 (5.77)

The third term differentiates to zero, since c is a constant and e4 is always vertical (i.e., the
vertical distance from the cylinder to the crank pin is fixed).

 () =d
dt

ce 04 (5.78)

The derivative of the fourth term, however, is not zero, since the horizontal position of the
piston varies with time. We still must use the product rule, but the time derivative of e1 is
zero, since it is always horizontal. Thus, we have:

 () =d
dt

d de e1 1 (5.79)

where we have used the overdot notation to indicate differentiation with respect to time.
The term d represents the horizontal velocity of the piston. We could equivalently write
this as

r2

r4

r1

B

C

ω3

ω2

r3

FIGURE 5.51
The vector loop for the slider-crank linkage.

282 Introduction to Mechanism Design

 =d vDx (5.80)

but the overdot notation is simpler. The differentiated vector loop equation is then

 ω ω+ − =a b dn n e 02 2 3 3 1 (5.81)

It is useful again, at this point, to take stock of what variables we know, and which are
unknown. As before, we assume that a full position analysis has been performed, so that
we know

 Known : , , , , , ,2 3 2θ θ ωa b c d

We also assume that the crank is driven by a motor with known speed, ω2. The only
unknown quantities in the equation above are

 Unknown : , 3
ω d

As before, let us rearrange the equations into matrix form, so that we can use MATLAB to
solve them.

 �
�

ω
ω{ }−

= −b

d
an e n3 1

3

2 2 (5.82)

If we define

 n e n3 1

3

2 2A b�
�

ω
ωωω { }= − =

= −b

d
a (5.83)

then we may use MATLAB to solve for the velocities as we did with the fourbar linkage.
Because the code is so similar to that of the threebar, its development is left as an exercise
for the reader.

5.4.1 Example Slider-Crank

The dimensions and crank angular velocity for the example slider-crank linkage are
shown in Figure 5.52. Using these dimensions results in the plot of piston velocity, d shown
in Figure 5.53. We have set the vertical offset of the cylinder to zero for the example prob-
lem, which results in the symmetric velocity plot shown in the figure. This enables us to
perform a quick check of the velocities shown in Figure 5.53. When the crank is vertical the
velocity at point B must be entirely horizontal, and this must match the purely horizontal
velocity of the piston since they are connected with a rigid link. The velocity at point B can
be found using the angular velocity of the crank

 ω= = ⋅ =aBv 0.04 m 10 rad/s 0.4 m/s2

As seen in the figure, the piston velocity crosses 0.4 m/s at a crank angle of 90°. It is
interesting to note that the maximum piston velocity is a little higher than 0.4 m/s, and

283Velocity Analysis of Linkages

occurs at a crank angle of 73°, instead of at 90° as might have been expected. As we will see
in the next chapter, the acceleration of the piston is zero at this crank angle.

5.5 Velocity Analysis of the Fourbar Linkage

Figure 5.54 shows a vector loop diagram of the fourbar linkage, similar to the one we con-
structed for the previous two sections. As before, we simply add the vectors going around
the loop. Since we end up where we started, the vector sum is zero.

Crank length: 40
Connecting rod length: 120
Crank angular velocity: 10 rad/s

(All dimension in millimeters)

12040

C

B

A

FIGURE 5.52
Dimensions of the example slider-crank linkage. Note that the vertical offset of the cylinder has been set to zero
for the example.

0.5

0.4

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

–0.5
0 60 120 180

Crank angle (°)

Ve
lo

ci
ty

 (m
/s

)

Velocity of piston on slider-crank

240 300 360

FIGURE 5.53
Piston velocity for the example slider-crank linkage. The plot is symmetric about the x axis because the vertical
offset has been set to zero.

284 Introduction to Mechanism Design

 + − − =r r r r 02 3 4 1 (5.84)

If we expand this into unit vector form, we have

 + − − =a b c de e e e 02 3 4 1 (5.85)

Taking the time derivative of this equation gives

 ω ω ω+ − =a b cn n n 02 2 3 3 4 4 (5.86)

Note that the distance between ground pins, d, and the unit vector e1 are constant and do not
appear in Equation (5.51). We have used the position analysis formulas to solve for the angles
θ3 and θ4. The lengths of each link are known, and we assume that the crank angle, θ2, is given
(or that we are solving for the entire range of motion). Thus, the list of known quantities is

 Known : , , , , , , , 2 3 4 2θ θ θ ωa b c d

The only unknowns, then, are

 Unknown : ,3 4ω ω

We first put the terms with unknown quantities on one side of the equation, with the fully
known terms on the other side.

 ω ω ω− = −b c an n n3 3 4 4 2 2 (5.87)

Next, put the above equations into matrix form

ω

ω
ω−

= −b c an n n3 4

3

4

2 2 (5.88)

d

a

b

c

r1

r3

ω3

ω2
ω4

r4

r2

FIGURE 5.54
The vector loop diagram of the fourbar linkage.

285Velocity Analysis of Linkages

Further, if we define

 n n n3 4

3

4

2 2A b

ω

ω
ωωω= − =

= −b c a (5.89)

Then we can write the matrix equation more compactly as

 ωω =A b (5.90)

We may use this matrix equation to solve for the unknown angular velocities on the four-
bar linkage.

5.5.1 Velocity of Any Point on the Linkage

As with the slider-crank, the velocity of pin B on the crank is given by (see Figure 5.55)

 ω= aBv n2 2 (5.91)

The position vector of point C is

 = +Cr r r1 4 (5.92)

 = +d cCr e e1 4 (5.93)

Differentiating with respect to time gives

 ω= cCv n4 4 (5.94)

Thus, it is relatively straightforward to find the velocity at any joint on the linkage. But
what happens if we need to find the velocity at a point not located at a pin? In Figure 5.56,
the point P is attached to the coupler, which has been drawn as a triangle. The distance

a

d
x

y

c

r2

vB

vC

r1

r4

ω2
ω4

FIGURE 5.55
Finding the velocities of points B and C on the fourbar linkage.

286 Introduction to Mechanism Design

from point B to P is a constant, p, and the angle between the coupler and the line BP is also
a constant, γ3. The position vector to point P is

 = +P BPr r r2 (5.95)

 = +a pP BPr e e2 (5.96)

where

θ γ

θ γ

()
()

=
+

+

BPe

cos

sin

3 3

3 3

 (5.97)

Differentiating this with respect to time gives

 ω ω()= = +d
dt

a pP P BPv r n n2 2 3 (5.98)

where

θ γ

θ γ

()
()

=
− +

+

BPn

sin

cos

3 3

3 3

 (5.99)

The form is similar to the expressions we found earlier, and the presence of γ3 does not
affect the differentiation, since it is a constant. You may have noticed that this is identical
to the relative velocity formula

 = +P B PBv v v (5.100)

a

B

P

p

r2

vP

rBP
γ3

FIGURE 5.56
Finding the velocity of point P on the coupler of the fourbar linkage.

287Velocity Analysis of Linkages

with vB given in Equation (5.59) and vPB the velocity of P relative to B. We now have a
simple and powerful method for finding the velocity at any point on the linkage.

5.5.2 Fourbar Velocity Analysis Using MATLAB®

We will now develop some MATLAB code to solve the velocity problem for the linkage
shown in Figure 5.57. You should use the fourbar position analysis code that you developed
earlier as a starting point. To conduct the velocity analysis we must first know the angular
velocity of the crank, ω2. Enter a value for omega2 at the top of the program, immediately
after the statements that provide link lengths. Also, make sure to allocate some space in
memory for omega3 and omega4, as you did for theta3 and theta4.

% Fourbar_Velocity_Analysis.m
% Conducts a velocity analysis on the fourbar linkage
% and plots the velocity of point P
% by Eric Constans, June 1, 2017

% Prepare Workspace
clear variables; close all; clc;

% Linkage dimensions

220
(All dimensions in millimeters)
Crank length: 130
Coupler length: 200
Rocker length: 170
Distance between ground pins: 220
Distance from B to P: 150
Angle PBC: 20°
Crank angular velocity: 10 rad/s

150

20°

200

DA

B

130

170

P

C

FIGURE 5.57
Example linkage used in the fourbar velocity analysis. This is the same linkage as was used for position analy-
sis in Chapter 4.

288 Introduction to Mechanism Design

a = 0.130; % crank length (m)
b = 0.200; % coupler length (m)
c = 0.170; % rocker length (m)
d = 0.220; % length between ground pins (m)
p = 0.150; % length from B to P (m)
gamma3 = 20*pi/180; % angle between BP and coupler (converted to rad)

% Ground pins
x0 = [0;0]; % point A (the origin)
xD = [d;0]; % point D
v0 = [0;0]; % velocity of pin A (zero)

% Angular velocity and acceleration of crank
omega2 = 10; % angular velocity of crank (rad/s)

N = 361; % number of times to perform position calculations
[xB,xC,xP] = deal(zeros(2,N)); % allocate space for pos of B, C, P
[vB,vC,vP] = deal(zeros(2,N)); % allocate space for vel of B, C, P
[theta2,theta3,theta4] = deal(zeros(1,N)); % allocate for link angles
[omega3,omega4] = deal(zeros(1,N)); % allocate for angular velocities

After the position analysis portion of the main loop, enter the code for performing the
velocity analysis. Again, we employ the FindVel function to find the translational
velocities at important points on the linkage.

% conduct velocity analysis to solve for omega3 and omega4
 A_Mat = [b*n3 -c*n4];
 b_Vec = -a*omega2*n2;
 omega_Vec = A_Mat\b_Vec; % solve for angular velocities

 omega3(i) = omega_Vec(1); % decompose omega_Vec into
 omega4(i) = omega_Vec(2); % individual components

% calculate velocity at important points on linkage
 vB(:,i) = FindVel(v0, a, omega2, n2);
 vC(:,i) = FindVel(v0, c, omega4(i), n4);
 vP(:,i) = FindVel(vB(:,i), p, omega3(i), nBP);

Finally, we use the same code as before to plot the x and y components of the velocity at
point P.

% plot the velocity of point P
plot(theta2*180/pi,vP(1,:),'Color',[153/255 153/255 153/255])
hold on
plot(theta2*180/pi,vP(2,:),'Color',[0 110/255 199/255])
legend('vPx','vPy','Location','Southeast')
title('Velocity of point P on Fourbar Linkage')
xlabel('Crank angle (degrees)')
ylabel('Velocity (m/s)')
grid on
set(gca,'xtick',0:60:360)
xlim([0 360])

289Velocity Analysis of Linkages

5.5.3 Verifying the Code

Of course, we are not finished yet! We should perform a few quick validations to ensure
that our code is producing accurate results. As a first check, let us conduct an instant cen-
ter analysis using SOLIDWORKS. The example fourbar linkage has been recreated in a
SOLIDWORKS drawing and is shown in Figure 5.58. We will check our calculations at a
crank angle of θ2 = 30°.

Find the location of the instant center I13 and the critical dimensions e, f, and q, as shown
in Figure 5.59. The angular velocity of the coupler is found through Equation (5.19)

130 mm

217.082 mm
10 rad/s 5.989 rad/s3 2ω ω= = ⋅ =a

e

At the command prompt in MATLAB, type

>> omega3(31)

ans =

 -5.9885

Recall that the index 31 corresponds to a crank angle of θ2 = 30°. The MATLAB and
SOLIDWORKS values agree with each other with only a small error, most likely due
to roundoff error in the SOLIDWORKS dimensions. The negative sign in the MATLAB
answer indicates that the coupler is rotating clockwise, which we can easily see in the
SOLIDWORKS drawing.

220

200

170

20°

150

30°

130

B

P

C

FIGURE 5.58
Fourbar linkage drawn in SOLIDWORKS that is used as a check on the MATLAB calculations.

290 Introduction to Mechanism Design

The angular velocity of the rocker is then found through Equation (5.21)

21.337 mm

170 mm
5.989 rad/s 0.7516 rad/s4 3ω ω= = ⋅ =f

c

and MATLAB gives the answer

>> omega4(31)

ans =

 0.7516

which is also in agreement. The velocity at point P can be calculated from the instant
center diagram as

 ω= = ⋅ =qPv 84.715 mm 5.989 rad/s 507.318 mm/s3

>> sqrt(vP(1,31)^2 + vP(2,31)^2)

ans =

 0.5073

217.082 84.715
21.337

113q

P

C

B

e

f

FIGURE 5.59
Instant center I13 of the fourbar linkage is used to verify our velocity analysis code.

291Velocity Analysis of Linkages

Remember that the MATLAB code uses meters, not millimeters, so the answer is different
by a factor of 1000. Thus, the MATLAB prediction is in agreement with our instant center
analysis, and we can have confidence that our code is giving correct results.

Next, we will use the Derivative _ Plot function to verify that the angular velocities
are being computed correctly for the full revolution of the crank. Figures 5.60 and 5.61
show the calculated and analytical values for the angular velocities of the coupler and
rocker, respectively. The calculated and estimated values are almost identical, and we con-
clude that the code is producing accurate results.

As a final check, let us verify the x component of the velocity at point P.

Derivative_Plot(theta2, xP(1,:), vP(1,:), dt) % verify derivatives

The comparison is shown in Figure 5.62. Since the code seems to be producing accurate
results, you may comment out the function call and modify the plotting commands to
trace out the x and y velocities of point P, as shown below.

% plot the velocity of point P
plot(theta2*180/pi,vP(1,:),'Color',[153/255 153/255 153/255])
hold on
plot(theta2*180/pi,vP(2,:),'Color',[0 110/255 199/255])
legend('vPx','vPy','Location','Southeast')
title('Velocity of point P on Fourbar Linkage')
xlabel('Crank angle (degrees)')
ylabel('Velocity (m/s)')
grid on
set(gca,'xtick',0:60:360)
xlim([0 360])

10

5

0

–5

–10

–15
0 60 120 180

Estimated
Analytical

Crank angle (°)

Comparison of calculated and analytical derivatives

D
er

iv
at

iv
e

240 300 360

FIGURE 5.60
A comparison of the estimated and analytical values for ω3, the angular velocity of the coupler.

292 Introduction to Mechanism Design

The plot in Figure 5.63 gives the velocity of point P as the crank makes a full revolution.
Make sure that your own code gives the same results as the example problem before
attempting the homework problems.

0
–20

–15

–10

–5

0

5

10

60 120

Comparison of calculated and analytical derivatives

Estimated
Analytical

180 240 300 360
Crank angle (°)

D
er

iv
at

iv
e

FIGURE 5.61
A comparison of the estimated and analytical values for the angular velocity of the rocker, ω4.

0

2.5

2

1.5

1

0.5

0

–0.5

–1

–1.5
60 120 180 240

Crank angle (°)

Comparison of calculated and analytical derivatives

D
er

iv
at

iv
e

Estimated
Analytical

300 360

FIGURE 5.62
The x component of the velocity at point P: estimated and analytical.

293Velocity Analysis of Linkages

5.6 Velocity Analysis of the Inverted Slider-Crank

Figure 5.64 shows the vector loop diagram for the inverted slider-crank linkage, while
Figure 5.65 shows the relevant translational and angular velocities. Following the loop
gives

 + − − =r r r 02 3 4 1r (5.101)

or, in unit vector form:

 + − − =a b c de e e e 02 3 4 1 (5.102)

But θ3 and θ4 are not independent of one another, and are related by the constant δ.

 4 3θ θ δ= + (5.103)

If we differentiate Equation (5.103) with respect to time, we find that

 4 3θ θ δ= +d
dt

d
dt

d
dt

 (5.104)

Since δ is a constant, we have

 4 3ω ω= (5.105)

This makes sense, since the slider and the rocker must rotate together at the same speed.
We will now differentiate each term in the vector loop equation individually, as we did
earlier. The first term is the same as before

2.5

2

1.5

1

0.5

0

–0.5

–1

–1.5
0 60 120 180

Crank angle (°)

Velocity of point P on fourbar linkage

Ve
lo

ci
ty

 (m
/s

)

240

vPx
vPy

300 360

FIGURE 5.63
The velocity of point P in the example problem.

294 Introduction to Mechanism Design

 ω() =d
dt

a ae n2 2 2 (5.106)

The second term, however, is a little trickier. For this linkage, the length b is not a constant
but varies with the motion of the linkage. Neither is the angle θ3 a constant. Thus, we must
use the product rule to differentiate this term:

 ω() = +d
dt

b
db
dt

be e n3 3 3 3 (5.107)

As before, let us define

 =b
db
dt

 (5.108)

Then

 ω() = +d
dt

b b be e n3 3 3 3 (5.109)

The third term differentiates in the familiar manner, since c is a constant

r2

r3

r4

r1

FIGURE 5.64
Vector loop diagram for the inverted slider-crank.

vC3

ω2

ω3 = ω4

B

C

vC4

vB

FIGURE 5.65
The inverted slider-crank linkage showing translational and angular velocities.

295Velocity Analysis of Linkages

 ω() =d
dt

c ce n4 3 4 (5.110)

where we have used ω4 = ω3, as shown above. The fourth term vanishes, since d and e1 are
constant. Thus, the differentiated vector loop is

 ω ω ω+ + − =a b b cn e n n 02 2 3 3 3 3 4 (5.111)

As before, let us separate knowns from unknowns

Known : , , , , , , ,

Unknown : ,

2 3 4 2

3

θ θ θ ω

ω

a b c d

b

And finally, putting this into matrix form we have:

 �
�

ω
ω{ }−

= −b c

b
an n e n3 4 3

3

2 2 (5.112)

The velocity analysis code for the inverted slider-crank is sufficiently similar to the previ-
ous linkages that it is left as an exercise for the reader. Figure 5.66 shows the example of
inverted slider-crank that was used for the position analysis in Chapter 4.

200

80

60°

350

130

D

C
b

P

A

B

θ2

(All dimensions in millemeters)

Crank length: 80
Rocker length: 130
Distance between ground pins: 200

Angle between slider and rocker: 60°
Overall slider length: 350
Crank angular velocity: 10 rad/s

FIGURE 5.66
Dimensions of the example inverted slider-crank linkage.

296 Introduction to Mechanism Design

The x and y components of the velocity at point P are shown in Figure 5.67. Please ensure
that your plot matches this before continuing to the homework problems. If your veloci-
ties are different, you can use the Derivative _ Plot function to help to track down the
source of error.

5.7 Velocity Analysis of the Geared Fivebar Linkage

The velocity analysis of the geared fivebar linkage is a simple extension of the analy-
sis of the fourbar linkage. A vector loop diagram of the linkage is shown in Figure 5.68.
Recall that the angle of link 5 (the second gear) is known as a function of the crank angle,
through the gear ratio

 5
1

2
2θ θ ϕ= − +N

N
 (5.113)

Let us define the gear ratio, ρ, as

 1

2
ρ = N

N
 (5.114)

Then

 5 2θ ρθ ϕ= − + (5.115)

If we differentiate this expression with respect to time, we arrive at the speed ratio between
the two gears

0

4

3

vPx
vPy

2

1

0

–1

–2

–3
60 120 180

Crank angle (°)

Velocity of point P on inverted slider-crank linkage

Ve
lo

ci
ty

 (m
/s

)

240 300 360

FIGURE 5.67
x and y velocity of point P on the example inverted slider-crank linkage.

297Velocity Analysis of Linkages

 5 2θ ρ θ= −d
dt

d
dt

 (5.116)

or

 5 2ω ρω= − (5.117)

Writing the vector loop equation gives

 + − − − =r r r r r 02 3 4 5 1 (5.118)

and writing in unit vector form

 + − − − =a b c u de e e e e 02 3 4 5 1 (5.119)

Differentiating this with respect to time gives

 ω ω ω ω+ − − =a b c un n n n 02 2 3 3 4 4 5 5 (5.120)

Collecting all known terms on the right-hand side of the equation and rearranging into
matrix form results in a familiar formula

 ωω =A b (5.121)

with

A b c a un n b n n3 4 2 2 5 5ω ω{ }= − = − + (5.122)

and

ω

ω
ωω =

3

4

 (5.123)

d

u
D

E

C

cb

a

B

A
r1

r2

r3 r4

r5

FIGURE 5.68
Vector loop diagram of the geared fivebar linkage.

298 Introduction to Mechanism Design

It is noteworthy that the A matrix is identical to that of the fourbar linkage, and the b vec-
tor is unchanged but for the addition of the link 5 term.

5.7.1 Example Fivebar Linkage

Figure 5.69 shows the example fivebar linkage used in the MATLAB calculations below.
Start with the code you developed in Chapter 4 for the position analysis of the geared
fivebar. Allocate space for the velocity variables, and add the code for the velocity analysis
(you may cut and paste from the fourbar analysis code, then modify as needed). Use the
Derivative _ Plot function to make sure the velocities are correct.

Figure 5.70 shows the x and y components of the velocity of point P for the example
geared fivebar linkage. Observe that both functions are smooth over the entire range of
motion.

Something interesting happens if we change the link lengths slightly such that a =
150 mm, u = 150 mm and d = 200 mm. The resulting velocity of point P is shown in
Figure 5.71. Observe the discontinuity in velocity at θ2 = 180°.

To see what is happening at this point, it is helpful to plot the x and y coordinates of point
P as shown in Figure 5.72. At θ2 = 180° the plots exhibit sharp corners caused by a sudden
change in direction.

Figure 5.73 shows the trajectory plot for the same linkage. The bold black circle highlights
the sudden change in direction of the point P as the crank makes its revolution. Since
velocity consists of both magnitude and direction, a sudden change in direction will result
in a discontinuity in velocity, as we have seen. Viewing the plot in Figure 5.71, it appears as

(All dimensions in millimeters)
180

D

C

QP

E

B

A

250 250

20
°20°

200

20
0

12
0120

Length of link on gear 1: 120
Coupler 1 length: 250
Coupler 2 length: 250
Length of link on gear 2: 120
Distance between ground pins: 180

Length from B to P: 200
Length from C to Q: 200
Teeth on gear 1: 48
Teeth on gear 2: 24
Angular velocity of gear 1: 10 rad/s

FIGURE 5.69
Example geared fivebar linkage.

299Velocity Analysis of Linkages

4

3

2

1

0

–1

–2

–3

–4

–5

–6
0 60 120 180

vPx
vPy

240
Crank angle (°)

Velocity of point P on geared fivebar linkage

Ve
lo

ci
ty

 (m
/s

)

300 360

FIGURE 5.70
Velocity of point P on the example geared fivebar linkage.

60 120 180 240

vPx
vPy

Crank angle (°)

Ve
lo

ci
ty

 (m
/s

)

Velocity of point P on geared fivebar linkage

300 3600
–8

–6

–4

–2

0

2

4

6

FIGURE 5.71
By changing the link lengths slightly we obtain discontinuities in the velocity of point P.

300 Introduction to Mechanism Design

0
–0.2

–0.1

0

0.1

0.2

0.3

0.4

60 120 180
Crank angle (°)

Position of point P on geared fivebar linkage

Ve
lo

ci
ty

 (m
/s

)

240 300

xP
yP

360

FIGURE 5.72
x and y coordinates of point P for modified fivebar linkage.

–0.2
–0.1

–0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

–0.15 0.15 0.2 0.25 0.3–0.1 0.1

P

–0.05 0.05
x-position (m)

Path of point P on geared fivebar linkage

y-
po

sit
io

n
(m

)

0

FIGURE 5.73
Trajectory plot for modified fivebar linkage.

301Velocity Analysis of Linkages

though the velocity at point P changes value almost instantly when θ2 = 180°. This type of
behavior will cause difficulties when we perform acceleration analysis, since

 =a
dv
dt

 (5.124)

If dv is finite, but dt is zero, then we have infinite acceleration at the discontinuity. Since
force is proportional to acceleration, it would appear that a discontinuity would cause
infinite forces (and stresses) to occur somewhere in the linkage. Luckily, imprecisions in
the fit of the pins will prevent infinite forces, but high forces will occur nonetheless, which
may lead to excessive vibration and premature failure of the parts of the linkage. This type
of discontinuity should be avoided, if possible.

5.8 Velocity Analysis of the Sixbar Linkage

We now turn our attention to conducting the velocity analysis of the sixbar linkage. We
will use the vector loop method as before, with the caveat that the sixbar requires two vec-
tor loop equations, instead of just one. The vector loop diagram of the Stephenson Type I
sixbar linkage is shown in Figure 5.74. The lower fourbar vector loop is

 + − − =r r r r 02 3 4 1 (5.125)

And the upper loop is

 + − − − =AE DFr r r r r 05 6 1 (5.126)

Writing each equation in unit vector form gives

 + − − =a b c de e e e 02 3 4 1 (5.127)

 + − − − =p u v q dAE DFe e e e e 05 6 1 (5.128)

We then differentiate with respect to time, again employing the chain rule of differentiation:

 ω ω ω+ − =a b cn n n 02 2 3 3 4 4 (5.129)

 ω ω ω ω+ − − =p u v qAE DFn n n n 02 5 5 6 6 4 (5.130)

As before, the angles γ2 and γ4 do not play a role in the differentiation, since they are con-
stant. Now collect all unknown terms on the right side of the equations, and the known
terms on the left.

 ω ω ω− = −b c an n n3 3 4 4 2 2 (5.131)

302 Introduction to Mechanism Design

 ω ω ω ω− − = −u v q pDF AEn n n n5 5 6 6 4 2 (5.132)

We now have four equations, with four unknowns

 unknown : , , ,3 4 5 6ω ω ω ω (5.133)

and we can arrange the equations into matrix form as before

 ωω =A b (5.134)

where

=
−

− −

b c

q u vDF

0 0

0

3 4 21 21

21 5 6

A
n n

n n n
 (5.135)

 b
n

n

a

p AE

2 2

2

3

4

5

6

ω

ω

ω

ω

ω

ω

ωω=
−

−

=

 (5.136)

Of course, this set of equations is only valid for the Stephenson Type I sixbar linkage.
The MATLAB syntax for entering the A matrix is a little tricky for the sixbar linkages.
Since there are four unknown velocities, the A matrix will have dimension (4 × 4). It is
important to remember that each “row” in Equation (5.135) is actually two rows in the

b

a

A

r5 r6

r3

r4

r1

r2

rDFrAE

d D

c

q
C

B

p

E
u v

G

F

FIGURE 5.74
Vector loop diagram of the Stephenson Type I sixbar linkage.

303Velocity Analysis of Linkages

matrix corresponding to the x and y components of each vector. Each zero entry in the
matrix is therefore a column vector of two zeros

 =

0

0

0
21 (5.137)

Near the top of the MATLAB script, after defining the link lengths and ground pivots,
define the vector

Z21 = zeros(2,1);

Then to define the A matrix we would enter

 A_Mat = [b*n3 -c*n4 Z21 Z21;
 Z21 -q*nDF u*n5 -v*n6];

Each instance of Z21 produces a column vector of two zeros, as required.
A similar analysis can be carried out for the other sixbar linkages, whose vector loop

diagrams are shown in Figures 5.75–5.78. It is interesting to note that no special mea-
sures are needed for velocity analysis of the Stephenson Type II sixbar. Once the position
analysis has been performed using the Newton–Raphson approach, the velocity analysis
proceeds as with the other sixbar linkages. Table 5.2 shows the resulting A matrices and b
vectors for performing velocity analysis on the family of sixbar linkages.

5.8.1 Some Example Solutions for the Sixbar Linkage

Figures 5.79–5.83 show dimensions for the example sixbar linkages discussed in Chapter 4.
In each case, the angular velocity of the crank is 10 rad/s. Figures 5.84–5.88 shows the x
and y components of velocity for an interesting point on each linkage. Be sure to check
your answers against these plots before attempting the homework problems.

d

b

p

v

q

c

u

a
D

G

E

B

C

F

A r1

r4

r3

r2

r5

rDF

r6

rBE

FIGURE 5.75
Vector loop diagram for the Stephenson Type II sixbar linkage.

304 Introduction to Mechanism Design

5.9 Introduction to Electric Motors

This section will give a very brief introduction to the subject of electric motors. Electric
motors are used to convert electrical energy to motion, usually of the rotational variety.
There are many different types of motors, which we will divide here into the following
categories:

• AC Motors
• DC Motors

a

d

c
q

C

D
r1

r4

rDF

rBE

r3

r5

r6

r2

A

B

E

p

b

u

v

G

F

FIGURE 5.77
Vector loop diagram for the Watt Type I sixbar linkage.

a

B

A

C

c

q

d

rAF

rBE

r1

r2

r3

r4

r6

r5

D

b

p

E

u

v

G

F

FIGURE 5.76
Vector loop diagram for the Stephenson Type III sixbar linkage.

305Velocity Analysis of Linkages

• Servomotors (hobby and industrial)
• Stepper motors

AC motors run using line current (from an outlet or electrical panel). DC motors are pow-
ered using batteries or a “wall wart” power supply. Servomotors and stepper motors are
usually powered with DC motors, but require sophisticated controllers to function. Each
type of motor is described in more detail below. Note that entire books are devoted to the

a

b

C

B c

d

rAF

r1

r2

r3

r4

r6

r5

rDE

A

q

D

p

E

u

v

F

G

FIGURE 5.78
Vector loop diagram for the Watt Type II sixbar linkage.

TABLE 5.2

A Matrices and b Vectors for Velocity Analysis of the Sixbar Linkages

Linkage A b

Stephenson I

−

− −

b c

q u vDF

0 0

0

3 4 21 21

21 5 6

n n

n n n

ω
ω

−
−

a
p AE

2 2

2

n
n

Stephenson II

−

−

b c u

p q vBE DF

0

0

3 4 5 21

21 6

n n n

n n n

ω
ω

−
−

a
a

2 2

2 2

n
n

Stephenson III

−

−

b c

p u vBE

0 0

0

3 4 21 21

21 5 6

n n

n n n

n
n

ω
ω

−
−

a
a

2 2

2 2

Watt I

−

− −

b c

p q u vBE DF

0 03 4 21 21

5 6

n n

n n n n

ω
ω

−
−

a
a

2 2

2 2

n
n

Watt II

−

−

b c

p u vDE

0 0

0

3 4 21 21

21 5 6

n n

n n n

ω−

a
0

2 2n

306 Introduction to Mechanism Design

subject of each type of motor described here – this section can provide only the briefest of
introductions. There are many excellent online resources to choose from once you have
decided upon a particular type of motor for your application.

5.9.1 AC Motors

An AC motor is powered by plugging it into the wall, or wiring it up to an electrical panel.
A typical AC motor is shown in Figure 5.89. AC motors can be divided into two major
types: single phase and polyphase.

The abbreviation AC stands for “alternating current.” The voltage present at the “hot”
lead in a typical wall outlet is shown in Figure 5.90. The voltage signal takes the form of a
sine wave at 60 Hz (or 50 Hz in Europe). The amplitude of the voltage is normally specified
by its root-mean-square value, or rms, which is calculated as

 = ×V Vpp 2 rms

The rms value gives an “average” voltage over the period of one sine wave, and is helpful
for calculating the power consumed during a full cycle. In the United States, the rms volt-
age present at a wall outlet is nominally 120 V, but this can vary as much as ±5 V depend-
ing upon how much electricity is being consumed at a given moment, and how far the
outlet is from the power source.

(All dimensions in millimeters)
110

150 15
0

20°
20°

120 160

100

DA

B
C

G

F
E

9070

Crank length: 70
Length AE on crank: 150
Internal angle of crank: 20°
Coupler length: 100
Distance between ground pins: 110
Crank angular velocity: 10 rad/s

Rocker length: 90
Length DF on crank: 150
Internal angle of rocker: –20°
Length of link 5: 120
Length of link 6: 160

FIGURE 5.79
Dimensions of example Stephenson Type I sixbar linkage.

307Velocity Analysis of Linkages

(All dimensions in millimeters)
165

45

22
5

–30°
30°

19
5

180

120

DA

B

C G

F

E

105

75

Crank length: 45
Coupler length: 75
Length BE on coupler: 195
Internal angle of coupler: 30°
Distance between ground pins: 165
Crank angular velocity: 10 rad/s

Rocker length: 105
Length DF on rocker: 225
Internal angle of rocker: –30°
Length of link 5: 120
Length of link 6: 180

FIGURE 5.80
Dimensions of example Stephenson Type II sixbar linkage.

(All dimensions in millimeters)

195

135

18
0–20°

20°

120

180

225

DA

B
C

G

F

E

105

80

Crank length: 80
Coupler length: 105
Internal angle of coupler: 20°
Length BE on coupler: 225
Distance between ground pins: 135
Crank angular velocity: 10 rad/s

Internal angle of ground: –20°
Length AF on ground: 195
Rocker length: 120
Length of link 5: 180
Length of link 6: 180

FIGURE 5.81
Dimensions of example Stephenson Type III sixbar linkage.

308 Introduction to Mechanism Design

(All dimensions in millimeters)

120 18
0–50°

132

108

30°
120

120

DA

B

C

G

F

E

180

84

Crank length: 84
Coupler length: 120
Internal angle of coupler: 30°
Length BE on coupler: 180
Distance between ground pins: 132
Crank angular velocity: 10 rad/s

Rocker length: 108
Internal angle of rocker: –50°
Length DF on rocker: 180
Length of link 5: 120
Length of link 6: 120

FIGURE 5.82
Dimensions of example Watt Type I sixbar linkage.

–20°

–30°

110

70

90
15

0

16
0

150

100

A

B

F

G

D

120

E

C

(All dimensions in millimeters)

Crank length: 70
Coupler length: 100
Distance between ground pins: 110
Internal angle of ground: –20°
Length AF on ground: 150
Crank angular velocity: 10 rad/s

Rocker length: 90
Internal angle of rocker: –30°
Length DE on rocker: 150
Length of link 5: 120
Length of link 6: 160

FIGURE 5.83
Dimensions of example Watt Type II sixbar linkage.

309Velocity Analysis of Linkages

The operation of a typical AC motor is shown in Figure 5.91. The changes in current
direction create changes in magnetic field polarity, which causes the magnet in the cen-
ter to rotate. Either the magnet in the center is an electromagnet, or has a magnetic field
induced by the alternating current in the coils outside. A single-phase AC motor is easily
identified by the fact that there are three wires to hook up: “hot,” neutral, and ground.

Three-phase power has three “hot” leads, each of which is 120° out of phase with the
other leads. The voltage versus time signal for a low-voltage three-phase power supply
is shown in Figure 5.92. Three-phase power is only available in industrial or commer-
cial settings, so you are very unlikely to encounter a three-phase outlet at your house or

Velocity of point G on Stephenson type I linkage

Ve
lo

ci
ty

 (m
/s

)

6

5

4

3

2

1

–1

–2

0

Crank angle (°)
0 60 120 180 240 300 360

vGx
vGy

FIGURE 5.84
Velocity of point G on Stephenson Type I sixbar linkage.

Velocity of point E on Stephenson type II linkage

Ve
lo

ci
ty

 (m
/s

)

1

0.8

0.6

0.4

0.2

0

–0.4

–0.2

–0.6

–1

–0.8

Crank angle (°)
0 60 120 180 240 300 360

vEx
vEy

FIGURE 5.85
Velocity of point E on Stephenson Type II sixbar linkage.

310 Introduction to Mechanism Design

apartment. A three-phase plug is easily identified by its four prongs – three are the “hot”
leads and one is ground.

Three-phase motors have six coils that are powered in sequence, as shown in Figure 5.93.
Since each coil is spaced 60° apart, the three-phase motor has much smoother and efficient
operation than the single-phase motor. In fact, three-phase motors are comparatively
much smaller than their single-phase brethren for a given power. The main disadvantage
of three-phase motors is the rarity of three-phase power outlets. For this reason, they are
mainly used in industrial settings. Large industrial motors (e.g. for milling machines,
lathes, HVAC blowers, etc.) are three-phase, while small, handheld power tools (e.g.
sanders, grinders, etc.) are single phase.

Velocity of point E on Stephenson type III linkage

Ve
lo

ci
ty

 (m
/s

)

3.5

3

2.5

2

1.5

1

0

0.5

–0.5

–1.5

–1

Crank angle (°)
0 60 120 180 240 300 360

vEx
vEy

FIGURE 5.86
Velocity of point E on Stephenson Type III sixbar linkage.

Velocity of point G on Watt type I linkage

Ve
lo

ci
ty

 (m
/s

)

4

3

2

1

0

–1

–2

–3

Crank angle (°)
0 60 120 180 240 300 360

vGx
vGy

FIGURE 5.87
Velocity of point G on Watt Type I sixbar linkage.

311Velocity Analysis of Linkages

The load-speed curve for a typical AC motor is shown in Figure 5.94. This curve shows
the speed of the motor for a given load; as the load on the motor is increased, the speed
decreases. Because the speed of an AC motor is governed by the switching of current
direction, the AC motor speed will remain relatively constant under varying load. If an
AC motor is overloaded, it will usually stall suddenly, rather than slow down gradually.

Until recently, the speed of an AC motor was governed strictly by the frequency of the
power supply voltage and the number of coils. In most cases, there were two AC motor
speeds: 1745 rpm and 3450 rpm, which are very close to multiples of 60 Hz (1800 and 3600).
This is still the case for most inexpensive, consumer-grade motors. The advent of eco-
nomical high-power switching transistors has made “variable-frequency drives” feasible
in industrial settings. These controllers vary the speed of an AC motor by changing the

Velocity of point G on Watt type II linkage

Ve
lo

ci
ty

 (m
/s

)

2

1.5

1

0.5

0

–0.5

–1

–1.5

–2

–2.5

Crank angle (°)
0 60 120 180 240 300 360

vGx
vGy

FIGURE 5.88
Velocity of point G on Watt Type II sixbar linkage.

FIGURE 5.89
A typical single-phase AC motor.

312 Introduction to Mechanism Design

frequency of the AC pulses. The controllers are too expensive for use outside industrial
settings, however.

5.9.2 DC Motors

DC motors, such as the one shown in Figure 5.95, are ubiquitous today. They are simple,
cheap, and reliable. In fact, it is common to find DC motors for sale for less than one dol-
lar! The most common DC motors are powered by batteries, and can be very small. A cell
phone vibrator, for instance, is a DC motor with an unbalanced weight on its shaft.

A cutaway view of a typical permanent-magnet DC motor is shown in Figure 5.96. The
magnets are stationary, and are placed outside the coil. The coil is attached to the rotor,
and it rotates with the shaft. Current passes from the battery through the brushes to the
coil. The current passing through the coil creates a magnetic field – the attraction between
this field and that of the permanent magnets creates a torque on the coil. Once the field
of the coil has begun to align itself with the field from the magnets, the current in the coil
reverses direction because of the commutator. In this way, the rotor keeps spinning, with
the coil current reversing direction every half revolution.

A typical load-speed curve for a DC motor is shown in Figure 5.97. The greater the load
applied to the motor, the slower it will go, until it stalls. In fact, the load-speed curve for a
DC motor is almost linear, which is quite different from that of an AC motor, which rotates
at an almost constant speed until the stall torque is reached.

The speed of a DC motor increases as we increase the voltage applied to the leads,
as shown in Figure 5.98. Thus, a typical DC motor will spin faster with a 9 V battery
than with 2 AA batteries (3 V). Of course, if too high a voltage is applied to a DC motor
the resulting high current will melt the insulation in the motor coils and cause it to
“short out.”

0.005 0.01 0.015 0.02 0.025
Time (s)

Vo
lta

ge
 (V

)

0.03 0.035 0.04 0.045 0.050
–200

–150

–100

–50

0

50

100

150

200

FIGURE 5.90
Voltage versus time for single-phase AC power at an ordinary outlet.

313Velocity Analysis of Linkages

The simplest, cheapest DC motor controllers work this way – speed is increased by
increasing voltage and vice versa. Unfortunately, this type of controller does not account
for the load placed on the motor – the motor will still slow down if a load is applied. More
sophisticated controllers use feedback to measure the instantaneous speed of the motor and
adjust the applied voltage accordingly.

5.9.3 Brushless Motors

An interesting newer motor technology is found in brushless DC motors. Recall that
the current must switch direction every half revolution in order for the motor to keep
spinning. This is accomplished by the brushes/commutator in a traditional DC motor.

+120 V
0 V

–120 V
0 V

0 V
0 V

N

N

N

S

S

N S

NS

NS

N S

S
N

S

0 V
0 V

FIGURE 5.91
One rotation cycle for an AC motor.

314 Introduction to Mechanism Design

One disadvantage of this approach is that the brushes must remain in contact with the
commutator, which causes friction and wear. In fact, in many battery-powered hand tools,
the brushes are replaced when they wear out.

In contrast, a brushless DC motor has stationary coils and rotating magnets. This
makes the rotor significantly lighter and simpler. Current through the coils is reversed
twice every revolution using a sophisticated electronic controller. This type of control
has become feasible only recently, because of the development of cheap, high-powered
switching transistors.

The most common place to find brushless motors is in computer fans and disk drives,
as shown in Figure 5.99. The magnets are attached to the fan, and the (stationary) coils are

0 0.005

200

150

100

50

0

–50

–100

–150

–200
0.01 0.015

Time (s)

Vo
lta

ge
 (V

)

Phase 1 Phase 2 Phase 3

0.02 0.025

FIGURE 5.92
There are three “hot” leads in three-phase power, and each is 120° out of phase with the other.

Phase 1

Phase 2

Phase 3

N
S

FIGURE 5.93
Wiring of the coils in a typical high-voltage three-phase motor. Note that opposing coils are wired in series. For
a low-voltage three-phase motor, these would be wired in parallel.

315Velocity Analysis of Linkages

FIGURE 5.95
A typical small, battery-powered DC motor.

Torque

No-load
speed

Stall torque
Speed

FIGURE 5.94
The load-speed curve for a typical single-phase AC motor.

V+

Brushes (stationary)

Magnet (stationary)

Commutator (rotating)

Coil (rotating)

V–

FIGURE 5.96
Cutaway view of a typical DC motor. The commutator rotates with the motor shaft and changes the direction of
current within the coil every half revolution.

316 Introduction to Mechanism Design

Torque

No-load
speed

Stall torque
Speed

FIGURE 5.97
Load-speed curve for a typical DC motor.

Max voltage

No-load
speed

Applied voltage

Speed

FIGURE 5.98
Speed versus applied voltage for a typical DC motor.

FIGURE 5.99
Brushless motors are often used for computer fans, since they generate very little electrical noise.

317Velocity Analysis of Linkages

inside the hub. The advantage of a brushless motor in this application is the lack of electri-
cal noise caused by sparking between brush and commutator.

5.9.4 Servo Motors

All of the motors discussed so far will rotate continuously when power is applied. A servo
motor, in contrast, will rotate to a specified position, and hold that position until requested
to move. Figure 5.100 shows a small hobby servo, used in building RC airplanes, cars or
in robotics. There are three wires leading to the servo: two are for DC power, and one
wire signals the requested position. Servomotors are usually DC motors, and come in
all sizes from hobby to industrial. Hobby servomotors are very inexpensive, but suffer
from low available torque and speed. High torque/speed industrial servomotors, which
are commonly used for assembly-line robots, can be very expensive.

FIGURE 5.100
A common hobby-type servomotor.

FIGURE 5.101
A common stepper motor.

318 Introduction to Mechanism Design

5.9.5 Stepper Motors

A stepper motor is similar to a brushless motor, in that the coils are stationary and magnets
are fixed to the rotor. The difference is that stepper motors are designed to rotate in steps,
not continuously. Because of this, they can be used for precise position control, as needed
in robotics and similar applications. These motors can hold a position with reasonably
high holding torque, but have relatively low torque to move between positions. A stepper
motor, like a servomotor, requires sophisticated control hardware and software to operate.
Stepper motors are most commonly found in printers and copiers, where they can regulate
the position of the paper with precision and speed. A common stepper motor is shown in
Figure 5.101.

Table 5.3 summarizes the properties of each motor discussed in this section. You may
use this table as a first-pass selection guide for your particular application.

5.10 Practice Problems

Problem 5.1

In Figure 5.102, an ant is crawling at a speed of 10 mm/s outward on a link that is
rotating at 2 rad/s in the counterclockwise direction. At the time of interest, the
ant is located at a distance of 50 mm from the center of rotation. What is the total
velocity of the ant?

TABLE 5.3

Comparison of the Most Common Motor Types

AC motor DC motor Brushless DC Servo Stepper

Cost Cheap Cheap Less cheap Expensive Expensive
Controller needed? No No Yes Yes Yes
Variable speed? No Yes Yes Yes Yes
Drive torque High High High High Low
Holding torque Low Moderate Moderate High High

50 mm

45°

FIGURE 5.102
Problem 5.1.

319Velocity Analysis of Linkages

Problem 5.2

In the linkage shown in Figure 5.103 the length AB and BC are both 200 mm. Link
AB rotates at 100 rpm clockwise and link BC rotates at 200 rpm counterclockwise.
Find the total velocity at point C.

Problem 5.3

The ant from Problem 5.1 is now crawling at a speed of 10 mm/s from point C to
point B as shown in Figure 5.104. The length AB and BC are both 200 mm. Link AB
rotates at 10 rpm clockwise and link BC rotates at 20 rpm counterclockwise. At the
time of interest, the ant is 150 mm from point B. Find the total velocity of the ant.

Problem 5.4

The rider of an amusement park ride sits at point D at the end of arm CD as shown
in Figure 5.105. To enhance his enjoyment of the ride, he is attempting to bring a
sandwich toward his mouth at 20 mm/s. The length AB is 10 m, the length BC is
5 m, and the length CD is 2 m. What is the overall velocity of the sandwich?

B

C

A
45°

30°

FIGURE 5.103
Problem 5.2.

B

C

A
45°

30°

FIGURE 5.104
Problem 5.3.

320 Introduction to Mechanism Design

Problem 5.5

Figure 5.106 shows a threebar linkage whose crank rotates at 10 rad/s. Use
SOLIDWORKS and the method of instant centers to find the velocity at point P at
the end of the slider. The crank is at 120° from the horizontal. What is the angular
velocity of the slider?

Problem 5.6

Figure 5.107 shows a slider linkage whose crank rotates at 10 rad/s. Use SOLIDWORKS
and the method of instant centers to find the velocity at point C on the piston. The
crank is at 60° from the horizontal. What is the angular velocity of the connecting
rod?

5 rpm

2 rpm

2 rpm

15°
30°

125°

B

A

D

C

FIGURE 5.105
Problem 5.4.

(All dimensions in millimeters)

170

100

P

250

FIGURE 5.106
Problem 5.5.

321Velocity Analysis of Linkages

Problem 5.7

Figure 5.108 shows a fourbar linkage whose crank rotates at 10 rad/s. Use
SOLIDWORKS and the method of instant centers to find the velocity at point P on
the coupler. The crank is at 120° from the horizontal. What is the angular velocity
of the coupler and rocker?

70

(All dimensions in millimeters)

200

50
C

B

A

FIGURE 5.107
Problem 5.6.

50

80

80°

30°

100

60

A

P

D

C

B

(All dimensions in millimeters)

FIGURE 5.108
Problem 5.7.

322 Introduction to Mechanism Design

Problem 5.8

Figure 5.109 shows an inverted slider-crank linkage whose crank rotates at 10 rad/s.
Use SOLIDWORKS and the method of instant centers to find the velocity at point
P on the slider. The crank is at 150° from the horizontal. What is the velocity at
point C on the slider and on the rocker? What is the velocity of slip at this point?

Problem 5.9

Figure 5.110 shows a geared fivebar linkage whose crank rotates at 10 rad/s. Gears
A and D have equal numbers of teeth. Use SOLIDWORKS and the method of
instant centers to find the velocity at points P and Q. The crank is at 120° from the
horizontal.

Problem 5.10

Figure 5.111 shows a sixbar linkage whose crank (link AB) rotates at 10 rad/s. Use
SOLIDWORKS and the method of instant centers to find the velocity at point G.
The crank is at 120° from the horizontal.

Problem 5.11

Use MATLAB to plot the x and y components of the velocity of point P of the threebar
linkage shown in Figure 5.112. The crank is 0.5 m, the slider is 2 m, and the dis-
tance between ground pins is 1 m. The crank has a constant angular velocity of 8
rad/s. What is the amplitude of the slider’s maximum angular velocity?

Problem 5.12

Use MATLAB to plot the vertical and horizontal components of the velocity of point
P on the threebar linkage shown in Figure 5.113. All dimensions are in meters and

50

80

80°

120

60

A

P

D

C

B

(All dimensions in millimeters)

FIGURE 5.109
Problem 5.8.

323Velocity Analysis of Linkages

80

D

P

E

Q

CB

A

75

6565

75

70
7030° 30

°

(All dimensions in millimeters)

FIGURE 5.110
Problem 5.9.

132
(All dimensions in millimeters)

12
0

120

120

12
0

30°

30°90

84

A D

C

F

E
G

B

108

FIGURE 5.111
Problem 5.10.

P

FIGURE 5.112
Problem 5.11.

324 Introduction to Mechanism Design

the crank rotates at a constant 100 rpm. Hint: the ground pins are not horizontally
aligned, so you will need to perform a new vector loop analysis on the linkage,
and differentiate to find velocity.

Problem 5.13

Use MATLAB to plot the x and y components of velocity of point P for the fourbar
linkage shown in Figure 5.114. All dimensions in the figure are in centimeters. The
crank rotates at a constant 10 rad/s. What is the peak magnitude of the velocity at P?

4

P

3

5

2

FIGURE 5.113
Problem 5.12.

60

25

50

30

25°

P

40

FIGURE 5.114
Problem 5.13.

325Velocity Analysis of Linkages

Problem 5.14

The crank of the compressor shown in Figure 5.115 spins at a constant 1,700 rpm.
Calculate and plot the velocity of the piston. What is the maximum velocity of the
piston? All dimensions are given in millimeters.

Problem 5.15

Use MATLAB to conduct a velocity analysis on the inverted slider-crank linkage
shown in Figure 5.116 if the crank rotates at a constant 10 rad/s. Plot the x and y
components of the velocity at point P. Also, plot the velocity of slip (b) between the
slider and rocker.

30
120

FIGURE 5.115
Problem 5.14.

150

A
θ2

D

C

P

80°

200

60

b

B 80

(All dimensions in millimeters)

FIGURE 5.116
Problem 5.15.

326 Introduction to Mechanism Design

Problem 5.16

Use MATLAB to conduct a velocity analysis on the geared fivebar linkage shown in
Figure 5.117 if the crank rotates at a constant 10 rad/s. The gear at point A has 50
teeth and the gear at point D has 25 teeth. Gear D is rotated 180° when gear A is
at 0°. Plot the x and y components of the velocity at point P. Check your answer
using the Derivative _ Plot.m function.

Problem 5.17

Use MATLAB to conduct a velocity analysis on the sixbar linkage shown in
Figure 5.118 if the crank rotates at a constant 10 rad/s. Plot the x and y components
of the velocity at point P for one revolution of the crank. Check your answer using
the Derivative _ Plot.m function.

Problem 5.18

Use MATLAB to conduct a velocity analysis on the sixbar linkage shown in
Figure 5.119 if the crank rotates at a constant 10 rad/s. Plot the x and y components
of the velocity at point P for one revolution of the crank. Check your answer using
the Derivative _ Plot.m function.

Problem 5.19

Use the method of instant centers to find the mechanical advantage of the slider-
crank in Figure 5.120. The mechanical advantage is defined as Fout/Fin.

(All dimension in millimeters)
80

65

70

D

QP

B

A

E

C
95

65

70

95

30
°30°

FIGURE 5.117
Problem 5.16.

327Velocity Analysis of Linkages

(All dimensions in millimeters)

110

15
0150

9070
20°

B

A

E

C

G

F

P

D

20°

100

160

120 50°

100

FIGURE 5.118
Problem 5.17.

(All dimensions in millimeters)

150

110

15
030°

100

B

A

C

E
P

D

G

50°

80

F

90

120

70

20° 16
0

FIGURE 5.119
Problem 5.18.

328 Introduction to Mechanism Design

Problem 5.20

Use the method of instant centers to find the mechanical advantage of the inverted
slider-crank shown in Figure 5.121. The mechanical advantage is defined as Fout/
Fin. Hint: only the component of the velocity at point P that is parallel to the output
force (i.e., aligned with the slider) contributes to the output power of the linkage.

Acknowledgments

Several images in this chapter were produced using SOLIDWORKS software. SOLIDWORKS
is a registered trademark of Dassault Systèmes SolidWorks Corporation.

Several images in this chapter were produced using MATLAB software.
MATLAB is a registered trademark of The MathWorks, Inc.

140
45°

200

150

Fout

Fin

FIGURE 5.120
Problem 5.19.

(All dimensions in millimeters)
100

30°
45°

P
Fout

Fin

120
50

60

FIGURE 5.121
Problem 5.20.

329

6
Acceleration Analysis of Linkages

6.1 Introduction to Acceleration Analysis

The next logical step in our development is to study the acceleration of points on a moving
linkage. According to Newton’s Second Law, forces are proportional to accelerations. Thus,
if we know the accelerations of every point on the linkage, we can predict the forces that
the linkage must withstand. This can be very important in cases where the linkage must
move at high speed, for example, in an automobile engine.

To begin our analysis, consider the single link shown in Figure 6.1. It has length b, which
is rotating with angular velocity ω, and has angular acceleration α. If we write the position
vector of point B in the usual way, we have

 bBr e= (6.1)

To find the velocity at point B, we differentiate rB with respect to time, as before.

d
dt

bB
Bv

r
nω= = (6.2)

where we have used

d
dt
e

nω=

as found in Section 4.2.5. To find the acceleration of point B, simply differentiate once more
with respect to time.

d
dt

d
dt

ba
v

nω()= = (6.3)

Before proceeding, let us consider which terms are constant, and which terms vary with
time.

Constant

Time-varying , ,
b

nω θ

Since ω may not be constant, we must employ the product rule for differentiation

330 Introduction to Mechanism Design

d
dt

b b
d
dt

b
d
dt

a n n
nω ω ω()= = + (6.4)

Define the time derivative of angular velocity ω as angular acceleration, α. Thus

 2b ba n eα ω= − (6.5)

where we have used

d
dt
n

eω= − (6.6)

for the time derivative of the unit normal.
From Equation (6.5), it is apparent that the acceleration has two components. These

components are shown in Figure 6.2 where, the first component ()b nα is tangential to the
motion of point B, and is called the tangential acceleration. Note that if the link is rotating
at constant angular velocity, then the angular acceleration and tangential acceleration are
both zero.

The second component ()2b eω− points toward the center of rotation and is called centripetal
acceleration. Centripetal acceleration is a byproduct of rotation – in order to rotate, a point
must accelerate towards the center of rotation. If the link does not rotate, then the angular
velocity and centripetal acceleration are both zero. The tangential acceleration points in a

bα

bω2 rB

FIGURE 6.2
Acceleration of a point fixed on a link in pure rotation.

B

rB

ω
α

A

b
θ

FIGURE 6.1
A rigid body in pure rotation about a point pinned to ground.

331Acceleration Analysis of Linkages

direction normal to the unit vector e and the centripetal acceleration points in the direction
opposite the unit vector e.

6.1.1 Acceleration of a Moving Point on a Moving Link

Let us now examine a more general case. As seen in Figure 6.3, the slider is free to move
inside a slot in the rotating link. The point B is attached to the slider, and we wish to find
an expression for the acceleration of this point. The position vector to the slider is

 bBr e= (6.7)

Note that length b is not constant for this case, so we must use the product rule to find
velocity. To find the velocity at point B, we differentiate rB with respect to time, as before.

d
dt

bBv e()= (6.8)

using the product rule

 b bBv e n ω= + (6.9)

To find acceleration, simply differentiate once more with respect to time.

d
dt

d
dt

b bB
Ba

v
e n ω()= = + (6.10)

Now consider which terms are constant, and which terms vary with time.

Constant !

Time-varying , , , , ,

nothing

b b n e θ ω

A

B

α
ω rB

b

FIGURE 6.3
The link rotates with angular velocity ω and angular acceleration α, while the distance, b, to the slider is a func-
tion of time.

332 Introduction to Mechanism Design

Thus, we must apply the product rule twice for each term

db
dt

b
d
dt

d
dt

b
db
dt

b
d
dt

Ba e
e

n n
n

ω ω ω= + + + + (6.11)

 2b b b b bBa e n n n e ω α ω ω= + + + − (6.12)

 2 2b b b bBa e n n e ω α ω= + + − (6.13)

Each of these terms has a common name:

2

.
2

b

b

b

b

n

e

e

n

Tangential acceleration

Centripetal acceleration

Acceleration of slip

Coriolis acceleration

α
ω

ω

−

The direction of each component is shown in Figure 6.4. The tangential and centripetal
acceleration are the same as for the rigid rotating link. The acceleration of slip gives the
acceleration of the slider relative to the slot. If you were sitting on the link as it rotated,
you would see the slider moving toward or away from you with acceleration a. The
Coriolis term arises from the fact that an object must accelerate as it changes distance
to the center of rotation if it is to maintain a constant angular velocity. If the velocity
inward or outward from the center of rotation is zero, then the Coriolis term vanishes.
To visualize the effect that Coriolis acceleration might have, imagine a child standing
2 m from the center of a spinning merry-go-round. For convenience, assume that the
angular velocity of the merry-go-round is a constant 1 rad/s. The tangential velocity of
the child is

 (2m) 1
rad

s
2

m
s1 =

 =vt (6.14)

A

Bbω2

bα
2bω·

b··

FIGURE 6.4
The four components of acceleration for the rotating link with slider.

333Acceleration Analysis of Linkages

If the child wishes to join her friend standing 4 m from the center, she must match her
tangential velocity, which is

 (4m) 1
rad

s
4

m
s2 =

 =vt (6.15)

Thus, to join her friend, the child must accelerate in the tangential direction. But remember
that the Coriolis term depends upon the inward or outward velocity: if the child moves very
slowly toward her friend on the outside of the merry-go-round she might not notice the
sideways acceleration. But if she tries to move rapidly from the inner part of the merry-go-
round to the outer, the sideways acceleration (and the force that accompanies it) will likely
knock her off balance sideways. Thus, the effects of Coriolis acceleration can be somewhat
counterintuitive, but are always present when a body subject to rotation moves inward or
outward from the center of rotation.

We will encounter tangential and centripetal acceleration as we analyze the four-
bar linkage. The other two types of acceleration will appear during the analysis of the
threebar and inverted slider-crank. To recap, the total acceleration is made up of the
four components shown in Table 6.1. Note that the units of translational acceleration are
all the same: m/s2. Thus, if you encounter a term with a length multiplied by an angular
velocity squared, it is very likely to be a centripetal acceleration. Likewise, the appear-
ance of a factor of 2 in an acceleration formula is an almost certain sign of a Coriolis
acceleration.

To summarize, we can see that acceleration analysis is considerably more complicated
than velocity analysis owing to the presence of centripetal and Coriolis acceleration.
Luckily, the vector loop procedure we have developed for velocity analysis can still be
applied to acceleration analysis.

6.2 Acceleration Analysis of the Threebar Slider-Crank

To conduct the acceleration analysis on the threebar linkage shown in Figure 6.5 we pro-
ceed in the same manner as we did for velocity analysis. We assume that we have per-
formed a full position and velocity analysis as described in the previous sections, and
wish to find the acceleration of one or more points on the linkage. Once we have found the
slider’s angular acceleration, α3, and acceleration of slip, b, it is simple to use the expres-
sions derived in the preceding section to find the desired accelerations. The input to the
linkage is, as always, the crank and we assume that the angular acceleration of the crank
is known.

TABLE 6.1

The Four Different Types of Translational Acceleration

Quantity Formula Units

Tangential acceleration Angular acceleration × length rad · m/s2 = m/s2

Centripetal acceleration Angular velocity2 × length (rad/s)2 · m = m/s2

Acceleration of slip Translational acceleration m/s2

Coriolis acceleration 2 × translational velocity × angular velocity (m/s) · (rad/s) = m/s2

334 Introduction to Mechanism Design

We start by listing the known and unknown quantities in the analysis

Known , , , , , , , ,

Unknown ,

2 3 2 3 2

3

a b d b

b

θ θ ω ω α

α

=

=

Begin by writing the vector loop equation, as shown in Figure 6.6.

 02 3 1r r r+ − = (6.16)

Or, in unit vector form

 02 3 1a b de e e+ − = (6.17)

Differentiate this with respect to time

 02 2 3 3 3a b bn e nω ω+ + = (6.18)

Then, differentiate again. For clarity, we will proceed term by term. The first term differ-
entiates as

 () ()2 2
2

2 2 2 2 2 2
2

2
d
dt

a a
d
dt

a
d
dt

a an n n n eω ω ω α ω= + = − (6.19)

The second term is a product of two functions of time, so that

r1

r3
r2

FIGURE 6.6
Vector loop diagram for the threebar linkage.

Pd

a

p
b

ω3, α3

ω2, α2

FIGURE 6.5
Diagram of the threebar linkage showing angular velocities and accelerations.

335Acceleration Analysis of Linkages

 ()3 3
3

3 3 3
d
dt

b
db
dt

b
d
dt

b be e
e

e n

 ω= + = + (6.20)

The third term is a product of three functions of time

 ()3 3 3 3
3

3 3
3

3 3 3 3 3
2

3
d
dt

b
db
dt

b
d
dt

b
d
dt

b b bn n n
n

n n eω ω ω ω ω α ω= + + = + − (6.21)

Adding the results together gives the acceleration equation for the threebar slider-crank.

 2 02 2 2
2

2 3 3 3 3 3 3
2

3a a b b b bn e e n n e α ω ω α ω− + + + − = (6.22)

The reader will recognize several familiar terms, including centripetal accelerations
(,)2

2
2 3

2
3a be eω ω , tangential accelerations (,)2 2 3 3a bn nα α , and even a Coriolis acceleration

(2)3 3b nω . The term b is known as the acceleration of slip, since it gives the acceleration of
the slider relative to the fixed pin D. As before, we move the known quantities to the right
side of the equation, and the unknowns to the left

 23 3 3 2 2 2
2

2 3 3 3
2

3b b a a b be n n e n e α α ω ω ω+ = − + − + (6.23)

And finally, put this into matrix form for solution in MATLAB®

 C dαα = (6.24)

where

 3 3bC n e=

 (6.25)

 d n e n e

b
a a b b2

3

¨ 2 2 2
2

2 3 3 3
2

3

α
α ω ω ωαα =

= − + − + (6.26)

You may have noticed that the C matrix is identical to the A matrix found earlier for the
velocity analysis. This is no coincidence – this matrix is called the Jacobian matrix. It is
formed by taking the first derivative of the constraint equations in (6.18). We will encoun-
ter a similar phenomenon when we conduct the acceleration analysis of the remaining
linkages. Jacobian matrices and constraint equations are the subjects of more advanced
courses in kinematics and are beyond the scope of this text, although they do appear, and
are briefly discussed, in the Newton–Raphson algorithm in Section 4.15.

6.2.1 Computing the Accelerations Using MATLAB®

We will now implement the acceleration matrix equation in MATLAB in order to calculate
the acceleration of any point on the threebar linkage. Start by opening your threebar
velocity analysis code. Use Save As to save the file as Threebar _ Acceleration _
Analysis.m. As an example, we will consider the same linkage we have used for the
position and velocity analysis codes in earlier sections (see Figure 6.7). We will assume a

336 Introduction to Mechanism Design

constant angular velocity for the crank, so that its angular acceleration is zero. Add the a0
and alpha2 variables to their respective positions as shown below.

% Threebar_Acceleration_Analysis.m
% Conducts an acceleration analysis on the threebar crank-slider linkage
% and plots the acceleration of point P
% by Eric Constans, June 1, 2017

% Prepare Workspace
clear variables; close all; clc;

% Linkage dimensions
a = 0.100; % crank length (m)
d = 0.150; % length between ground pins (m)
p = 0.300; % slider length (m)

% ground pins
x0 = [0;0]; % ground pin at A (origin)
xD = [d;0]; % ground pin at D
v0 = [0;0]; % velocity of origin
a0 = [0;0]; % accel of origin

% Angular velocity and acceleration of crank
omega2 = 10; % angular velocity of crank (rad/sec)
alpha2 = 0; % angular acceleration of crank (rad/sec2)

Now preallocate memory for the new variables associated with acceleration.

N = 361; % number of times to perform position calculations
[xB,xP] = deal(zeros(2,N)); % allocate space for position of B,P
[vB,vP] = deal(zeros(2,N)); % allocate space for velocity of B,P

150

300

100

A

B

D

P

b

(All dimensions in millimeters)

Crank length: 100
Slider length: 300
Distance between ground pins: 150
Crank angular velocity: 10 rad/s
Crank angular acceleration: 0 rad/s2

FIGURE 6.7
Example threebar linkage used to develop the MATLAB code.

337Acceleration Analysis of Linkages

[aB,aP] = deal(zeros(2,N)); % allocate space for accel of B,P
[theta2,theta3] = deal(zeros(1,N)); % allocate space for link angles
[omega3,alpha3] = deal(zeros(1,N)); % allocate space for vel and accel

[b,bdot,bddot] = deal(zeros(1,N)); % allocate space for b, bdot, bddot

Inside the main loop, immediately after the velocity calculations, add the following lines
of code:

% conduct acceleration analysis to solve for alpha3 and bddot
 ac = a*omega2^2; % centripetal accel
 at = a*alpha2; % tangential accel
 bC = 2*bdot(i)*omega3(i); % Coriolis accel
 bc = b(i)*omega3(i)^2; % centripetal accel

 C_Mat = A_Mat;
 d_Vec = -at*n2 + ac*e2 - bC*n3 + bc*e3;
 alpha_Vec = C_Mat\d_Vec; % solve for angular accelerations

 alpha3(i) = alpha_Vec(1);
 bddot(i) = alpha_Vec(2);

Here we have defined the variables ac, at, bC, and bc to compute the centripetal, tangen-
tial, and Coriolis components of the accelerations that are on the right side of the matrix
equation (the known side). This makes the form of d _ Vec much simpler to type and
debug. Immediately after the main loop, we will use the Derivative _ Plot function to
validate our solution for alpha3 and alpha4.

dt = 2*pi/((N-1)*omega2); % time increment between calculations
Derivative_Plot(theta2, omega3, alpha3, dt)

Figure 6.8 shows the computed and estimated angular acceleration of the slider for the
example problem we have been considering. Figure 6.9 shows the same plot for the accel-
eration of slip for the slider ()b . Make sure that your plots are the same as those shown in
Figures 6.8 and 6.9 before continuing with the analysis.

6.2.2 Acceleration at the Pins

We will employ the relative acceleration formula to compute the translational acceleration
at the pins. As with velocity and position, we will create a separate function to compute
acceleration. Open up a new MATLAB script and enter the following function:

% Function FindAcc.m
% Calculates the translational acceleration of a point on the linkage
% using the relative acceleration formula
%
% a0 = acceleration of first point
% L = length of vector to second point on the link
% omega = angular velocity of link
% alpha = angular acceleration of link

338 Introduction to Mechanism Design

0 60 120

Comparison of estimated and analytical derivatives

Analytical
Estimated

180
Crank angle (°)

240 300 360
–10

–5

0

5

10

D
er

iv
at

iv
e

15

20

25

30

FIGURE 6.9
The estimated and analytical values of b .

0 60 120

Comparison of estimated and analytical derivatives

Analytical
Estimated

180
Crank angle (°)

240 300 360
–400

–300

–200

–100

0

D
er

iv
at

iv
e

100

200

300

400

FIGURE 6.8
The estimated and analytical values of α3.

339Acceleration Analysis of Linkages

% e = unit vector btw first and second points
% n = unit normal to vector btw first and second points
% a = acceleration of second point

function a = FindAcc(a0, L, omega, alpha, e, n)

a = a0 + L*alpha*n - L*omega^2*e;

As before, this is a very simple function, but it will make the main program much neater
and easier to follow. In the main program, use the following lines of code to calculate
translational accelerations

% calculate acceleration at important points on linkage
 aB(:,i) = FindAcc(a0, a, omega2, alpha2, e2, n2);
 aP(:,i) = FindAcc(aB(:,i), p, omega3(i), alpha3(i), e3, n3);

Of course, you should check your work for each of the accelerations using the Derivative _
Plot routine.

Figure 6.10 shows the x and y accelerations of the point P on the example threebar link-
age. As we have seen, conducting the full acceleration analysis on the threebar linkage
requires only a few additional lines of code once the position and velocity analyses are
complete. This will also be the case for the other linkages, which we will analyze in the
next few sections.

0
–150

–100

–50

0

Ac
ce

le
ra

tio
n

(m
/s

2) 50

100

aPx
aPy

150
Acceleration of point P on the threebar linkage

60 120
Crank angle (°)

180 240 300 360

FIGURE 6.10
Acceleration of point P on the example threebar linkage.

340 Introduction to Mechanism Design

6.3 Acceleration Analysis of the Slider-Crank

The acceleration analysis for the slider-crank shown in Figure 6.11 proceeds in a simi-
lar manner as the threebar. We begin, as usual, with the vector loop equation for the
slider-crank.

 02 3 4 1r r r r+ − − = (6.27)

or, in unit vector form

 02 3 4 1a b c de e e e+ − − = (6.28)

Differentiating this once, we obtain the velocity equation.

 02 2 3 3 1a b dn n eω ω+ − = (6.29)

Differentiate this once more to obtain the acceleration equation. The first two terms are
familiar from the threebar linkage

 ()2 2 2 2 2
2

2
d
dt

a a an n eω α ω= − (6.30)

 ()3 3 3 3 3
2

3
d
dt

b b bn n eω α ω= − (6.31)

Recall that d in Equation (6.29) represents the velocity of the piston; its derivative is simply
the acceleration of the piston.

d
dt

d d () = (6.32)

Adding the terms together gives the acceleration equation

 02 2 2
2

2 3 3 3
2

3 1a a b b dn e n e eα ω α ω− + − − = (6.33)

B C

r1

r3
r4

r2ω2

ω3

α2

α3

FIGURE 6.11
Vector loop diagram for the slider-crank linkage showing angular velocities and accelerations.

341Acceleration Analysis of Linkages

It is useful again at this point to take stock of what variables we know, and which are
unknown. As before, we assume that a full position and velocity analysis has been per-
formed, so that we know

 Known : , , , , , , , ,2 3 2 3 2a b c d θ θ ω ω α

Let the crank be driven by a motor with known speed and angular acceleration, ω2, α2. The
only unknown quantities in Equation (6.33) are

 Unknown : , 3 dα

Before assembling the matrices, let us move the known quantities to the right side of the
equation, and the unknown quantities to the left.

 3 3 1 2 2 2
2

2 3
2

3b d a a bn e n e eα α ω ω− = − + + (6.34)

Now rearrange this equation into matrix form, so that we can use MATLAB to solve it.

 C dαα = (6.35)

where

 C n e� ��b
d

3 1
3α

αα= −

 =

 (6.36)

and

 2 2 2
2

2 3
2

3a a bd n e eα ω ω{ }= − + + (6.37)

6.3.1 Slider-Crank with Constant Crank Angular Velocity

Figure 6.12 shows the dimensions of the slider-crank mechanism we have used
in earlier chapters. Copy your slider-crank velocity analysis code to a file named

A

B

C

12040

(All dimensions in millimeters)

Crank length: 40
Connecting rod length: 120
Crank angular velocity: 10 rad/s
Crank angular acceleration: 0 rad/s

FIGURE 6.12
Dimensions of the slider-crank used in the example calculations.

342 Introduction to Mechanism Design

SliderCrank _ Acceleration _ Analysis.m and modify it with the matrix equations
given above. If you use the Derivative_Plot function to verify your values for α3 you should
obtain the plot shown in Figure 6.13. The acceleration of the piston for this example is
shown in Figure 6.14.

0 60 120

Comparison of estimated and analytical derivatives

Analytical
Estimated

180

Crank angle (°)

240 300 360
–40

–30

–20

–10

0

D
er

iv
at

iv
e 10

20

30

40

FIGURE 6.13
Verification of the angular acceleration of the connecting rod, α3, for Section 6.3.1.

0
–6

–5

–4

–3

–2

–1

0

1

2

3

60

A
cc

el
er

at
io

n
(m

/s
2)

120
Crank angle (°)

Acceleration of piston on slider-crank linkage

180 240 300 360

FIGURE 6.14
Acceleration of the piston in Section 6.3.1.

343Acceleration Analysis of Linkages

6.3.2 A Note on the Angular Acceleration of the Crank

In the preceding section, and in the sections that follow, we have assumed that the crank
rotates at a constant angular velocity, that is, 02α = . This would be the case if the linkage
is operating in the “steady state”; that is, the motor driving the crank has reached its oper-
ating speed and is no longer accelerating. In some situations, however, we might be inter-
ested in calculating the accelerations and forces on the linkage during the time the crank is
“ramping up” to its desired speed. In this situation, the crank (and the rest of the linkage)
would start from rest, and begin accelerating as soon as the crank motor is turned on. In
this case, the angular acceleration of the crank is no longer zero, and we must make a few
modifications to the code to reflect this. Let us consider now the case where the linkage
starts from rest, and turning on the crank motor results in a short sinusoidal pulse of crank
acceleration. The pulse of acceleration lasts for a period T, after which the crank moves at a
constant angular velocity. Let the amplitude of the acceleration pulse be A, so that

 1 cos
2

2 A
t

T
α π= −

 (6.38)

for t < T and

 02α = (6.39)

afterward.
An example of such a pulse is shown in Figure 6.15, where the amplitude is 1 rad/s2 and

the period is 4 s. Note that the total height of the pulse is twice the amplitude, since the
cosine function ranges between −1 and 1.

0
0

0.2

0.4

0.6

0.8

1

A
ng

ul
ar

 ac
ce

le
ra

tio
n

(r
ad

/s
2)

1.2

1.4

1.6

1.8

2

1 2 3

Angular acceleration pulse of crank

4 5
Time (s)

6 7 8 9 10

FIGURE 6.15
The crank is given a sinusoidal pulse of angular acceleration, starting from rest.

344 Introduction to Mechanism Design

To find angular velocity, we must integrate Equations (6.38) and (6.39). Equation (6.38) is
integrated over a period t = 0 to t = T, and the constant of integration is zero because the
angular velocity of the crank is zero when t = 0.

2

sin
2

2 At
T t

T
ω

π
π= −

 (6.40)

for t < T and

 2 ATω = (6.41)

for t > T.
The resulting angular velocity is shown in Figure 6.16. Note that ω2 starts at zero,

and steadily increases until it reaches its steady-state value of 4 rad/s (assuming that
A = 1 rad/s). We now integrate once more to find the crank angle

1
2 4

cos
2

12
2

2

2At
T t

T
θ

π
π= +

 −

 (6.42)

for t < T and

22

2

ATt
T Aθ = − (6.43)

Constants of integration are required in Equations (6.42) and (6.43) to ensure that the crank
angle starts at zero at t = 0 and that it takes on the value θ2 = AT2/2 when t = T.

0
0

0.5

1

2

3

1.5

4

2.5

3.5

1 2 3 4 5 6 7 8 9 10
Time (s)

Angular velocity of crank

A
ng

ul
ar

 v
el

oc
ity

 (r
ad

/s
)

FIGURE 6.16
The angular velocity of the crank resulting from the pulse of angular acceleration described above.

345Acceleration Analysis of Linkages

The crank angle function given in Equations (6.42) and (6.43) is shown in Figure 6.17. As
expected, it starts at zero, and increases linearly after t = T.

Up to now, we have calculated and plotted positions, velocities, and accelerations for a
single revolution of the crank. Since we are now considering non-steady-state condition, it
will make more sense to perform our calculations for a given length of time. Let us repeat
the analysis of the linkage in the example using the sinusoidal crank acceleration given in
Figure 6.15. We will perform the calculations for 1000 time steps. Use Save As to rename
your code SliderCrank _ Nonsteady _ Acceleration _ Analysis.m, then modify
the upper part of your code with the following statements.

N = 1000; % number of time steps to calculate

Since the angular velocity and acceleration of the crank are not constant, we must allocate
space in memory for their calculated values. Additionally, we will plot positions, velocities,
and accelerations versus time, instead of crank angle as we did before. Add the following
lines of code to allocate the necessary memory.

omega2 = zeros(1,N); % angular velocity of crank (rad/sec)
alpha2 = zeros(1,N); % angular acceleration of crank (rad/sec2)
t = zeros(1,N); % time (sec)

Of course, we must also change omega2 to omega2(i) and alpha2 to alpha2(i) inside
the main loop. Now let us define the crank acceleration pulse and time increment:

A = 1; % amp of crank angular accel pulse (rad/sec2)
T = 4; % period of crank angular acceleration (sec)
B = 2*pi/T; % freq of crank angular accel pulse (1/sec)
dt = 0.01; % time increment

0
0

5

10

15

Crank angle

Cr
an

k
an

gl
e (

ra
d)

20

25

30

35

1 2 3 4 5
Time (s)

6 7 8 9 10

FIGURE 6.17
Crank angle resulting from the acceleration pulse described above.

346 Introduction to Mechanism Design

We have also defined a variable B that stores the frequency of the crank pulse – this will
make the formulas for calculating crank angular velocity and position simpler in the
main loop.

Inside the main loop, we will calculate the current time first, and use this value to deter-
mine the current values of crank angular acceleration, angular velocity and angle. Some
simple logic will help to distinguish between the conditions during and after the pulse of
angular acceleration.

 t(i) = i*dt; % calculate time
 if (t(i) <= T) % calculate crank angle, vel, accel for t < T
 alpha2(i) = A*(1-cos(2*pi*t(i)/T));
 omega2(i) = A*t(i) - (1/B)*sin(B*t(i));
 theta2(i) = A*t(i)^2/2 + (1/(B^2))*(cos(B*t(i))-1);
 else % calculate crank angle, vel, accel for t > T
 alpha2(i) = 0;
 omega2(i) = A*T;
 theta2(i) = A*T*t(i) - T^2*A/2;
 end

That’s it! You should now change the legends and title of your plot statements to reflect the
fact that the position, velocity, and acceleration of the piston are being plotted with respect
to time, instead of crank angle.

Figure 6.18 shows the position of the piston versus crank angle for the case of constant
angular velocity (this is the solution from the example in Chapter 4). Figures 6.19 and 6.20
show the piston position versus time resulting from the angular acceleration pulse dis-
cussed above. Figure 6.20 is a “zoomed in” version of Figure 6.19 showing one cycle of the

0
80

90

100

110

120

Po
sit

io
n

(m
m

)

Piston position versus crank angle for slider-crank

130

140

150

160

170

60 120 180
Crank angle (°)

240 300 360

FIGURE 6.18
Position of piston versus crank angle for constant angular velocity (repeated from Figure 4.39).

347Acceleration Analysis of Linkages

0 1 2 3 4 5 6 7 8 9 10

Time (s)

80

90

100

110

120

Po
sit

io
n

(m
m

) 130

140

150

160
Position of piston on slider-crank linkage

FIGURE 6.19
Position of piston versus time for angular acceleration pulse.

Time (s)

80
5.2 5.4 5.6 5.8 6 6.2 6.4 6.6

90

100

110

120

Po
sit

io
n

(m
m

) 130

140

150

160
Position of piston on slider-crank linkage

FIGURE 6.20
Zoomed in view of piston position versus time for angular acceleration pulse during steady-state portion. Note
similarity to Figure 6.18.

348 Introduction to Mechanism Design

steady-state motion. Note that Figures 6.18 and 6.20 are identical with the exception of the x
axis – this reinforces the idea that using crank angle as the x axis is identical to using time
on the x axis if the crank angular velocity is constant.

Figure 6.21 shows the velocity of the piston for constant angular velocity – this is the
same plot as was found in the example problem in Chapter 5. Figure 6.22 is the velocity
of the piston for the case of the angular acceleration pulse, and Figure 6.23 zoomed-in to
show one cycle in the steady-state portion of the simulation. Note the similarity between

0
–0.2

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

0.2

1 2 3 4 5
Time (s)

Velocity of piston on slider-crank linkage

Ve
lo

ci
ty

 (m
/s

)

6 7 8 9 10

FIGURE 6.22
Velocity of piston versus time for angular acceleration pulse.

0
–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

60 120 180
Crank angle (°)

Velocity of piston on slider-crank

Ve
lo

ci
ty

 (m
/s

)

240 300 360

FIGURE 6.21
Velocity of piston with constant crank angular velocity from the example in Chapter 5.

349Acceleration Analysis of Linkages

Figures 6.21 and 6.23. The absolute magnitude of the velocity is different in each case
because the crank angular velocity was set to 10 rad/s in the constant angular velocity
case, but it only reaches 4 rad/s in the case of the acceleration pulse.

Finally, Figures 6.24 and 6.25 show the acceleration of the piston for the angular accelera-
tion pulse. As before, Figures 6.14 and 6.25 are off by a scaling factor because of the differ-
ence in steady-state angular velocity of the crank.

5.2 5.4 5.6 5.8 6 6.2 6.4 6.6

Velocity of piston on slider-crank linkage
0.2

0.15

0.1

Time (s)

Ve
lo

ci
ty

 (m
/s

) 0.05

0

–0.05

–0.1

–0.15

–0.2

FIGURE 6.23
Zoomed in view of piston velocity versus time for angular acceleration pulse during steady-state portion. Note
similarity to Figure 6.21.

0
–1

–0.5

0

0.5

1 2 3 4 5
Time (s)

Acceleration of piston on slider-crank linkage

Ac
ce

le
ra

tio
n

(m
/s

2)

6 7 8 9 10

FIGURE 6.24
Acceleration of piston for the crank angular acceleration pulse case.

350 Introduction to Mechanism Design

To summarize, we have developed a method for calculating positions, velocities, and
accelerations for the case when the crank has a non-constant angular velocity. To keep
things simple, we will assume a constant crank angular velocity in the sections that follow.
As we have seen, it is a relatively simple matter to convert to non-zero angular acceleration
if that is required.

6.4 Acceleration Analysis of the Fourbar Linkage

To conduct the acceleration analysis on the fourbar linkage we proceed in the same manner
as the preceding linkages. The vector loop diagram for the fourbar is shown in Figure 6.26.
We begin by writing the vector loop equation

5.2
–1

–0.5

0

0.5

5.4 5.6 5.8 6
Time (s)

Acceleration of piston on slider-crank linkage

Ac
ce

le
ra

tio
n

(m
/s

2)

6.2 6.4 6.6

FIGURE 6.25
Zoomed in view of piston velocity versus time for angular acceleration pulse during steady-state portion. Note
similarity to Figure 6.14.

d

c

a

b

r1

r3

r2

r4

ω2
α2 ω4

α4

ω3
α3

FIGURE 6.26
Vector loop diagram of the fourbar linkage showing angular velocities and accelerations.

351Acceleration Analysis of Linkages

 02 3 4 1r r r r+ − − = (6.44)

Or, in unit vector form

 02 3 4 1a b c de e e e+ − − = (6.45)

Differentiate this with respect to time

 02 2 3 3 4 4a b cn n nω ω ω+ − = (6.46)

Then, differentiate again. The first term differentiates as

 () ()2 2
2

2 2 2 2 2 2
2

2
d
dt

a
d
dt

a a
d
dt

a an n n n eω ω ω α ω= + = − (6.47)

The other terms proceed in a similar manner, so that the acceleration equation is

 02 2 2
2

2 3 3 3
2

3 4 4 4
2

4a a b b c cn e n e n eα ω α ω α ω− + − − + = (6.48)

As before, move the known quantities to the right side of the equation, and the unknowns
to the left

 3 3 4 4 2 2 2
2

2 3
2

3 4
2

4b c a a b cn n n e e eα α α ω ω ω− = − + + − (6.49)

And finally, put this into matrix form for solution in MATLAB

 C dαα = (6.50)

where

 3 4b cC n n= −

 (6.51)

α
α

α ω ω ωαα =

= − + + −a a b cd n e e e3

4
2 2 2

2
2 3

2
3 4

2
4 (6.52)

As before, the C matrix is identical to the A matrix found earlier for the velocity analysis.

6.4.1 Computing the Accelerations Using MATLAB®

Start by opening your fourbar velocity analysis code. Use Save As to save the file as
Fourbar _ Acceleration _ Analysis.m. As an example, we will consider the same
linkage we have used for the position and velocity analysis codes in earlier sections, as
shown in Figure 6.27. We will assume a constant angular velocity for the crank, so that
its angular acceleration is zero. Modify your code to perform the matrix calculations
given above, then check the angular accelerations of the coupler and rocker using the
Derivative _ Plot function.

Figure 6.28 shows the computed and estimated angular acceleration of the coupler for
the example problem we have been considering. Figure 6.29 shows the same plot for the

352 Introduction to Mechanism Design

angular acceleration of the rocker. Make sure that your plots are the same as those shown
in Figures 6.28 and 6.29 before continuing with the analysis.

To find the acceleration of the point P on the coupler use the FindAcc function defined
earlier. Figure 6.30 shows the x and y components of the acceleration of point P for the

0 60 120
–300

–200

–100

0

100

200

300

180
Crank angle (°)

D
er

iv
at

iv
e

Comparison of estimated and analytical derivatives

240 300 360

Estimated
Analytical

FIGURE 6.28
The estimated and analytical values of α3.

220

200

150

(All dimensions in millimeters)
Crank length: 130
Coupler length: 200
Rocker length: 170
Distance between ground pins: 220

Distance from B to P: 150
Angle PBC: 20°
Crank angular velocity: 10 rad/s
Crank angular acceleration: 0 rad/s

20°

170

A D

B

C

P

130
FIGURE 6.27
Fourbar linkage used in the example calculations.

353Acceleration Analysis of Linkages

example problem. It is interesting to note that the acceleration is relatively large, with
peaks above −4 g, even for a relatively low crank angular velocity. If the example fourbar
were intended to move something delicate, the large acceleration might be hazardous.
This is one of the main reasons for performing an acceleration analysis – we must always
ensure that the objects being moved do not experience excessive acceleration, especially
if they are human beings! The completed code for fourbar acceleration analysis is pre-
sented below.

Estimated
Analytical

Crank angle (°)

Comparison of estimated and analytical derivatives

0
–200

–100

0

100

200

300

400

60 120 180 240 300 360

D
er

iv
at

iv
e

FIGURE 6.29
Estimated and analytical values of α4.

Crank angle (°)

Ac
ce

le
ra

tio
n

(m
/s

2)

0
–50

–40

–30

–20

–10

0

10

20

30

40

60 120 180

Acceleration of point P on the fourbar linkage

aPx
aPy

240 300 360

FIGURE 6.30
Acceleration of the point P on the coupler.

354 Introduction to Mechanism Design

% Fourbar_Acceleration_Analysis.m
% Conducts an acceleration analysis on the fourbar linkage
% and plots the acceleration of point P
% by Eric Constans, June 14, 2017

% Prepare Workspace
clear variables; close all; clc;

% Linkage dimensions
a = 0.130; % crank length (m)
b = 0.200; % coupler length (m)
c = 0.170; % rocker length (m)
d = 0.220; % length between ground pins (m)
p = 0.150; % length from B to P (m)
gamma3 = 20*pi/180; % angle between BP and coupler (converted to rad)

% ground pins
x0 = [0;0]; % ground pin at A (origin)
xD = [d;0]; % ground pin at D
v0 = [0;0]; % velocity of origin
a0 = [0;0]; % accel of origin

% Angular velocity and acceleration of crank
omega2 = 10; % angular velocity of crank (rad/s)
alpha2 = 0; % angular acceleration of crank (rad/s^2)

N = 361; % number of times to perform position calculations
[xB,xC,xP] = deal(zeros(2,N)); % allocate space for pos of B, C, P
[vB,vC,vP] = deal(zeros(2,N)); % allocate space for vel of B, C, P
[aB,aC,aP] = deal(zeros(2,N)); % allocate space for acc of B, C, P

[theta2,theta3,theta4] = deal(zeros(1,N)); % allocate for link angles
[omega3,omega4] = deal(zeros(1,N)); % allocate for link angular vel
[alpha3,alpha4] = deal(zeros(1,N)); % allocate for link angular acc

% Main Loop
for i = 1:N
 theta2(i) = (i-1)*(2*pi)/(N-1); % crank angle

% conduct position analysis to solve for theta3 and theta4
 r = d - a*cos(theta2(i));
 s = a*sin(theta2(i));
 f2 = r^2 + s^2; % f squared
 delta = acos((b^2+c^2-f2)/(2*b*c)); % angle between coupler and rocker

 g = b - c*cos(delta);
 h = c*sin(delta);

 theta3(i) = atan2((h*r - g*s),(g*r + h*s));
 theta4(i) = theta3(i) + delta;

% calculate unit vectors
 [e2,n2] = UnitVector(theta2(i));

355Acceleration Analysis of Linkages

 [e3,n3] = UnitVector(theta3(i));
 [e4,n4] = UnitVector(theta4(i));
 [eBP,nBP] = UnitVector(theta3(i) + gamma3);

% solve for positions of points B, C and P on the linkage
 xB(:,i) = FindPos(x0, a, e2);
 xC(:,i) = FindPos(xD, c, e4);
 xP(:,i) = FindPos(xB(:,i), p, eBP);

% conduct velocity analysis to solve for omega3 and omega4
 A_Mat = [b*n3 -c*n4];
 b_Vec = -a*omega2*n2;
 omega_Vec = A_Mat\b_Vec; % solve for angular velocities

 omega3(i) = omega_Vec(1); % decompose omega_Vec into
 omega4(i) = omega_Vec(2); % individual components

% calculate velocity at important points on linkage
 vB(:,i) = FindVel(v0, a, omega2, n2);
 vC(:,i) = FindVel(v0, c, omega4(i), n4);
 vP(:,i) = FindVel(vB(:,i), p, omega3(i), nBP);

% conduct acceleration analysis to solve for alpha3 and alpha4
 ac = a*omega2^2;
 bc = b*omega3(i)^2;
 cc = c*omega4(i)^2;
 pc = p*omega3(i)^2;

 C_Mat = A_Mat;
 d_Vec = ac*e2 + bc*e3 - cc*e4;
 alpha_Vec = C_Mat\d_Vec; % solve for angular accelerations

 alpha3(i) = alpha_Vec(1);
 alpha4(i) = alpha_Vec(2);

% find acceleration of pins
 aB(:,i) = FindAcc(a0, a, omega2, alpha2, e2, n2);
 aC(:,i) = FindAcc(a0, c, omega4(i), alpha4(i), e4, n4);
 aP(:,i) = FindAcc(aB(:,i), p, omega3(i), alpha3(i), eBP, nBP);
end

% plot the acceleration of point P
figure; hold on
plot(theta2*180/pi,aP(1,:),'Color',[153/255 153/255 153/255])
plot(theta2*180/pi,aP(2,:),'Color',[0 110/255 199/255])
legend('aPx','aPy','Location','Southeast')
title('Acceleration of point P on the fourbar linkage')
xlabel('Crank angle (degrees)')
ylabel('Acceleration (m/s^2)')
grid on
set(gca,'xtick',0:60:360)
xlim([0 360])

356 Introduction to Mechanism Design

6.5 Acceleration Analysis of the Inverted Slider-Crank

The important dimensions of the inverted slider-crank are shown in Figure 6.31. We begin,
as always, with the vector loop equation

 02 3 4 1r r r r+ − − = (6.53)

In unit vector form

 02 3 4 1a b c de e e e+ − − = (6.54)

Recall that θ4 = θ3 + δ and thus ω3 = ω4. Substituting this, and differentiating we have

 02 2 3 3 3 3 4a b b cn e n nω ω ω+ + − = (6.55)

To obtain the accelerations, we differentiate the above equation again, using the chain
and product rules where appropriate. The first term is simple

 ()2 2 2 2 2
2

2
d
dt

a a an n eω α ω= − (6.56)

The second term is slightly more complicated

 3 3 3 3
d
dt

b b be e n ω() = + (6.57)

The third term is similar to the second

 ()3 3 3 3 3 3 3
2

3
d
dt

b b b bn n n eω ω α ω= + − (6.58)

And the fourth term is similar to the first term

r1

r4

r3

r2

ω3 = ω4

α3 = α4

α2

ω2

FIGURE 6.31
Vector loop diagram of the inverted slider-crank showing angular velocities and accelerations.

357Acceleration Analysis of Linkages

 ()3 4 3 4 3
2

4
d
dt

c c cn n eω α ω= − (6.59)

Adding these together, we obtain the acceleration equation for the inverted slider-crank

 2 02 2 2
2

2 3 3 3 3 3 3
2

3 3 4 3
2

4a a b b b b c cn e e n n e n e α ω ω α ω α ω− + + + − − + = (6.60)

The reader will recognize several familiar terms including three centripetal accelerations,
three tangential acceleration terms, an acceleration of slip and a Coriolis acceleration term.
Now place the knowns on the right side of the equation and the unknowns on the left.

 23 3 3 3 4 2 2 2
2

2 3 3 3
2

3 3
2

4b b c a a b b ce n n n e n e e α α α ω ω ω ω+ − = − + − + − (6.61)

Collecting terms, and placing this into matrix form, we have

 C dαα = (6.62)

where

 3 4 3b cC n n e= −

α

α ω ω ω ωαα { }=

= − + − + −

b
a a b b cd n e n e e

2
3

2 2 2
2

2 3 3 3
2

3 3
2

4

6.5.1 Computing the Accelerations Using MATLAB®

Figure 6.32 shows the example inverted slider-crank that we have used for position and
velocity analysis. Modify your inverted slider-crank velocity analysis code to perform the
acceleration calculations described above.

Make sure to check your alpha3 and bddot calculations using the Derivative _ Plot
function. If all goes well, your plot for the x and y components of the acceleration at point
P should look like Figure 6.33.

6.6 Acceleration Analysis of the Geared Fivebar Linkage

Our next acceleration analysis will be conducted on the geared fivebar linkage, whose vec-
tor loop diagram is shown in Figure 6.34. Recall that the angle of link 5 (the second gear)
is known as a function of the crank angle, through the gear ratio

 5 2θ ρθ ϕ= − + (6.63)

where

 1

2

N
N

ρ = (6.64)

358 Introduction to Mechanism Design

is the gear ratio. If we differentiate this expression twice with respect to time, we arrive at
the acceleration ratio between the two gears

 5 2α ρα= − (6.65)

The vector loop equation in unit vector form is

 02 3 4 5 1a b c u de e e e e+ − − − = (6.66)

0
–80

–60

–40

–20

0

20

40

60

80

100

60 120 180
Crank angle (°)

240 300 360

Ac
ce

le
ra

tio
n

(m
/s

2)

Acceleration of point P on inverted slider-crank linkage

aPx
aPy

FIGURE 6.33
Acceleration of point P on the example inverted slider-crank linkage.

200

A
θ2

D

C

P

B

(All dimensions in millimeters)
Crank length: 80
Rocker length: 130
Distance between ground pins: 200
Angle between silder and rocker: 60°

Overall slider length: 350
Crank angular velocity: 10 rad/s
Crank agular acceleration: 0 rad/s

60°

130

80

b

350

FIGURE 6.32
Dimensions of the inverted slider-crank used in the example calculations.

359Acceleration Analysis of Linkages

Differentiating this twice with respect to time gives

 02 2 2
2

2 3 3 3
2

3 4 4 4
2

4 5 5 5
2

5a a b b c c u un e n e n e n eα ω α ω α ω α ω− + − − + − + = (6.67)

Collecting all known terms on the right-hand side of the equation and rearranging into
matrix form results in a familiar formula

 C dαα = (6.68)

with

 3 4b cA n n= −

 (6.69)

 2 2 2
2

2 3
2

3 4
2

4 5 5 5
2

5a a b c u ud n e e e n eα ω ω ω α ω= − + + − + − (6.70)

and

α
α

αα =

3

4
 (6.71)

As with the other linkages, the C matrix is identical to the A matrix for the fivebar.

6.6.1 Computing the accelerations using MATLAB®

Figure 6.35 shows the dimensions of the geared fivebar linkage that we have used for
position and velocity analysis. Modify your fivebar velocity code to perform the matrix
calculations above and use it to plot the acceleration of point P.

Figure 6.36 shows the x and y components of the acceleration at point P for the example
linkage. Next, modify the dimensions of the linkage such that a = 150 mm, u = 150 mm,
and d = 200 mm. You might recall that we obtained discontinuities in the velocity plot with

dA

a
C

b

E

D
u

B

c

r1

r5

r4r3

r2

FIGURE 6.34
Vector loop diagram of the geared fivebar linkage.

360 Introduction to Mechanism Design

these dimensions reflecting the fact that the point P made a sudden change in direction
when θ2 = 180°.

The resulting acceleration plot is shown in Figure 6.37. Observe the near infinite accel-
eration of the point P when θ2 = 180°. Because acceleration is proportional to force, this
behavior will result in a sudden jolt in all of the pins when the linkage passes through this
point. Clearly, this is a design to be avoided!

Length of link on gear 1: 120
Coupler 1 length: 250
Coupler 2 length: 250
Length of link on gear 2: 120
Distance between ground pins: 180
Length from B to P: 200

Length from C to Q: 200
Teeth on gear 1: 48
Teeth on gear 2: 24
Angular velocity of gear 1: 10 rad/s
Angular acceleration of gear 1: 0 rad/s

(All dimensions in millimeters)
180

DA

250

20
0 20

°20°

200

250

120 12
0

B C

E

P
Q

FIGURE 6.35
Dimensions of the geared fivebar used in the example calculations.

Crank angle (°)

Ac
ce

le
ra

tio
n

(m
/s

2)

3600 60 120 180 240 300

Acceleration of point P on the geared fivebar linkage

aPx
aPy

–200

–150

–100

–50

0

50

100

150

200

FIGURE 6.36
Acceleration of point P for the example geared fivebar linkage.

361Acceleration Analysis of Linkages

If we “zoom in” on the acceleration plot by using ylim([−400 400]) we see that the
acceleration of point P seems very ordinary except where θ2 = 180° (see Figure 6.38). This
demonstrates the benefit of performing a kinematic analysis for the entire range of motion
of the linkage. If we had simply done the acceleration calculations at a few crank angles,
we might have missed the disaster that occurs when θ2 = 180°.

Crank angle (°)

Ac
ce

le
ra

tio
n

(m
/s

2)

3600 60 120 180 240 300

Acceleration of point P on the geared fivebar linkage

aPx
aPy

–12

–10

–8

–6

–4

–2

0

2

4
×101

FIGURE 6.37
Acceleration of point P with the modified dimensions. The discontinuities in the velocity of point P have
resulted in near infinite accelerations when θ2 = 180°.

Ac
ce

le
ra

tio
n

(m
/s

2)

Crank angle (°)
3600 60 120 180 240 300

Acceleration of point P on the geared fivebar linkage

aPx
aPy

–400

–300

–200

–100

0

100

200

300

400

FIGURE 6.38
The acceleration of point P is “normal” except at θ2 = 180°.

362 Introduction to Mechanism Design

6.7 Acceleration Analysis of the Sixbar Linkage

We will conclude the chapter on acceleration by conducting an acceleration analysis of the
sixbar linkage, whose variations are shown in Figures 6.39–6.44. We present the full deri-
vation for only the Stephenson Type I sixbar linkage because the other linkages follow a
similar pattern. The acceleration matrices and vectors are presented for all five sixbar link-
ages at the end of this section. Recall that two vector loop equations are required for each
sixbar linkage. In Chapter 5, the velocity vector loop equation for the Stephenson Type I
sixbar linkage was found to be

 02 2 3 3 4 4a b cn n nω ω ω+ − =
(6.72)

 02 5 5 6 6 4p u v qAE DFn n n nω ω ω ω+ − − =

Differentiate this once more with respect to time to obtain the acceleration vector loop
equations.

 02 2 2
2

2 3 3 3
2

3 4 4 4
2

4a a b b c cn e n e n eα ω α ω α ω− + − − + = (6.73)

 02 2
2

5 5 5
2

5 6 6 6
2

6 4 4
2p p u u v v q qAE AE DF DFn e n e n e n eα ω α ω α ω α ω− + − − + − + =

Since each link is rigid, we do not have any Coriolis or slip acceleration terms. Instead, each
moving link provides a centripetal and tangential acceleration term. Thus, there are two
acceleration terms for each moving link in a given loop. Now collect all unknown terms on
the right side of the equations, and the known terms on the left.

r2

P
r3

r6
r5

r4

rDF
rAE

c

q

a

vu

d

b

r1
A

E

G

C

D

F

B

FIGURE 6.39
Vector loop diagram for the Stephenson Type I sixbar linkage.

363Acceleration Analysis of Linkages

 3 3 4 4 2 2 2
2

2 3
2

3 4
2

4b c a a b cn n n e e eα α α ω ω ω− = − + + − (6.74)

 4 5 5 6 6 2 2
2

5
2

5 6
2

6 4
2q u v p p u v qDF AE AE DFn n n n e e e eα α α α ω ω ω ω− + − = − + + − − (6.75)

We now have four equations, with four unknowns

r1

r5

r6

r4

r2

r3

d

a

c

D

G
C

F

A

B

E

rDFqu

v

rBE P

b

FIGURE 6.40
Vector loop diagram for the Stephenson Type II sixbar linkage.

r1

d

q

DA

B

rAFr2

rBE P

C

G

r3

b

a

r4c
F

r6v

r5
u

E

FIGURE 6.41
Vector loop diagram for the Stephenson Type III sixbar linkage.

364 Introduction to Mechanism Design

 Unknown : , , ,3 4 5 6α α α α (6.76)

and we can arrange the equations into matrix form as before

 C dαα = (6.77)

where

0 0

0
3 4 21 21

21 5 6

b c
q u vDF

A
n n

n n n

=
−

− −

 (6.78)

B

C

D

F

G

E

A
r1

d v

P

c

a

b

u

q
rAF

r6

r2

r3

r4 r5
rDE

FIGURE 6.43
Vector loop diagram for the Watt Type II sixbar linkage.

r1

d

r3

a
r4 c

F

G

v r6

r5

u

B

E

rBE

P

b
C

q rDF

DA

r2

FIGURE 6.42
Vector loop diagram for the Watt Type I sixbar linkage.

365Acceleration Analysis of Linkages

2 2 2

2
2 3

2
3 4

2
4

2 2
2

5
2

5 6
2

6 4
2

a a b c

p p u v qAE AE DF

d
n e e e

n e e e e

α ω ω ω
α ω ω ω ω

=
− + + −

− + + − −

 (6.79)

 α α α ααα { }=
T

3 4 5 6 (6.80)

Of course, this set of equations is only valid for the Stephenson Type I sixbar linkage. A
similar analysis can be carried out for the other sixbar linkages, the results are seen in
Tables 6.2 and 6.3.

6.7.1 Some Example Solutions for the Sixbar Linkage

Figures 6.45–6.53 show the dimensions and acceleration plots for the example sixbar link-
ages. In each case, the angular velocity of the crank is a constant 10 rad/s. Be sure to check
your answers against these plots before completing the homework problems.

6.8 Summary

This concludes our study of acceleration analysis of single degree of freedom linkages. As
we have seen, acceleration analysis is a simple extension of velocity analysis, although the

Crank length: 70
Length AE on crank: 150
Internal angle of crank: 20°
Coupler length: 100
Distance between ground pins: 110
Crank angular velocity: 10 rad/s

Rocker length: 90
Length DF on rocker: 150
Internal angle of rocker: –20°
Length of link 5: 120
Length of link 6: 160
Crank angular acceleration: 0 rad/s

(All dimensions in millimeters)
110

15
020°

20°

100

160120

9070

150

D

F

C

A

B

E
G

FIGURE 6.44
Dimensions of the example Stephenson Type I sixbar linkage.

366 Introduction to Mechanism Design

matrix equations are considerably more complicated. Now that we can find the accelera-
tion of any point on a linkage we are ready to begin calculating forces and torques. The
study of position, velocity, and acceleration provides a kinematic analysis of each linkage.
In the next chapter, we will add forces and torques, giving us a dynamic analysis. We will
see that dynamic analysis is considerably more complicated than kinematic analysis, but
by following a systematic procedure, we will be able to tackle each linkage in turn.

TABLE 6.3

d Vector for the One Degree of Freedom Sixbar Linkages

Linkage d

Stephenson I
n e e e

n e e e e

α ω ω ω
α ω ω ω ω

− + + −
− + + − −

a a b c

p p u v qAE AE DF

2 2 2
2

2 3
2

3 4
2

4

2 2
2

5
2

5 6
2

6 4
2

Stephenson II
n e e e e

n e e e e

α ω ω ω ω
α ω ω ω ω

− + + − +
− + + − +

a a b c u

a a p q vBE DF

2 2 2
2

2 3
2

3 4
2

4 5
2

5

2 2 2
2

2 3
2

4
2

6
2

6

Stephenson III
n e e e

n e e e e

α ω ω ω
α ω ω ω ω

− + + −
− + + + −

a a b c

a a p u vBE

2 2 2
2

2 3
2

3 4
2

4

2 2 2
2

2 3
2

5
2

5 6
2

6

Watt I
n e e e

n e e e e e

α ω ω ω
α ω ω ω ω ω

− + + −
− + + − + −

a a b c

a a p q u vBE DF

2 2 2
2

2 3
2

3 4
2

4

2 2 2
2

2 3
2

4
2

5
2

5 6
2

6

Watt II
n e e e

e e e

α ω ω ω
ω ω ω

− + + −
+ −

a a b c

p u vDE

2 2 2
2

2 3
2

3 4
2

4

4
2

5
2

5 6
2

6

TABLE 6.2

C Matrix for One Degree of Freedom Sixbar Linkages

Linkage C

Stephenson I

n n
n n n

−
− −

b c
q u vDF

0 0
0

3 4 21 21

21 5 6

Stephenson II

n n n
n n n

−
−

b c u
p q vBE DF

0
0

3 4 5 21

21 6

Stephenson III

n n
n n n

−
−

b c
p u vBE

0 0
0

3 4 21 21

21 5 6

Watt I

n n
n n n n

−
− −

b c
p q u vBE DF

0 03 4 21 21

5 6

Watt II

n n
n n n

−
−

b c
p u vDE

0 0
0

3 4 21 21

21 5 6

367Acceleration Analysis of Linkages

A
cc

el
er

at
io

n
(m

/s
2)

Crank angle (°)
3600 60 120 180 240 300

Acceleration of point G on the Stephenson type I sixbar linkage

aGx
aGy

–250

–200

–150

–100

–50

0

50

100

150

200

250

FIGURE 6.45
Acceleration of point G on the example Stephenson Type I linkage.

Crank length: 45
Coupler length: 75
Length BE on coupler: 195
Internal angle of coupler: 30°
Distance between ground pins: 165
Crank angular velocity: 10 rad/s

Rocker length: 105
Length DF on rocker: 225
Internal angle of rocker: –30°
Length of link 5: 120
Length of link 6: 180
Crank angular acceleration: 0 rad/s

(All dimensions in millimeters)
165

105

120

75

180

–30°
30°

45
22

5

19
5

A

B

C

E

G

F

D

FIGURE 6.46
Dimensions of the example Stephenson Type II sixbar linkage.

368 Introduction to Mechanism Design

A
cc

el
er

at
io

n
(m

/s
2)

Crank angle (°)
3600 60 120 180 240 300

Acceleration of point E on the Stephenson type II sixbar linkage

aEx
aEy

–15

–10

–0

0

5

10

FIGURE 6.47
Acceleration of point E on the example Stephenson Type II linkage.

–20°

135

195

20°

225

18
0

80

A D

G

F

C
B

E

120

180

105

(All dimensions in millimeters)

Crank length: 80
Coupler length: 105
Internal angle of coupler: 20°
Length BE on coupler: 225
Distance between ground pins: 135
Crank angular velocity: 10 rad/s

Internal angle of ground: –20°
Length AF on ground: 195
Rocker length: 120
Length of link 5: 180
Length of link 6: 180
Crank angular acceleration: 0 rad/s

FIGURE 6.48
Dimensions of the example Stephenson Type III sixbar linkage.

369Acceleration Analysis of Linkages

0 60
–60

–40

–20

0

Ac
ce

le
ra

tio
n

(m
/s

2)

20

40

60

80
Acceleration of point E on the Stephenson type III sixbar linkage

aEx
aEy

120
Crank angle (°)

180 240 300 360

FIGURE 6.49
Acceleration of point E on the example Stephenson Type III linkage.

132

84
18

0

108

120

18
0

–50°

30°

120

120

A D

C

B

G

F

E

(All dimensions in millimeters)

Crank length: 84
Coupler length: 120
Internal angle of coupler: 30°
Length BE on coupler: 180
Distance between ground pins: 132
Crank angular velocity: 10 rad/s

Rocker length: 108
Internal angle of rocker: –50°
Length DF on rocker: 180
Length of link 5: 120
Length of link 6: 120
Crank angular acceleration: 0 rad/s

FIGURE 6.50
Dimensions of the example Watt Type I linkage.

370 Introduction to Mechanism Design

0 60 120 180 240 360300

Ac
ce

le
ra

tio
n

(m
/s

2)

–80

–60

–40

–20

0

20

aGx
aGy

60

40

Acceleration of point G on the Watt type I sixbar linkage

Crank angle (°)

FIGURE 6.51
Acceleration of point G on the example Watt Type I linkage.

(All dimensions in millimeters)

Crank length: 70
Coupler length: 100
Distance between ground pins: 110
Internal angle of ground: –20°
Length AF on ground: 150
Crank angular velocity: l0 rad/s

Rocker length: 90
Internal angle of rocker: –30°
Length DE on rocker: 150
Length of link 5: 120
Length of link 6: 160
Crank angular acceleration: 0 rad/s

15
0

16
0

120

150

G

E

F

DA

B
C

70

90

–20°

–30°

110

100

FIGURE 6.52
Dimensions of the example Watt Type II sixbar linkage.

371Acceleration Analysis of Linkages

% Sixbar_S1_Acceleration_Analysis.m
% Conducts an acceleration analysis on the Stephenson Type I sixbar
% linkage and plots the acceleration of point G
% by Eric Constans, June 14, 2017

% Prepare Workspace
clear variables; close all; clc;

% Linkage dimensions
a = 0.070; % crank length (m)
b = 0.100; % coupler length (m)
c = 0.090; % rocker length (m)
d = 0.110; % length between ground pins (m)
p = 0.150; % length to third pin on crank triangle (m)
q = 0.150; % length to third pin on rocker triangle (m)
u = 0.120; % length of link 5 (m)
v = 0.160; % length of link 6 (m)
gamma2 = 20*pi/180; % internal angle of crank triangle
gamma4 = -20*pi/180; % internal angle of rocker triangle

% Ground pins
x0 = [0; 0]; % ground pin at A (origin)
xD = [d; 0]; % ground pin at D
v0 = [0; 0]; % velocity of origin
a0 = [0; 0]; % acceleration of origin
Z21 = zeros(2,1);

% Angular velocity and acceleration of crank
omega2 = 10; % angular velocity of crank (rad/sec)
alpha2 = 0; % angular acceleration of crank (rad/sec^2)

0 60
–60

–40

–20

0

Ac
ce

le
ra

tio
n

(m
/s

2)

20

40

60
Acceleration of point G on the Watt type II sixbar linkage

aGx
aGy

120
Crank angle (°)

180 240 300 360

FIGURE 6.53
Acceleration of point G for example Watt Type II linkage.

372 Introduction to Mechanism Design

% allocate space for variables
N = 361; % number of times to perform position calculations
[xB,xC,xE,xF,xG] = deal(zeros(2,N)); % position of B, C, E, F, G
[vB,vC,vE,vF,vG] = deal(zeros(2,N)); % velocity of B, C, E, F, G
[aB,aC,aE,aF,aG] = deal(zeros(2,N)); % acceleration of B, C, E, F, G

[theta2,theta3,theta4,theta5,theta6] = deal(zeros(1,N)); % angles
[omega3,omega4,omega5,omega6] = deal(zeros(1,N)); % velocities
[alpha3,alpha4,alpha5,alpha6] = deal(zeros(1,N)); % accelerations

% Main Loop
for i = 1:N

% solve lower fourbar linkage
 theta2(i) = (i-1)*(2*pi)/(N-1); % crank angle
 r = d - a*cos(theta2(i));
 s = a*sin(theta2(i));
 f2 = r^2 + s^2;
 delta = acos((b^2+c^2-f2)/(2*b*c));
 g = b - c*cos(delta);
 h = c*sin(delta);

 theta3(i) = atan2((h*r - g*s),(g*r + h*s)); % coupler angle
 theta4(i) = theta3(i) + delta; % rocker angle

% calculate unit vectors
 [e2,n2] = UnitVector(theta2(i));
 [e3,n3] = UnitVector(theta3(i));
 [e4,n4] = UnitVector(theta4(i));
 [eAE,nAE] = UnitVector(theta2(i) + gamma2);
 [eDF,nDF] = UnitVector(theta4(i) + gamma4);

% solve for positions of points B, C, E, F
 xB(:,i) = FindPos(x0,a, e2);
 xC(:,i) = FindPos(xD,c, e4);
 xE(:,i) = FindPos(x0,p,eAE);
 xF(:,i) = FindPos(xD,q,eDF);

% solve upper fourbar linkage
 xFB = xF(1,i) - xB(1,i); yFB = xF(2,i) - xB(2,i);
 xEB = xE(1,i) - xB(1,i); yEB = xE(2,i) - xB(2,i);
 beta = atan2(yFB, xFB);
 alpha = atan2(yEB, xEB);
 aPrime = sqrt(xEB^2 + yEB^2);
 dPrime = sqrt(xFB^2 + yFB^2);
 theta2Prime = alpha - beta; % virtual crank angle on upper fourbar

 r = dPrime - aPrime*cos(theta2Prime);
 s = aPrime*sin(theta2Prime);
 f2 = r^2 + s^2;
 delta = acos((u^2+v^2-f2)/(2*u*v));
 g = u - v*cos(delta);
 h = v*sin(delta);

373Acceleration Analysis of Linkages

 theta5Prime = atan2((h*r - g*s),(g*r + h*s)); % coupler and rocker angles
 theta6Prime = theta5Prime + delta; % on upper fourbar
 theta5(i) = theta5Prime + beta; % return angles to fixed
 theta6(i) = theta6Prime + beta; % fixed CS

% calculate remaining unit vectors
 [e5,n5] = UnitVector(theta5(i));
 [e6,n6] = UnitVector(theta6(i));

% calculate position of point G
 xG(:,i) = FindPos(xE(:,i), u, e5);

% Conduct velocity analysis to solve for omega3 - omega6
 A_Mat = [b*n3 -c*n4 Z21 Z21;
 Z21 -q*nDF u*n5 -v*n6];
 b_Vec = [-a*omega2*n2; -p*omega2*nAE];
 omega_Vec = A_Mat\b_Vec;

 omega3(i) = omega_Vec(1);
 omega4(i) = omega_Vec(2);
 omega5(i) = omega_Vec(3);
 omega6(i) = omega_Vec(4);

% Calculate velocity at important points on linkage
 vB(:,i) = FindVel(v0, a, omega2, n2);
 vC(:,i) = FindVel(v0, c, omega4(i), n4);
 vE(:,i) = FindVel(v0, p, omega2, nAE);
 vF(:,i) = FindVel(v0, q, omega4(i), nDF);
 vG(:,i) = FindVel(vE(:,i), u, omega5(i), n5);

% Conduct acceleration analysis to solve for alpha3 - alpha6
 ac = a*omega2^2; at = a*alpha2;
 bc = b*omega3(i)^2; cc = c*omega4(i)^2;
 pt = p*alpha2; pc = p*omega2^2;
 uc = u*omega5(i)^2; vc = v*omega6(i)^2;
 qc = q*omega4(i)^2;

 C_Mat = A_Mat;
 d_Vec = [-at*n2 + ac*e2 + bc*e3 - cc*e4;
 -pt*nAE + pc*eAE + uc*e5 - vc*e6 - qc*eDF];
 alpha_Vec = C_Mat\d_Vec;

 alpha3(i) = alpha_Vec(1);
 alpha4(i) = alpha_Vec(2);
 alpha5(i) = alpha_Vec(3);
 alpha6(i) = alpha_Vec(4);

% Calculate acceleration at important points on linkage
 aB(:,i) = FindAcc(a0, a, omega2, alpha2, e2, n2);
 aC(:,i) = FindAcc(a0, c, omega4(i), alpha4(i), e4, n4);
 aE(:,i) = FindAcc(a0, p, omega2, alpha2, eAE, nAE);
 aF(:,i) = FindAcc(a0, q, omega4(i), alpha4(i), eDF, nDF);

374 Introduction to Mechanism Design

 aG(:,i) = FindAcc(aE(:,i), u, omega5(i), alpha5(i), e5, n5);
end

% plot the acceleration of point G
figure; hold on
plot(theta2*180/pi,aG(1,:),'Color',[153/255 153/255 153/255])
plot(theta2*180/pi,aG(2,:),'Color',[0 110/255 199/255])
legend('aGx','aGy')
title('Acceleration of point G on the Stephenson Type I sixbar linkage')
xlabel('Crank angle (degrees)')
ylabel('Acceleration (m/s2)')
grid on
set(gca,'xtick',0:60:360)
xlim([0 360])

6.9 Practice Problems

Problem 6.1

 a. A child runs from the center of a rotating merry-go-round to the outer edge
and stumbles sideways along the way. What type of acceleration causes the
stumble?

 b. A child is pressed against the outer rail of a merry-go-round as it rotates at a
constant speed. What type of acceleration is the child experiencing?

 c. An armored vehicle fires a shell as its turret is rotating at a constant speed.
What types of acceleration does the shell experience?

Problem 6.2

Figure 6.54 shows an ant crawling at a speed of 10 mm/s outward on a link that is
rotating at 2 rad/s in the counterclockwise direction. At the time of interest, the
ant is located at a distance of 50 mm from the center of rotation. What is the total
acceleration of the ant?

45°

50 mm

FIGURE 6.54
Problem 6.2.

375Acceleration Analysis of Linkages

Problem 6.3

In the linkage shown in Figure 6.55, the length AB and BC are both 200 mm. Link
AB rotates at 100 rpm clockwise and link BC rotates at 200 rpm counterclockwise.
Both links are slowing down at a rate of 10 rad/s2. Find the total acceleration at
point C.

Problem 6.4

Figure 6.56 shows the ant from Problem 6.2 is now crawling at a speed of 10 mm/s
from point C to point B and speeding up at a rate of 5 mm/s2. The length AB and
BC are both 200 mm. Link AB rotates at 10 rpm clockwise and link BC rotates at
20 rpm counterclockwise and both links are speeding up at a rate of 1 rad/s2. At
the time of interest the ant is 150 mm from point B. Find the total acceleration of
the ant.

Problem 6.5

Figure 6.57 shows the rider of an amusement park ride sitting at point D at the end
of arm CD. To enhance his enjoyment of the ride, he is attempting to bring a sand-
wich toward his mouth at 20 mm/s. The length AB is 10 m, the length BC is 5 m,
and the length CD is 2 m. What is the overall acceleration of the sandwich?

30°

45°
A

B

C

FIGURE 6.55
Problem 6.3.

30°

45°
A

B

C

FIGURE 6.56
Problem 6.4.

376 Introduction to Mechanism Design

Problem 6.6

Plot the x and y components of the acceleration of point P of the threebar link-
age shown in Figure 6.58. The crank is 0.5 m, the slider is 2 m, and the distance
between the ground pins is 1 m. The crank has a constant angular velocity of
8 rad/s. What is the slider’s maximum angular acceleration? Verify your results
using the Derivative _ Plot function.

Problem 6.7

Plot the vertical and horizontal components of the acceleration of point P on the
threebar linkage shown in Figure 6.59. All dimensions are in meters and the crank
rotates at a constant 100 rpm. Hint: the ground pins are not horizontally aligned,
so you will need to perform a new vector loop analysis on the linkage, and dif-
ferentiate twice to find acceleration.

Problem 6.8

The crank in the threebar of Problem 6.6 accelerates from rest to a speed of 100 rpm
in 1 s. Plot the x and y components of the acceleration of point P at the end of the

A

B

C

D15°

125°

30°
2 rpm

2 rpm

5 rpm

FIGURE 6.57
Problem 6.5.

P

FIGURE 6.58
Problem 6.6.

377Acceleration Analysis of Linkages

slider for a period of 2 s. Hint: the steady-state angular velocity of the crank is
given by 2 ATssω = , where A is the amplitude of the acceleration pulse and T is the
duration of the acceleration pulse, as described in Section 6.3.

Problem 6.9

Plot the x and y components of acceleration of point P for the fourbar linkage
shown in Figure 6.60. All dimensions in the figure are in centimeters. The crank
rotates at a constant 10 rad/s. Check your results with the Derivative _ Plot
function.

5

4

P

3
2

FIGURE 6.59
Problem 6.7.

60

P

50

30

25°

40

25

FIGURE 6.60
Problem 6.9.

378 Introduction to Mechanism Design

Problem 6.10

The crank of the compressor shown in Figure 6.61 spins at a constant 1700 rpm.
Calculate and plot the acceleration of the piston. All dimensions are given in mil-
limeters. Check your results with the Derivative _ Plot function.

Problem 6.11

The crank of the compressor shown in Figure 6.61 accelerates from rest to a steady
speed of 500 rpm in 2 s. Calculate and plot the acceleration of the piston for
a period of 3 s. Hint: the steady-state angular velocity of the crank is given by

,2 ATssω = where A is the amplitude of the acceleration pulse and T is the duration
of the acceleration pulse, as described in Section 6.3. All dimensions are given in
millimeters.

Problem 6.12

Use MATLAB to conduct an acceleration analysis on the inverted slider-crank link-
age shown in Figure 6.62 if the crank rotates at a constant 10 rad/s. Plot the x and

30
120

FIGURE 6.61
Problems 6.10 and 6.11.

150

80

200

60

D

B

b

P

C

A

80°

θ2

(All dimensions in millimeters)

FIGURE 6.62
Problem 6.12.

379Acceleration Analysis of Linkages

y components of the acceleration at point P. Also, plot the acceleration of slip ()b
between the slider and rocker.

Problem 6.13

Use MATLAB to conduct an acceleration analysis on the geared fivebar linkage
shown in Figure 6.63 if the crank rotates at a constant 10 rad/s. The gear at point A
has 50 teeth and the gear at point D has 25 teeth. Gear D is rotated 180° when gear
A is at 0°. Plot the x and y components of the acceleration at point P. Check your
answer using the Derivative _ Plot.m function.

Problem 6.14

Use MATLAB to conduct an acceleration analysis on the sixbar linkage shown in
Figure 6.64 if the crank rotates at a constant 10 rad/s. Plot the x and y components
of the acceleration at point P for one revolution of the crank. Check your answer
using the Derivative _ Plot.m function.

Problem 6.15

Use MATLAB to conduct an acceleration analysis on the sixbar linkage shown in
Figure 6.65 if the crank rotates at a constant 10 rad/s. Plot the x and y components
of the acceleration at point P for one revolution of the crank. Check your answer
using the Derivative _ Plot.m function.

80

95

70
70

95

30
°30°

65 65

DA

B C

P Q

E

(All dimensions in millimeters)

FIGURE 6.63
Problem 6.13.

380 Introduction to Mechanism Design

110

15
0150

100

120

160

100

9070

(All dimensions in millimeters)

20°
20°

50°

A D

F

E

B
C

G

P

FIGURE 6.64
Problem 6.14.

20°

110

9070

100

80

30°

50°

F

A

B
C

E

D

P

G

(All dimensions in millimeters)

16
0

150

15
0

120

FIGURE 6.65
Problem 6.15.

381Acceleration Analysis of Linkages

Acknowledgments

Several images in this chapter were produced using SOLIDWORKS® software.
SOLIDWORKS is a registered trademark of Dassault Systèmes SolidWorks Corporation.

Several images in this chapter were produced using MATLAB software.
MATLAB is a registered trademark of The MathWorks, Inc.

http://www.taylorandfrancis.com

383

7
Force Analysis on Linkages

7.1 Fundamentals of Dynamics

Until now, we have discussed kinematics, which is the study of position, velocity, and
acceleration without regard to forces. We assumed that a “magic motor” turned the crank
on a linkage at a constant speed, and plotted the resulting motion of the rest of the link-
age. We will now turn our attention to the forces and torques required to produce such a
motion. Recall the definition of dynamics, given earlier:

Dynamics: the study of forces in a moving system

In general, we may encounter two types of dynamics problems:

 1. Given a set of forces and moments on a system, find the accelerations, velocities,
and positions of the bodies in the system as a function of time.

 2. Given the position, velocity, and acceleration of each body within a system, find
the forces and torques (or moments) required to produce this motion.

The first problem requires the derivation and solution of a set of nonlinear differential
equations, which can be quite challenging for nontrivial systems. For this reason, the
general forward dynamics problem is usually reserved for senior or graduate level classes,
except for very simple systems (e.g. the block on an inclined plane). The second problem,
which is often called the inverse dynamic problem, requires only the solution of a set of
 algebraic equations, which is quite straightforward in MATLAB®. We will be concerned
with the inverse dynamic problem in this text.

7.1.1 Dynamic Models

To develop the inverse dynamic model of a mechanism we must first create a dynamic
model of each component in the system. For each link, we must know the critical
 dimensions (e.g. the distances between pins, etc.) and also the primary inertial properties,
which are:

 1. Mass – m
 2. Center of mass – ,x y

 3. Mass moment of inertia – I

384 Introduction to Mechanism Design

Each of these quantities is easy to calculate using the Mass Properties feature in
SOLIDWORKS®, but we will also show a means of finding the properties “by hand” in the
section that follows.

7.1.1.1 Mass

First, recall that mass is not equal to weight! Mass is a measure of the quantity of matter
in an object, while weight reflects the gravitational attraction between two bodies. In this
text, we will use the metric unit for mass, the kilogram (kg). Although we will not use
them in this text, you may encounter problems presented in English units. It is the authors’
recommendation to always convert the problem to SI units before starting the problem.
The English units of mass are uniformly terrible. The most common English mass unit is
the slug, which is equivalent to

 = ⋅
1 slug 1

lbf s
ft

2

Unfortunately, feet are an inconvenient unit in mechanical design, and most machine tools
are calibrated in inches. There is, unfortunately, no standardized inch-pound-second unit
of mass. Even worse is the unit pound-mass, which is the quantity of mass required to exert
one pound-force in Earth’s gravitational field. The opportunities for confusion are simply
too great with the pound-mass, and its use should always be avoided! To be safe, we will
perform all of our calculations in SI units. If necessary, you can always convert your final
answers to inches and pounds after all of the dynamics calculations have been completed.

7.1.1.2 Center of Mass

The center of mass is the “average” location of all the mass in a body. It is normally indi-
cated in a drawing by the “target” symbol shown in Figure 7.1. As a first approximation,
let us pretend that the body in Figure 7.2 is made up of point masses, each of which has
mass mi and coordinates (xi, yi). All the masses are rigidly connected and cannot move rela-
tive to each other. To compute the coordinates for the center of mass of the body we use a
“weighted average” formula

x

x

yy

FIGURE 7.1
A typical link showing the location of the center of mass.

385Force Analysis on Linkages

 = + + +1 1 2 2 3 3 4 4x
m x m x m x m x

m
 (7.1)

 = + + +1 1 2 2 3 3 4 4y
m y m y m y m y

m
 (7.2)

where

 = + + +1 2 3 4m m m m m (7.3)

is the total mass of the body. It is far simpler to write the center of mass coordinates in
summation notation:

 ∑ ∑= =1 1
x

m
m x y

m
m y

i

i i

i

i i (7.4)

If the mass is continuously distributed throughout the body (as is the case with most links,
which are usually made from homogeneous materials like aluminum or steel) we convert
the summations to integrals

 ∫ ∫= =1

1
 x

m
x dm y

m
y dm (7.5)

where (x, y) gives the coordinates of each differential mass, dm. As we will see below, the
summation formulas will work for links that are composed of simple shapes, and the
 centers of mass for more complicated shapes can be computed using SOLIDWORKS.

The center of mass has two useful properties that we should consider when designing
linkages:

 1. If we pin a body at its center of mass (as shown in Figure 7.3) it will remain balanced
in a gravitational field; that is, it will not rotate about the pivot.

 2. If we pin a body to ground at its center of mass and spin it using a motor, the
unbalance force on the pivot will be zero. If the unbalance force is zero, then

m1

m3

m4
m2

x

y

x

y

FIGURE 7.2
The “space potato” above is composed of point masses m1, m2, m3, and m4.

386 Introduction to Mechanism Design

 spinning the link will not create vibratory forces at the pivot. This is very useful
when balancing a linkage – if we can get the center of mass to remain stationary
when the linkage moves, then there will be no unbalanced forces at the pivots.

Example 7.1

The object in Figure 7.4 is made up of a 5 cm square attached to a 10 cm square. Find the
center of mass of the object.

Solution
A coordinate system is attached to the center of the left side of the object. The center of
mass of the 5 cm square is 2.5 cm in the positive x direction and the center of mass of
the 10 cm square is 10 cm in the positive x direction. The y coordinate of both squares is
zero. Thus,

 x x= =2.5 cm 10 cm1 2

The mass of the first square is

 m t tρ ρ()= =5 cm 251
2

x

x

y y

FIGURE 7.3
A link is statically balanced if we pin it to ground at its center of mass.

105

x

x

y

FIGURE 7.4
This object is composed of a 5 cm square and 10 cm square attached together.

387Force Analysis on Linkages

where t is the thickness of the object and ρ is its mass density (given in kg/cm3). The
mass of the second square is 100 tρ. Thus, the x coordinate of the center of mass is

 x
t t
t t
ρ ρ
ρ ρ

=
⋅ + ⋅

+
=

2.5 25 10 100
25 100

8.5 cm

Of course, the y coordinate of the center of mass is zero.

Example 7.2

A 2.5 cm hole has been drilled at the center of the small square on the left side of the
object in Example 7.1, as shown in Figure 7.5. Find the new center of mass.

Solution
The total mass of the object (before drilling the hole) was 125 tρ and its center of mass
was located at 8.5 cm in the positive x direction. We will find the new center of mass by
subtracting the mass that has been removed from the hole.

π ρ

ρ()
= − = −m

t
t

2.5 cm
4

4.909 kg3

2

and the center of the circle is at

 x = 2.5 cm3

Thus, the location of the new center of mass is

 x
t t

t t
ρ ρ

ρ ρ
=

⋅ − ⋅
−

=
125 8.5 cm 4.909 2.5 cm

125 4.909
8.745 cm

7.1.1.3 Mass Moment of Inertia

The mathematical definition of mass moment of inertia is

 ∫ ∫()= + =2 2 2I x y dm r dm

where r is the distance from the origin to the differential mass, dm, as shown in Figure 7.6.
While this definition can be used to calculate the mass moment of inertia, it is not very

105

x

x
y

d = 2.5

FIGURE 7.5
A 2.5 cm hole has been drilled in the object of Example 7.1.

388 Introduction to Mechanism Design

helpful in gaining an intuitive understanding of its meaning. Instead, consider the follow-
ing definition:

Mass moment of inertia gives the resistance of a body to an increase or decrease in
rotational speed.

This is analogous to the role that mass plays in translational motion. An object with a large
mass is more difficult to accelerate than an object with a small mass.

Consider the situation shown in Figure 7.7. Both links consist of two point masses
attached to rigid rods that rotate about a pivot. A point mass is a body whose mass is
assumed to be concentrated at a single point. They are shown as circles in Figure 7.7 as an
aid to visualization, but the mass of each circle is concentrated at a point at the end of the
rod. The masses are at equal distances from the pivot, but the masses in Link 1 are greater
than those in Link 2. Imagine attaching a motor to the pivot in order to cause the speed
of rotation of the masses to increase. As you might guess, it takes more torque to cause a
speed increase in Link 1 than in Link 2. This leads us to believe that moment of inertia has
something to do with the mass of the system being rotated.

Now consider the second pair of systems in Figure 7.8. The masses in both systems are
equal, but the masses in Link 1 are attached farther from the pivot than those of Link 2.

dm

y

x

r

FIGURE 7.6
The mass moment of inertia gives a measure of how mass is distributed about a given axis.

y

Link 1 Link 2

x

m

m

y

x

m

m

FIGURE 7.7
The link with the larger masses (at left) has a higher mass moment of inertia than the link with the smaller
masses.

389Force Analysis on Linkages

Again, it takes more torque to cause a speed increase in Link 1 than in Link 2. Thus,
moment of inertia involves not only mass, but distance as well. For each point mass at the
end of a rod, the moment of inertia is

 = 2I mr (7.6)

so that the total moment of inertia for the systems shown in Figures 7.7 and 7.8 are

 = 2 2I mrtotal (7.7)

For many common shapes (e.g. rectangles, disks, etc.) we can use the tables in Appendix
A to find moments of inertia. For more complicated shapes, it is sometimes necessary to
resort to the mathematical definition and integrate. In most instances, however, we can
simply break the object into several simpler pieces, and use the parallel axis theorem to find
the moment of inertia, or we use the Mass Properties feature in SOLIDWORKS to calcu-
late the moment of inertia directly.

7.1.2 The Parallel Axis Theorem

The tables in Appendix A give the moments of inertia of common shapes about their centers
of mass. Most parts of a linkage, however, do not rotate about their center of mass. We can
transfer inertial properties from one axis to another using the parallel axis theorem

 = + 2I I mdA g (7.8)

where

• IA is the moment of inertia about the desired axis located at point A.
• Ig is the moment of inertia about the center of mass (found using the tables in

Appendix A).
• m is the mass of the body.
• d is the distance between the point A and the center of mass.

Figure 7.9 shows a 3D view of a 2D object. The parallel axis theorem enables us to calculate
the moment of inertia about the axis at point A, given the moment of inertia about the cen-
ter of mass. To see how this all fits together, let us perform a simple example.

y

x

Link 1 Link 2

y

x

m

m
m

m

FIGURE 7.8
Both links have the same mass, but the mass is farther from the center of rotation in Link 1.

390 Introduction to Mechanism Design

Example 7.3: A Rectangular Link

The link shown in Figure 7.10 has two holes of differing size, and thickness t. The
dimensions are as follows:

W L t

r r l

= = =

= = =

0.1 m 1 m 0.02 m

0.025 m 0.01 m 0.8 m1 2

The link is made of aluminum, with density ρ = 2700 kg/m3. Find the mass, center of
mass, and moment of inertia about the center of mass of the link. A coordinate system
has been attached to the center of the large hole on the left.

Solution
To find the requested quantities, we will adopt the following procedure

 1. Break the link into simpler components like the ones in Appendix A.
 2. Find the mass of each component.
 3. Find the center of mass of each component.
 4. Find the center of mass of the entire link.
 5. Find the moment of inertia for each component about its center of mass.

y

r1 r2

W

l

L

x

FIGURE 7.10
The link used in Example 7.3.

y

z

x

A

d

FIGURE 7.9
We wish to find the mass moment of inertia about point A which is located a distance d from the center of
mass.

391Force Analysis on Linkages

 6. Transfer each moment of inertia to the center of mass of the link using the
parallel axis theorem.

 7. Add these together to find the mass moment of inertia of the entire link.

Step 1: The link consists of a rectangle prism and two disks, as shown in Figure 7.11. Let
us denote the large circle as component 1, the rectangular prism as component 2, and
the small circle as component 3. The Mass Properties of each of these shapes are given
in Appendix A.

Step 2: We will now find the mass of each component.

m t r

m tLW

m t r

ρ π π

ρ π

ρ π π

() ()

() ()()

() ()

= =

=

= =

=

= =

=

2700
kg
m

0.02 m 0.025 m 0.106 kg

2700
kg
m

0.02 m 1 m 0.1 m 5.4 kg

2700
kg
m

0.02 m 0.01 m 0.017 kg

1 1
2

3

2

2 3

3 2
2

3

2

The total mass is then

 m m m m= − + − = 5.277 kg1 2 3

Step 3: Find the center of mass of each part. The center of mass of the large hole is (0, 0)
since the xy coordinate system is located at the center of this hole.

 x y ()=, 0, 01 1

The center of mass of the rectangle is located at the midpoint between the centers of the
two holes.

 x y
l() ()= =

 =, 0, 0

2
, 0 0.4, 0 m2 2

And the center of the third hole has coordinates:

 x y l() ()= =, , 0 0.8, 0 m3 3

L

2

1 3

W

y

r1 r2

x

FIGURE 7.11
The link in the example has been broken into its three constituent parts: a rectangle and two
circles.

392 Introduction to Mechanism Design

Step 4: Use the formula for center of mass to find the center of mass for the entire link.
In the x direction we have:

 ()() ()() ()()

()= − + −

= − + −

=

x
m

m x m x m x
1

1
5.277 kg

0.106kg 0m 5.4 kg 0.4m 0.017 kg 0.8m

0.407 m

1 1 2 2 3 3

And in the y direction we have:

()

()() ()() ()()

= − + −

= − + −

=

y
m

m y m y m y
1

1
5.277 kg

0.106kg 0m 5.5 kg 0m 0.017 kg 0m

0 m

1 1 2 2 3 3

As expected. The center of mass of the entire link is then:

 x y() ()=, 0.407, 0 m

Step 5: The formulas for the moments of inertia of each component about its own center
of mass are given in Appendix A:

() ()

()()

()

()()

= = = × ⋅

=
+

=
+

= ⋅

= = = × ⋅

−

−

I
m r

I
m L W

I
m r

g

g

g

2
0.106kg 0.025m

2
3.313 10 kg m

12

5.4 kg 1 0.1 m

12
0.455 kg m

2
0.017 kg 0.01m

2
8.5 10 kg m

1
1 1

2 2

5 2

2
2

2 2 2 2 2
2

3
3 2

2 2

7 2

Step 6: We now transfer each moment of inertia to the overall center of mass using the
parallel axis theorem. In each case, the length d is the distance from the center of mass
of the individual component to the center of mass of the entire link. Therefore,

= =

= − =

= − =

d x

d x
l

d l x

0.407 m

2
0.007 m

0.393m

1

2

3

And the moments of inertia are

 ()()

= +

= × ⋅ +

= ⋅

−

I I m dg

3.313 10 kg m 0.106kg 0.407m

0.0176kg m

1 1 1 1
2

5 2 2

2

393Force Analysis on Linkages

 ()()

= +

= ⋅ +

= ⋅

I I m dg

0.455kg m 5.4kg 0.007 m

0.4552kg m

2 2 2 2
2

2 2

2

 8.5 10 kg m 0.017 kg 0.393 m

0.0026kg m

3 3 3 3
2

7 2 2

2

()()

= +

= × ⋅ +

= ⋅

−

I I m dg

Step 7: Finally, we add these together to find the overall moment of inertia of the link.

= − + −

= ⋅

I I I I

0.4754kg m

1 2 3

2

It is important to note that moments of inertia can only be added together if they are
taken about the same axis. If we had added the moments of inertia of each body taken
about its own center of mass, we would have obtained an incorrect result.

7.1.3 Using SOLIDWORKS® to Calculate Moment of Inertia

The procedure given above was rather lengthy and prone to error. A much simpler method
is to use SOLIDWORKS to calculate the Mass Properties of each link in a mechanism.
There are a few simple steps to follow in this method.

 1. Set the appropriate material in the Material property in the Feature Tree. The
SOLIDWORKS default material is plastic, and by changing the material, you will
set the mass density to the appropriate value.

 2. Draw the link in the ordinary manner.
 3. In the Evaluate tab, select Mass Properties.
 4. Click the Options button and select Use Custom Settings to change the length

unit to meters, the mass unit to kilograms and the volume unit to cubic meters.
You can also change the accuracy to its highest setting, since it will not slow the
calculations appreciably for simple links.

You will now be presented with a dialog box containing a multitude of mass quantities
for the link, as shown in Figure 7.12. At the top of the box the mass and volume are given.
Toward the middle, the coordinates of the center of mass are presented. Note that these
coordinates are given relative to the origin that you used to draw the link (also called the
Output Coordinate System). Finally, there are three tables of moments of inertia. For our pur-
poses we are interested in the middle table, which gives the moments of inertia relative to
the center of mass of the object and aligned with the output coordinate system. The pink
triad on the link shows the location of the center of mass, and also the directions of the
coordinate axes. Since the profile of the link was sketched on the Front Plane, the z direction
is the axis of rotation. Therefore, we use Lzz to find the correct moment of inertia about the
center of mass. If you draw your base sketch on a different plane, be sure you select the
correct value from the table.

394 Introduction to Mechanism Design

The lowest table in the dialog box gives the moments of inertia about the output coordi-
nate system; that is, the moments of inertia about the origin of the part. Since the origin of
the part is located at the center of the large circle, we can use the parallel axis theorem to
find the moment of inertia about this axis:

 () ()

′ = +

′ = ⋅ + ⋅

′ = ⋅

I I md

I

I

0.4345kg m 5.277 kg 0.407 m

1.3076kg m

2

2 2

2

which is identical to the entry for Izz in the dialog box.
For the remainder of the text, we will use SOLIDWORKS to calculate the Mass

Properties of the links that we design. This method is much simpler and less

FIGURE 7.12
Screen shot of the Mass Properties dialog box in SOLIDWORKS for the link in Example 7.3. Note that the
moment of inertia Lzz is identical with the results obtained above.

395Force Analysis on Linkages

error-prone than performing the calculations by hand. We will also adopt the conven-
tion of using the moment of inertia about the center of mass of an object, and not the
Output Coordinate System. This will have the effect of making the equations of motion
simpler and more uniform than would be the case if we adopted a different convention
for each link.

7.2 Newtonian Kinetics of a Rigid Body

Now that we have the definitions of the important inertial properties of a rigid body
we turn our attention to developing the equations of motion for the body. We will use
Newton’s three laws of motion to formulate our equations. Since Newton formulated his
laws for point masses, we will need a few tricks to extend them to rigid bodies. In employ-
ing these tricks, the appropriate equations of motion will “fall out” automatically.

Consider the two point masses in 3D space shown in Figure 7.13. The two masses might
be independent bodies (e.g. planets) or they might be two particles within a rigid body.
Each point mass has an externally applied force acting on it (shown as F1 and F2), and there
are also internal forces acting between the masses (f21 and f12). The numbering convention
we adopt here is as follows:

=

=

f

f

force from body 1 on body 2

force from body 2 on body 1

12

21

The internal forces may be caused by gravitational attraction, electrostatic attraction (or
repulsion), or may simply be the forces that hold the body together, if m1 and m2 form
parts of a rigid body. The forces cause each particle to accelerate (shown as a1 and a2 in the
 figure). We can paraphrase Newton’s laws for the pair of particles as:

 1. Both masses will remain at a constant velocity (or at rest) in the absence of the
internal and external forces.

 2. The internal forces between the particles have equal magnitude but opposite
direction. In other words, f21 = −f12.

m1

m2

F1

f21

f12

F2

a2

a1

FIGURE 7.13
Two point masses in 3D space. An external force (F1, F2) acts on each point mass, and internal forces (f21 and f12)
act between the masses.

396 Introduction to Mechanism Design

 3. The net force on a particle causes it to accelerate in proportion with its mass.
The net force is found by vectorially adding together all the forces on the particle.
In other words:

 + = + =1 21 1 1 2 12 2 2m mF f a F f a

It is our goal now to apply these laws to an arbitrary set of rigid bodies in two dimensions (i.e.
linkages). To do this, we will assume that a rigid body is composed of an infinite number of
infinitesimally small point masses. It will be easiest to stick with the notion of point masses
as we proceed through the derivation. At the end of the derivation, we will convert each
mass, m, to an infinitesimally small differential mass dm and integrate over the rigid body.

7.2.1 Equations of Motion for the Rigid Body

Figure 7.14 shows three of the infinitesimally small point masses that make up a rigid
body. Of course, the rigid body consists of an infinite number of these point masses, but
we will use these three as representative of the entire body. A rigid body, by definition,
consists of particles whose location relative to each other remains fixed. The internal forces
f12, f21, … can be thought of as the interatomic forces holding the body together. According
to Newton’s Second Law, any two internal forces have the relationship

 ij ji= −f f (7.9)

Since the internal forces come in equal and opposite pairs, they add to zero:

 + = 0ij jif f (7.10)

m1

m2

m3

F1

F3

f21

f31

f32

f13
f23

f12

F2

a2

a3

a1

FIGURE 7.14
A rigid body consists of an infinite number of infinitesimally small point masses. Three of the point masses are
shown here.

397Force Analysis on Linkages

For mass 1, we may use Newton’s third law to calculate its acceleration

 + + =1 21 31 1 1mF f f a (7.11)

We can write similar equations for each of the other two particles. If we add the resulting
 equations together we obtain

 + + + + + + + + = + +1 2 3 21 31 12 32 13 23 1 1 2 2 3 3m m mF F F f f f f f f a a a (7.12)

But from Equation (7.10) the internal forces cancel each other and we are left with

 ∑ ∑= m
i

i

i

i iF a (7.13)

The acceleration is defined as the second derivative of the position vector

 =
2

2

d
dt

i
ia

r
 (7.14)

so that we may write

 ∑ ∑=
2

2m
d
dt

i

i

i

i
iF

r
 (7.15)

Since the mass of each particle is assumed constant, we may shift the derivative operator
outside the summation symbol

 ∑ ∑=
2

2

d
dt

m
i

i

i

i iF r (7.16)

If we add together the masses of each particle, we obtain the total mass of the rigid body.

 ∑=m m
i

i (7.17)

In the previous section, we defined the center of mass to be

 ∑= 1
m

mG

i

i ir r (7.18)

Then Equation (7.16) simplifies to

 ∑ ()=
2

2

d
dt

m
i

i GF r (7.19)

Since the mass of the rigid body is constant, it can be moved outside the derivative opera-
tor to obtain

 ∑ = m
i

i GF a (7.20)

398 Introduction to Mechanism Design

In other words, we may use Newton’s Third Law to treat a rigid body exactly like a point
mass, as long as we use the acceleration of the center of mass in our computations. The
 summation of forces on the left side of Equation (7.20) is called the net force on the body. If all
of the external forces on the body cancel out, then the net force (and therefore acceleration)
is zero and we are left with the Statics problem. In the case of a moving linkage, however,
the net force on a link will almost never be zero.

7.2.2 Rotational Equations of Motion

The major difference between a rigid body and a point mass is that the rigid body can
rotate. In most cases, the forces (and moments) applied to the rigid body will cause both
translational and rotational motion. Consider the rigid body shown in Figure 7.15. Here we
have attached the origin to an arbitrary point P on the body. The vector from the origin
to m1 is rP1, and we define similar vectors for the other point masses. The rotational effect
of the forces on the body can be determined by computing the moment of the forces about
a point P. The moment is defined as the cross-product of the vector from P to the point of
application of the force with the force itself. Clearly, the location of the point P will affect
the moment that is calculated, and we must choose P carefully. For now, let us assume that
P is an arbitrary point on the body. In a later section, we will discuss the most suitable
 locations for P from a computational point of view.

Before proceeding with our example, let us take a moment to review a simple moment
calculation when only one force is acting on a point. Examine the two instances of a single
link shown in Figure 7.16. In each instance, the force is applied at a different angle with
respect to the link. On the left, the force is applied almost perpendicular to the vector from
the center of rotation, rB, which would cause a large angular acceleration. On the right the

m1

m2

P

y

x

m3

F1

f21
rP1

f31

a1

FIGURE 7.15
A rigid body with point masses m1, m2, and m3 shown. The origin is chosen at an arbitrary point P on the body.

399Force Analysis on Linkages

force is almost parallel to rB, which would cause a small angular acceleration. The moment
about the ground pin at A created by the force in each case is

 = ×A B BM r F (7.21)

Since we are confining our analysis to the two-dimensional case, we can write

 aB

θ

θ
=

cos

sin
r (7.22)

and the cross-product yields

a a

F F
aF aF

A
Bx By

Bx By

θ θ

θ θ
= =

− +

M
cos sin 0

0

0
0

sin cos
 (7.23)

For this two-dimensional case, this may be rewritten in terms of the unit normal as

 ()= ⋅ ˆa kA BM n F (7.24)

or

 ()= ⋅M aA Bn F (7.25)

For the two-dimensional case, the moment is always in the k̂ direction, out of the page.
From the definition of the dot product, we see that the moment is at a maximum when the
force is aligned with the unit normal, and is zero if the force is perpendicular to the unit
normal (i.e. when it is parallel to the link itself). This is intuitively obvious: if we apply
the force along the length of the link, the force will be directed into the pin, and will not
cause it to rotate. Conversely, applying the force perpendicular to the link will cause the
 maximum possible rotational motion for a given force.

FB

A

B B

A

FB

rB rB

α α

FIGURE 7.16
The angular acceleration caused by a force depends upon the direction of the force relative to the vector from
the center of rotation.

400 Introduction to Mechanism Design

Returning to our rigid body of point masses, now let us examine the rotational effect of
applying a set of forces to a rigid body. As we saw earlier, the translational equations of
motion for each point mass is

+ + =

+ + =

+ + =

1 21 31 1 1

2 32 12 2 2

3 13 23 3 3

m

m

m

F f f a

F f f a

F f f a

 (7.26)

To calculate the moment created by each force, take the cross-product of Equation (7.26)
with the position vectors.

()

()

()

× + + = ×

× + + = ×

× + + = ×

1 1 21 31 1 1 1

2 2 32 12 2 2 2

3 3 13 23 3 3 3

m

m

m

P P

P P

P P

r F f f r a

r F f f r a

r F f f r a

 (7.27)

If we examine the moments created by the internal forces we see that the forces share a
common line of action; thus, their moment arm, h, is the same, as shown in Figure 7.17.
Since the forces are equal and opposite we see that:

 × + × = 01 21 2 12P Pr f r f (7.28)

Thus, the moments created by the internal forces cancel when all three equations are
added together. Adding the three equations in (7.19) gives

 ∑ ∑× = × m
i

Pi i

i

Pi i ir F r a (7.29)

For convenience, let us define the sum of moments created by the external forces as

 P

i

Pi iM r F∑≡ × (7.30)

Then the rotational equation of motion becomes

 ∑= × mP

i

Pi i iM r a (7.31)

m1

m2

h

P

f21

rP2

rP1

f12

FIGURE 7.17
The moments created by internal forces cancel, since the internal forces are equal and opposite, and act along
a common line of action.

401Force Analysis on Linkages

Now rewrite the vector from the point P to each mass in unit vector form, as shown in
Figure 7.18.

 = rPi Pi Pir e (7.32)

where rPi is the distance from point P to the point mass and ePi is the unit vector pointing
in the direction of rPi. Then

 ∑= ×r mP

i

Pi Pi i iM e a (7.33)

We may use the relative acceleration formula given in Chapter 6 to rewrite the acceleration
of each point mass i as

 α ω= + − 2r ri P Pi Pi Pi Pia a n e (7.34)

where aP is the acceleration of point P. Substituting this into Equation (7.31) gives

 ∑ α ω()= × + − 2m r r rP

i

i Pi Pi P Pi Pi Pi PiM e a n e (7.35)

Now separate the cross-product into its three terms

 ∑ ∑ ∑ρ α ω= × + × − × 2m r m r m r rP

i

i Pi Pi P

i

i Pi Pi Pi Pi

i

i Pi Pi Pi PiM e a e n e e (7.36)

Since rPi, ω and α are scalars, we may factor them outside the cross-products

 ∑ ∑ ∑ρ ρ α ρ ω ()= × + × − ×()2 2 2m m mP

i

i Pi Pi P

i

i Pi Pi Pi

i

i Pi Pi PiM e a e n e e (7.37)

The third term vanishes because

 × = 0Pi Pie e (7.38)

Also, the cross-product in the second term may be reduced by noting that

 × = k̂Pi Pie n (7.39)

m2

m1

P

rP2

nP2

nP1

eP2

eP1 rP1

FIGURE 7.18
The vector from point P to each mass may be written in terms of the unit vector ePi and length rPi.

402 Introduction to Mechanism Design

The resulting equation can be simplified by noting that aP, the acceleration of point P, is
uniform across the body, as is the angular acceleration, α.

 ∑ ∑α=

 × + ˆ2m r m r kP

i

i Pi Pi P

i

i PiM e a (7.40)

We may use the definition of center of mass given in Equation (7.18) to simplify the first
term

 ∑α= × + ˆ2m m r kP g P

i

i PiM r a (7.41)

where rg is the vector from the point P to the center of mass of the body. Note that

 = +2 2 2r x yPi Pi Pi (7.42)

is the squared distance from the point P to a point mass i. If we convert the summation in
Equation (7.41) to an integral by changing the point masses to differential masses we have

 ∫α ()= × + +ˆ 2 2m k x y dmP g P P PM r a (7.43)

which the alert reader will recognize as the definition of mass moment of inertia. Thus,
we have

 α= × + ˆm I kP g P PM r a (7.44)

We will now discuss the proper choice of the location of point P. Judicious selection of this
point will enable us to eliminate the first term in Equation (7.44), leading to a considerable
simplification of the rotational equations of motion. There are three choices that enable us
to eliminate this term:

 1. = 0gr → the point P is at the center of mass of the body
 2. = 0Pa → the point P is pinned to ground, as in a ground pivot
 3. g Pr a → since the cross-product of parallel vectors is zero

The first two conditions are used quite often in practice, while the third is difficult to
achieve in most situations. One example of the third case is a disk rolling on a flat surface.
If the point P is chosen at the point of contact with the ground, its acceleration is directed
upward toward the center of mass in the same direction as rg. Since this situation is so
rarely encountered, however, we will not consider it further. For analyzing the motion of
linkages, it is straightforward to fix the location of point P at the center of mass of the link.
If this is done, the rotational equation of motion becomes

 α=M Ig g (7.45)

where Ig is the moment of inertia of the link about its center of mass. It cannot be empha-
sized too strongly that this equation is only valid when moments are summed about

403Force Analysis on Linkages

the center of mass, and not an arbitrary point on the link. We obtain a similarly simple
 equation of motion if we sum moments about a ground pivot

 M IP Pα= (7.46)

but we must calculate the moment of inertia about the ground pivot, and not the center of
mass. Since this equation will work only with links that are pinned to ground, we choose
to employ only Equation (7.45) for the analysis that follows. This will enable us to systemat-
ically develop a uniform set of equations of motion for a linkage, without having to worry
about whether a link is pinned to ground or not. In the geared fivebar linkage, however, it
will prove simplest to sum moments about the ground pivots.

This was a very long-winded way to arrive at a very simple equation of motion for rota-
tion. The development was necessary in order to emphasize the importance of choosing
the correct point P to sum moments about. We will attach the point P to the center of mass
for most of the remainder of this text because it results in relatively simple equations of
motion, and it always works!

7.2.3 A Digression on Moments, Torques, and Couples

We will ordinarily drive a link in rotation by attaching a motor to it, as shown in Figure 7.19.
The electromagnetic properties of the motor create a force Fe/2 at the top and bottom of the
motor. Here we have assumed a two-pole motor, but the principle is the same for motors
with more than two poles. The electromagnetic forces are equal in magnitude but opposite
in direction and form a couple. Since the forces are equal and opposite the net force created
by a couple is zero. The vector from the ground pivot to the top force is rAB and to the bot-
tom force is rAC, and these vectors are also equal and opposite. The net torque created by
the forces is

 = × + × − = ×
2 2

T AB
e

AC
e

AB er
F

r
F

r F

There is no such thing as a pure torque in nature – all torques are created by force couples
as in this example.

B

C
Motor

Fe/2

Fe/2

rAB

rAC

FIGURE 7.19
A motor is used to drive the link.

404 Introduction to Mechanism Design

Now consider the problem of finding the net moment created by the couple on an arbi-
trary point P on the link as shown in Figure 7.20.

 = × + × −
2 2

M PB
e

PC
er

F
r

F
 (7.47)

But rPB can be written as the sum of

 = +PB PA ABr r r

and rPC is

 = +PC PA ACr r r

But rAC is equal and opposite to rAB, so that

 = −PC PA ABr r r

Substituting this into Equation (7.47) gives

 () ()= + × + − × −
2 2

M PA AB
e

PA AB
er r

F
r r

F

Using the distributive property of the cross-product results in

= × + × − × + ×

= × =

2 2 2 2
M

M T

PA
e

AB
e

PA
e

AB
e

AB e

r
F

r
F

r
F

r
F

r F

Notice that all reference to point P has vanished! The conclusion is that it does not matter
where we apply a torque to the link; the moment created by the torque is unaffected by
its location. Henceforth, we will assume that the motor provides a pure torque to the link,

B

P

C Motor

Fe/2

Fe/2

rAB

rPA

rAC

FIGURE 7.20
Finding the moment created by the force couple on an arbitrary point P on the link.

405Force Analysis on Linkages

and we can apply this torque to any point on the link that is convenient. When we sum
moments about the center of mass of a link (as in Case 1, above) we will apply the motor
torque to the center of mass, and when we sum moments about the ground pivot (as in
Case 2, above) we will apply the motor torque to the ground pivot.

7.3 Force Analysis on a Single Link

We now have enough background material to begin analyzing forces on a linkage. Recall
that we will be conducting inverse dynamics; that is, given a set of positions, velocities, and
accelerations, we wish to find the forces that would be necessary to produce this motion.
To conduct our analysis, we will employ Newton’s second law:

 ∑ ∑ α= =m M I
i

i g

i

i gF a (7.48)

The first equation states that the sum of all forces on the link is equal to its mass multi-
plied by the acceleration of the center of mass of the link. In the second equation, we sum
moments (or torques) also about the center of mass. The result of this summation is the mass
moment of inertia – also taken about the center of mass – multiplied by the angular accel-
eration of the link.

Since we have already performed a position/velocity/acceleration analysis, the right-
hand sides of Equations (7.48) are known, and we will be solving for the forces on the
left-hand side of the equations. Let us begin with a simple example: the force analysis of
a single link. Figure 7.21 shows a single link that has been pinned to ground at point A
and is free to rotate. A known force, FB, has been applied at B, and we wish to solve for the
torque, T, that is necessary to drive the link. We would also like to solve for the force, FA,
that keeps the link pinned to the ground. Below are definitions of some of the important
quantities for this problem:

FB = force on pin B (an externally applied force, assumed known)
FA = force on pin A (the reaction force from the ground pivot)
T = applied torque (usually from a motor attached to the link)
ag = acceleration at center of mass of link

B

A

T

rgB

rgAFA

FB

FIGURE 7.21
Diagram of a single link showing pin forces and applied torque.

406 Introduction to Mechanism Design

α = angular acceleration of the link
rgA = vector from the center of mass to point A
rgB = vector from the center of mass to point B

Since the vectors rgA and rgB are attached to the link, we assume that these are known. In a
later section, we will discuss a method for solving for these vectors explicitly. As usual, we
start by making a list of knowns and unknowns

m I

T

g g gA gB B

A

θ ω αknown: , , , , , , , ,

find: ,

a r r F

F

First, apply Newton’s second law for forces

 ∑ = = +m
i

i g B AF a F F (7.49)

Rearrange this equation so that the knowns are on the right side, and the unknowns are
on the left.

 = −mA g BF a F (7.50)

Remember that this is actually two equations, one for the x component and one for the y
component. Next, we will examine the rotational equation of motion,

 ∑ α=M I
i

i G (7.51)

The sum of moments on the left side of the equation derive from two sources: the moments
created by the forces acting on the link and the applied torque, T. As described earlier, we
must calculate each moment about the center of mass of the link. The moment created by
the force acting on point A can be calculated using the cross-product of the vector from the
center of mass to point A with the force at point A

 = ×A gA AM r F (7.52)

and a similar expression can be found for the force at point B. Adding all of the torques
and moments on the link gives

 ∑ α= = × + × +ˆ ˆM I k Tk
i

i g gB B gA Ar F r F (7.53)

where the angular acceleration and applied torque has been multiplied by k̂ to account for
the fact that it points out of the page in this 2D problem. To simplify this equation, evaluate
the cross-products

i j k

r r

F F

r F r F kgB B gBx gBy

Bx By

gBx By gBy Bx()× = = −

ˆ ˆ ˆ

0

0

ˆr F

407Force Analysis on Linkages

i j k

r r

F F

r F r F kgA A gAx gAy

Ax Ay

gAx Ay gAy Ax()× = = −

ˆ ˆ ˆ

0

0

ˆr F (7.54)

Let us define a new set of vectors that are normal to the position vectors rgA and rgB. We can
use the formula for finding a perpendicular vector to write

r

r

r

r
gA

gAy

gAx

gB

gBy

gBx

=
−

=

−

s s (7.55)

Then the cross-product terms become

 () ()× = ⋅ × = ⋅ˆ ˆk kgA A gA A gB B gB Br F s F r F s F (7.56)

Thus, we have converted the cross-products in Equation (7.53) to dot products.
If the preceding seems a little “mathemagical” to you, here is an alternative approach.

The scalar triple product is often used in mathematics to calculate the volume of a paral-
lelpiped (a solid body of which each face is parallelogram).

 ()= ⋅ ×V a b c (7.57)

where a, b, and c are vectors along the sides of the parallelpiped. One property of the scalar
triple product is that

 () ()⋅ × = ⋅ ×a b c b c a (7.58)

Since rgA and FA lie in the same 2D plane, their cross-product points out of the plane in the
k̂ direction. To find the magnitude of the moment created by FA, we can take the dot product
of k̂ with rgA × FA

 ()= ⋅ ×ˆM kA gA Ar F (7.59)

But, according to Equation (7.58) this can be rearranged to form

 ()= ⋅ ×ˆM kA A gAF r (7.60)

The cross-product ×k̂ rgA results in a vector perpendicular to both k̂ and rgA, in other words,
sgA (see Figure 7.22). Thus

 = ⋅ = ⋅MA A gA gA AF s s F (7.61)

as we found earlier. Having dot products instead of cross-products will make our equa-
tions of motion much simpler to write out. Please note that this conversion only works for
2D systems; for 3D systems, you will need to perform the full cross-product operations.

Substituting Equation (7.56) into Equation (7.53) and dividing out the k̂ gives

 α = ⋅ + ⋅ +I Tg gB B gA As F s F (7.62)

408 Introduction to Mechanism Design

Rearrange this so that the knowns are on the right side and the unknowns are on the left.

 T IgA A g gB Bα⋅ + = − ⋅s F s F (7.63)

Thus, the three equations of motion for the link are

α

= −

⋅ + = − ⋅

m

T I

A g B

gA A g gB B

F a F

s F s F
 (7.64)

Remember that the dot product can also be written in matrix form as

 ⋅ =gA A gA
T

As F s F (7.65)

Thus, we can rewrite the equations of motion in matrix form as

α

=

−
− ⋅

1

2 21

T

m

IgA
T

A g B

g gB B

U Z

s
F a F

s F
 (7.66)

where

 =

1 0
0 12U (7.67)

is the 2 × 2 identity matrix and

 =

0
021Z (7.68)

is a 2 × 1 matrix of zeros. The true form of the matrix equation may be a little obscure,
since there are so many vectors within the matrix and vector of knowns. Writing out the
equation in full gives

α

=
−
−

− ⋅

1 0 0
0 1 0

1s s

F
F

T

ma F

ma F

IgAx gAy

Ax

Ay

gx Bx

gy By

g gB Bs F

 (7.69)

z

y

k

x

s
r

FIGURE 7.22

The vectors r, s, and k̂ are mutually perpendicular.

409Force Analysis on Linkages

Remember that the dot product ⋅gB Bs F produces a scalar. As before, we can write this equa-
tion more compactly in matrix form

 =Sf t (7.70)

where

1

2 21

TgA
T

AS
U Z

s
f

F=

=

 (7.71)

α

=
−

− ⋅

m

I
g B

g gB B
t

a F

s F
 (7.72)

As with the kinematic equations, this can easily be solved using MATLAB. The compact
form of Equations (7.67) and (7.68) may take some time to get used to, but the resulting
code will be simple to write and to scan for errors. Spend a little time now making sure
that you understand how Equation (7.66) translates into Equation (7.69) – it will be worth
it in the end!

7.3.1 Another Useful MATLAB® Function

Performing the dynamic analysis requires that we know the vectors that point from the
center of mass of the link to each pin, shown as rgA, rgB, rgC in Figure 7.23. In addition, we
must find the normal to each of these vectors, sgA, sgB, and sgC. It is interesting to note that
we do not require the vectors rgA, rgB, rgC for our force computations, but we will end up
calculating them anyway as part of the process of calculating sgA, sgB, and sgC. Since we
must calculate these vectors for each link, it is clear that we have a lengthy and repetitive
task ahead. The simplest approach is to define a new MATLAB function that will return
the normal vectors based on a few link parameters that we send it.

Additionally, we must compute the acceleration at the center of mass for each link in
order to assemble the t vector in Equation (7.72). If we know the acceleration at pin A
(from the kinematic analysis performed earlier) then we may use the relative acceleration
formula

 α ω= + − 2l lg A Ag Ag Ag Aga a n e (7.73)

B
A

C

rgB

rgA

rgC

sgB

sgA

sgC

FIGURE 7.23
We must now find the set of vectors that point from the center of mass of the link to each pin.

410 Introduction to Mechanism Design

to compute the acceleration at the center of mass. The function FindAcc will come in
handy here. Note that eAg points from pin A to the center of mass, instead of the other way
around – see Figure 7.24.

A generic three-pin link is shown in Figure 7.25. The distance from A to B is a, and the
distance from A to C is c; both of these are known from the geometry of the linkage, as
is the angle γ. It is a simple matter to use the Mass Properties feature in SOLIDWORKS
to arrive at the coordinates of the center of mass of the link, (), .x y Along the way, we can
also determine the link’s mass and moment of inertia (about its center of mass). Here we
assume that the origin of the part has been defined at point A. In the analysis that follows,
we will use a local coordinate system that has the x axis aligned with AB and the y axis
pointed upward. Vectors in the local coordinate system will be indicated with a prime. We
will return to the global coordinate system at the end by adding the angle of the link, θ, as
shown in Figure 7.26.

The input and output structure of our new function should be

a c x y

lgA gB gC Ag Ag Ag

γ θInputs: , , , , ,

Outputs: , , , , ,s s s e n

nAg eAg

l AgA

FIGURE 7.24
The vector rAg extends from point A to the center of mass. We use this, along with the unit vectors eAg and nAg to
find the acceleration of the center of mass.

A

C

B

a

γ

x

c

y

FIGURE 7.25
Input parameters for the LinkCG function. Most of these are known from the geometry of the linkage, x and y
are calculated using the Mass Properties feature in SOLIDWORKS.

411Force Analysis on Linkages

As shown in Figure 7.27, the local vector from A to B is found to be

 ′ =

1
0

aABr (7.74)

Also, the local vector from the center of mass to A is

 ′ = −

x
ygAr (7.75)

We can use simple vector addition to find r′gB and r′gC.

 ′ = ′ + ′gB AB gAr r r

 ′ = ′ + ′gC AC gAr r r (7.76)

A

B

C

θ

FIGURE 7.26
The angle θ is measured from the horizontal to the line AB.

A B

C

rgC

rgBrgA

rAB

rAC

FIGURE 7.27
The local x axis is aligned with AB, r′AB points from A to B and r′AC points from A to C.

412 Introduction to Mechanism Design

The perpendicular vectors can be found in the usual manner

r

r

r

r

r

r
gA

gAy

gAx
gB

gBy

gBx
gC

gCy

gCx
s s s′ =

− ′
′

′ =

− ′
′

′ =

− ′
′

 (7.77)

The distance from point A to the center of mass is found by taking the magnitude of rgA.

 = +2 2l x yAg (7.78)

The local unit vector pointing from A to the center of mass can also be found using rgA

 ′ = − ′ ′ = − ′1 1
l l

Ag
Ag

gA Ag
Ag

gAe r n s (7.79)

Finally, we must transform these vectors from the local coordinate system to the global
coordinate system by rotating each one through the angle θ. Recall the definition of the
rotation matrix from Chapter 4:

 θ θ
θ θ

= −

cos sin
sin cos

R (7.80)

The vectors in the global coordinate system can be written

 = ′ = ′ = ′gA gA gB gB gC gCs Rs s Rs s Rs (7.81)

And a similar transformation can be performed on the unit vectors. We are now ready to
begin defining the function LinkCG that will execute these calculations for any three-pin
link. If a link has only two pins we can enter zero for the length c and for the angle γ. Open
a new MATLAB script and type the following header:

% LinkCG.m
% calculates the vectors associated with the center of mass of a
% two or three pin link.
%
% *** Inputs ***
% a = length of link from pin A to pin B
% c = length from pin A to pin C (zero if two-pin link)
% gamma = angle between AB and AC (zero if two-pin link)
% xbar = [xbar,ybar]coordinates of CM in local coordinate system
% theta = angle of link in global coordinate system
%
% *** Outputs ***
% eAg,nAg = unit vector and normal point A to CM
% LAg = length from point A to CM
% sgA = normal to vector from CM to A
% sgB = normal to vector from CM to B
% sgC = normal to vector from CM to C

function [eAg,nAg,LAg,sgA,sgB,sgC] = LinkCG(a,c,gamma,xbar,theta)

413Force Analysis on Linkages

First, calculate the vectors from the center of mass to the pins in the local coordinate system

rAB = a*[1; 0]; % local vector from A to B
rAC = c*[cos(gamma); sin(gamma)]; % local vector from A to C
rgA = [-xbar(1); -xbar(2)]; % local vector from CM to A
rgB = rAB + rgA; % local vector from CM to B
rgC = rAC + rgA; % local vector from CM to C

Next, we compute the length from the point A to the center of mass, and the unit vector
and normal associated with the vector rAg.

LAg = norm(rgA); % length from A to CM
eAg = -(1/LAg)*rgA; % unit vector from A to CM
nAg = [-eAg(2); eAg(1)]; % unit normal of vector from A to CM

The norm function in MATLAB calculates the magnitude of a vector. Dividing a vector by
its length gives a unit vector. Now calculate the normal vectors s′gA, s′gB, s′gC.

sgA = [-rgA(2); rgA(1)]; % local vector normal to rGA
sgB = [-rgB(2); rgB(1)]; % local vector normal to rGB
sgC = [-rgC(2); rgC(1)]; % local vector normal to rGC

Finally, define the rotation matrix and transform the vectors into the global coordinate
system

R = [cos(theta) -sin(theta); % rotation matrix
 sin(theta) cos(theta)];

% transform to global coordinate system
sgA = R*sgA; sgB = R*sgB; sgC = R*sgC;
eAg = R*eAg; nAg = R*nAg;

That’s it! This was the most complicated function we have developed so far, but it will save us
quite a bit of time and effort in performing force analysis. This function will work for two or
three-pin linkages. If you encounter a four-pin linkage, you must extend the function to han-
dle the fourth pin. Luckily, none of the linkages that we will study have more than three pins.

We now have all the tools we need to begin conducting force analysis on our family of
linkages. We will begin with the humble threebar linkage, and conclude with the sixbar. We
will perform a general force analysis for each linkage, and then conduct a case study of a spe-
cific, practical linkage for each linkage type. Because of the large number of quantities that
must be computed, our force analysis programs will become rather long and complicated.
If you keep in mind that each program consists of a set of small, discrete modules (position,
velocity, acceleration, and force analysis) then the process will seem less intimidating.

7.3.2 Force Analysis of a Threebar Linkage using MATLAB®

We will now employ the techniques that we have developed to conduct a force analysis of
the threebar linkage shown in Figure 7.28. For this simple example we will use arbitrary
values for the masses and moments of inertia of the links. The next section will demon-
strate using SOLIDWORKS to calculate these values. The crank and slider are assumed to
be symmetric, so that their centers of mass lie at the geometric center of each link. Thus,

414 Introduction to Mechanism Design

 = =50 mm 150 mm2 3x x

 = =0 mm 0 mm2 3y y

The (arbitrary) values for the mass and moment of inertia of each link are

 = =0.1 kg 0.3 kg2 3m m

 = ⋅ = ⋅0.0002 kg m 0.0020kg m2
2

3
2I I

The applied force is 100 N vertically downward at the point P. The goal of the exercise is to
find the driving torque, T2, necessary to move the crank through one rotation and to find
the resulting pin forces.

We are now ready to begin modifying our MATLAB code to perform the force analysis
on the threebar linkage. Begin by using Save As to save a copy of your threebar accelera-
tion analysis code. Add the code below to the program at the beginning.

% Threebar_Force_Analysis.m
% Conducts a force analysis on the threebar crank-slider linkage
% and calculates the driving torque and pin forces
% by Eric Constans, June 16, 2017

% Prepare Workspace
clear variables; close all; clc;

% Linkage dimensions
a = 0.100; % crank length (m)
d = 0.150; % length between ground pins (m)
p = 0.300; % slider length (m)

% ground pins
x0 = [0;0]; % ground pin at A (origin)
xD = [d;0]; % ground pin at D
v0 = [0;0]; % velocity of origin
a0 = [0;0]; % accel of origin
Z2 = zeros(2); Z21 = zeros(2,1); Z12 = zeros(1,2); U2 = eye(2);

A

B

b
300

100 D

150

(All dimensions in millimeters)

Crank length: 100 Crank angular velocity: 10 rad/s
Crank angular acceleration: 0 rad/s2

Force at pin P: 100 N downward
Slider length: 300
Distance between ground pins: 150

P

FP

T2

FIGURE 7.28
The threebar linkage used in the example problem.

415Force Analysis on Linkages

% CM locations
xbar2 = [0.050; 0]; % CM of crank from point A
xbar3 = [0.150; 0]; % CM of slider from point B

Here we have initialized the matrices Z2, Z21, Z12, and U2 for use in the force matrix later
in the program. Next, define the inertial properties of each link:

% Inertial properties
m2 = 0.1; % mass of crank (kg)
m3 = 0.3; % mass of slider (kg)
I2 = 0.0002; % moment of inertia of crank about CM (kg-m2)
I3 = 0.0020; % moment of inertia of slider about CM (kg-m2)

For this example, the load applied at point P is 100 N downward, so we define the applied
loads as

% Applied loads
FP = [0; -100]; % force at point P (N)

Next, allocate memory for the driving torque and pin forces, as well as the accelerations of
the center of mass of each link.

% Angular velocity and acceleration of crank
omega2 = 10; % angular velocity of crank (rad/sec)
alpha2 = 0; % angular acceleration of crank (rad/sec2)

N = 361; % number of times to perform position calculations
[xB,xP] = deal(zeros(2,N)); % allocate space for positions
[vB,vP] = deal(zeros(2,N)); % allocate space for velocities
[aB,aP,a2,a3] = deal(zeros(2,N)); % allocate space for accelerations
[FA,FB,FC] = deal(zeros(2,N)); % pin forces

[theta2,theta3] = deal(zeros(1,N)); % link angles
[omega3,alpha3] = deal(zeros(1,N)); % angular vel and accel
[b,bdot,bddot,T2] = deal(zeros(1,N)); % b, bdot, bddot, driving torque

Of course, each force has an x and y component, but the torque has only a single compo-
nent in the k̂ direction. Inside the main loop, we use the LinkCG function to calculate the
vectors used in the force analysis.

for i = 1:N
 theta2(i) = (i-1)*(2*pi)/(N-1);
 theta3(i) = atan2(-a*sin(theta2(i)),d - a*cos(theta2(i)));
 b(i) = (d - a*cos(theta2(i)))/cos(theta3(i));

% calculate unit vectors
 [e2,n2] = UnitVector(theta2(i));
 [e3,n3] = UnitVector(theta3(i));
 [eA2,nA2,LA2,s2A,s2B,~] = LinkCG(a,0,0,xbar2,theta2(i));
 [eB3,nB3,LB3,s3B,s3D,s3P] = LinkCG(b(i),p,0,xbar3,theta3(i));

The crank is a two-pin link, so we need only supply the length a and the location of the
center of mass. The tilde (~) is used to indicate that we do not need the final return value

416 Introduction to Mechanism Design

from the LinkCG function, since there is no third pin. The slider is a three-pin link, with
pins B, D and P. Since all three pins lie in a straight line, the internal angle γ is zero. The
distance from pin B to pin D is given by the length b that is calculated in the position analy-
sis. We next perform a velocity and acceleration analysis on the linkage, as usual, and we
then calculate the acceleration of the center of mass of each link.

% conduct velocity analysis to solve for omega3 and omega4
 A_Mat = [b(i)*n3 e3];
 b_Vec = -a*omega2*n2;
 omega_Vec = A_Mat\b_Vec; % solve for angular velocities

 omega3(i) = omega_Vec(1); % decompose omega_Vec into
 bdot(i) = omega_Vec(2); % individual components

% calculate velocity at important points on linkage
 vB(:,i) = FindVel(v0, a, omega2, n2);
 vP(:,i) = FindVel(vB(:,i), p, omega3(i), n3);

% conduct acceleration analysis to solve for alpha3 and bddot
 ac = a*omega2^2;
 at = a*alpha2;
 bC = 2*bdot(i)*omega3(i);
 bc = b(i)*omega3(i)^2;

 C_Mat = A_Mat;
 d_Vec = -at*n2 + ac*e2 - bC*n3 + bc*e3;
 alpha_Vec = C_Mat\d_Vec; % solve for angular accelerations

 alpha3(i) = alpha_Vec(1);
 bddot(i) = alpha_Vec(2);

% calculate acceleration at important points on linkage
 aB(:,i) = FindAcc(a0, a, omega2, alpha2, e2, n2);
 aP(:,i) = FindAcc(aB(:,i), p, omega3(i), alpha3(i), e3, n3);
 a2(:,i) = FindAcc(a0, LA2, omega2, alpha2, eA2, nA2);
 a3(:,i) = FindAcc(aB(:,i), LB3, omega3(i), alpha3(i), eB3, nB3);

We now define the S matrix and t vector as

% Conduct force analysis
 S_Mat = [U2 -U2 Z2 Z21;
 Z2 U2 -U2 Z21;
 s2A’ -s2B’ Z12 1;
 Z12 s3B’ -s3D’ 0;
 Z12 Z12 e3’ 0];

 t_Vec = [m2*a2(:,i);
 m3*a3(:,i) - FP;
 I2*alpha2;
 I3*alpha3(i) - dot(s3P,FP);
 0];

Remember that the prime operator (‘) gives the transpose of a matrix or vector. And finally,
we solve for the pin forces and driving torque:

417Force Analysis on Linkages

 f_Vec = S_Mat_Vec;
 FA(:,i) = [f_Vec(1); f_Vec(2)];
 FB(:,i) = [f_Vec(3); f_Vec(4)];
 FD(:,i) = [f_Vec(5); f_Vec(6)];
 T2(i) = f_Vec(7);

The driving torque for the example linkage is shown in Figure 7.29.

7.4 Force Analysis of the Threebar Slider-Crank

We are now prepared to turn our attention to a more interesting problem: the force analy-
sis of a threebar linkage. A general threebar linkage is shown in Figure 7.30. For this case,
we assume that a known load (FP) is applied to point P on the linkage. The goal of our
analysis is to find the motor torque, T2, required to drive the crank through a rotation.
Along the way we will solve for the forces at all of the pins. As before, we assume that a
complete position, velocity, and acceleration analysis has been conducted earlier.

To perform the force analysis, we first draw a free-body diagram of each link, as shown
in Figure 7.31. It is important to remember that the pin force at B is equal and opposite
when applied to the crank and slider. For example, the force at pin B on the slider has been
denoted FB, while the same force on the crank is denoted –FB. We have arranged the minus
signs such that each link receives a “positive” and “negative” force – this will lend sym-
metry to the force and moment equations that will make them easy to scan for errors. This
sign convention will, of course, produce the correct results as long as we remain consistent
throughout the derivation. Summing forces and moments for the crank gives

0

0

–10

10

–20

–30

–40

–50

–60
60 120 180 240 300 360

Crank angle (°)

Driving torque on the threebar linkage

To
rq

ue
 (N

m
)

FIGURE 7.29
Driving torque for the example threebar linkage.

418 Introduction to Mechanism Design

 − = 2 2mA BF F a (7.82)

 α× + × − + =r F r F T2 2 2 2 2IA A B B (7.83)

Doing the same for the slider results in

 − + = 3 3mB D PF F F a (7.84)

 α× + × − + × =r F r F r F3 3 3 3 3IB B D D P P (7.85)

Remember that the accelerations on the right-hand side of the equations are taken at the
center of mass of each link, and the moments of inertia are also calculated about the cen-
ter of mass. The g subscript has been dropped from each quantity to make the equations
neater and more compact. We may use the vector triple product identity to simplify the
moment equations in (7.83) and (7.85).

 α⋅ − ⋅ + =2 2 2 2 2T IA A B Bs F s F (7.86)

 α⋅ − ⋅ + ⋅ =3 3 3 3 3IB B D D P Ps F s F s F (7.87)

If we rearrange the equations to place the unknowns on the left-hand side and the knowns
on the right, we obtain

A

B

D

P

FP

T2

FIGURE 7.30
The threebar linkage above has an applied load FP at point P. Our goal is to determine the driving torque, T2, nec-
essary to sustain the motion and drive the loads. Along the way, we will calculate the resulting forces at the pins.

P

FP

FB

r3B

r3D
r2B

r2A
r3P

FA
–FD

–FB

T2

FIGURE 7.31
Free-body diagram of each link in the threebar linkage. Note the equal and opposite force placed at the pin joint B.

419Force Analysis on Linkages

α

α

− =

− = −

⋅ − ⋅ + =

⋅ − ⋅ = − ⋅

2 2

3 3

2 2 2 2 2

3 3 3 3 3

m

m

T I

I

A B

B D P

A A B B

B B D D P P

F F a

F F a F

s F s F

s F s F s F

 (7.88)

These are six equations (remember that each force equation has an x and y component) but
we have seven unknowns: the x and y components of FA, FB, FD plus T2, which is a scalar. We
require one more equation to be able to solve for the system of forces and the driving torque.

Recall that a half-slider joint removes only one degree of freedom: the slider cannot move in
the direction perpendicular to the slot. It follows that the force at pin D must be perpendicular
to the slot at all times, and there can be no component of FD that is parallel to the slot. The dot
product of two vectors is zero if the vectors are orthogonal to each other, so that we can write

 ⋅ = 03DF e (7.89)

where e3 is the unit vector directed along the slot, which we have assumed runs between
point B and point P. Equation (7.89) gives the seventh equation, and we are now ready to
build our force matrix equation.

To place these equations into matrix form, we must first modify the dot product notation
slightly. The reader may verify through direct computation that

 { }⋅ = + =

=s F s Fs F s F s s

F

F
x x y y x y

x

y

T (7.90)

since the normal has been defined as a column vector. The matrix form of the force
 equations in its compact form is

 =Sf t

where

 A
T

B
T

B
T

D
T

T

=

−
−

−
−

0 0
0 0

0

0

0 0

1

0

0

2 2 2 21

2 2 2 21

2 2 12

12 3 3

12 12 3

S

U U
U U

s s

s s

e

 (7.91)

 α
α

=

=
−

−

0

2

2 2

3 3

2 2

3 3 3T

m
m

I

I

A

B

D

P

P
T

P

f

F
F
F

t

a
a F

s F

 (7.92)

where

 { }=

 =

 = =

U 0 0 01 0

0 1
0 0
0 0

0 0
0

0
2 2 12 21 (7.93)

420 Introduction to Mechanism Design

Since each of the forces has both an x and y component, the S matrix has dimension 7 × 7,
and the f and t vectors have dimension 7 × 1. We must take special care to ensure that the
number of zeros in a given location keeps the dimension of the matrix correct. The reader
may wish to write out the S matrix in its 7 × 7 glory to ensure understanding.

7.4.1 Code Verification

Verifying the code for the force analysis is quite a bit trickier than it was for acceleration
and velocity analysis. For force analysis, there are no obvious derivatives to compute with
the Derivative _ Plot routine. We will take two very different approaches to verifying
the code: one static and the other dynamic.

7.4.1.1 Static Verification

If we consider the threebar mechanism as a single unit, we may draw a free-body diagram
of the linkage as shown in Figure 7.32. The only external forces that support the linkage and
keep the ground pins from moving are FA and FD. Adding external forces on the linkage gives:

 + − = mP A DF F F a (7.94)

where m is the mass of the entire linkage and a is the acceleration of the composite center
of mass of the linkage. Let us assume that the angular velocity of the crank is very small so
that we have, in effect, a static system. In this case, the acceleration of the composite center
of mass is also very small, so that

 − ≈ −A D PF F F (7.95)

Figure 7.33 shows a comparison of the sum of the vertical ground pin forces with the load
applied at point P. The crank angular velocity was set to 0.001 rad/s, which makes the
accelerations negligible. We could also arrive at this result by setting all of the masses and
moments of inertia to zero temporarily.

7.4.1.2 Verifying the Code using the Energy Method

A second method for verifying the code uses the principle of Conservation of Energy. This
method is more complicated than the static method, but can be used for non-negligible

A

P

D

FP

T2

FA –FD

FIGURE 7.32
Free-body diagram of threebar mechanism as a unit. Here we are performing a static force analysis on the
 linkage by assuming that the crank angular velocity is very small.

421Force Analysis on Linkages

crank speeds. From the start of the simulation to an arbitrary time t, the work done by the
external torques and external loads must be balanced by the total change in kinetic energy
of the linkage.

 = ∆W KEext (7.96)

The work done by the crank torque is

 ∫ ω= 2

0

2 2W T dtT

t

 (7.97)

The work done by the external load is

 ∫= ⋅
0

W dtFP

t

P PF v (7.98)

while the change in kinetic energy is

 ()∆ = − 0KE KE t KE (7.99)

where KE(t) is the total kinetic energy of the linkage at the current time and KE0 is the
kinetic energy at t = 0. Equating the external work with the change in kinetic energy gives:

 ∫ ∫ω ()+ ⋅ = −
0

2 2

0

0T dt dt KE t KE
t t

P PF v (7.100)

0
0

60

70

80

90

100

110

50

40

20

30

10

60 120 180 240 300 360
Crank angle (°)

Static forces on threebar linkage

FAy – FDy
–FPy

Fo
rc

e (
N

)

FIGURE 7.33
The sum of the vertical ground pin forces compared with the vertical load applied at point P for the example
problem. The two curves are identical.

422 Introduction to Mechanism Design

Rather than integrating, it is much simpler to differentiate Equation (7.100) with respect to
time and work with power, rather than energy.

 ω ()+ ⋅ =2 2T
d
dt

KE tP PF v (7.101)

If we define the external power as the power delivered by the external forces and torques to
the linkage, we have

 ω= + ⋅2 2P Text P PF v (7.102)

The kinetic energy of a single link (e.g. the crank) is given by the summation of its transla-

tional kinetic energy = ⋅v v
1
22 2 2 2KE mT and rotational kinetic energy ω=

1
22 2 2

2KE IR

 ω= ⋅ +1
2

1
22 2 2 2 2 2

2KE m Iv v (7.103)

We employ the product rule to differentiate the translational kinetic energy with respect
to time

 ⋅

 = ⋅ + ⋅ = ⋅1

2
1
2

1
22 2 2 2 2 2 2 2 2 2 2 2

d
dt

m m m mv v a v v a a v (7.104)

Since the rotational kinetic energy is expressed without vectors, we use the chain rule to
differentiate

 ω ω ω α ω()

 = =1

2 2 2
2

2 2 2 2 2 2
d
dt

I I
d
dt

I

The inertial power of the crank is then

 α ω= ⋅ +2 2 2 2 2 2 2P m Ia v (7.105)

and the total inertial power of the linkage at a given time is

 ∑ α ω()= ⋅ +P m Ikin

i

i i i i i ia v (7.106)

Thus, the instantaneous power relation is

 =P Pext kin (7.107)

Since we can compute the inertial power of each link using the same equation, we will
define a new function, InertialPower to perform the calculations.

% InertialPower.m
% Computes the total inertial power of a link
% m = mass of link
% I = moment of inertia of link
% v = velocity of CM of link

423Force Analysis on Linkages

% a = acceleration of CM of link
% omega = angular velocity of link
% alpha = angular acceleration of link

function P = InertialPower(m, I, v, a, omega, alpha)

P = m*dot(v,a) + I*omega*alpha; % inertial power of link

After computing the forces and torques on the linkage, add the following lines of code just
before the final end statement.

 P2 = InertialPower(m2,I2,v2(:,i),a2(:,i), omega2, alpha2);
 P3 = InertialPower(m3,I3,v3(:,i),a3(:,i),omega3(i),alpha3(i));
 PKin(i) = P2 + P3; % Inertial power
 PF = dot(FP,vP(:,i)); % Power from external force FP
 PT = T2(i) * omega2; % Power from driving torque T2
 PExt(i) = PF + PT; % Total external power

Finally, add the following plotting commands to compare the computed kinetic power
with the external power. Both plots should overlay each other exactly, regardless of crank
speed. The power plot for the example is shown in Figure 7.34.

% plot the kinetic and external powers
plot(theta2*180/pi,PKin,’o’,’Color’,[153/255 153/255 153/255])
hold on
plot(theta2*180/pi,PExt,’Color’,[0 110/255 199/255])
legend(‘Kinetic’,’External’,’Location’,’Southeast’)

0

0

–10

–30

–20

20

30

10

60 120 180 240 300 360
Crank angle (°)

External vs. kinetic power

Kinetic
External

Po
w

er
 (W

)

FIGURE 7.34
Comparison of external and kinetic power for the example problem. Both traces overlay each other exactly, and
we conclude that the driving torque is being calculated correctly.

424 Introduction to Mechanism Design

title(‘External vs. Kinetic Power’)
xlabel(‘Crank angle (degrees)’)
ylabel(‘Power (W)’)
grid on
set(gca,’xtick’,0:60:360)
xlim([0 360])

7.4.2 Summary

We have developed a method for conducting the force analysis on a simple linkage – the
threebar. In addition, we have also demonstrated two methods for checking our calculations:
one static and the other dynamic. Our next step will be to tackle a more realistic threebar
problem, the door closing mechanism. Afterwards, we will conduct force analysis on more
complicated mechanisms. Although the matrix equations will become more involved as
we proceed, the underlying method of constructing free-body diagrams and summing
forces and torques will remain the same.

7.5 Force Analysis Example 1 – The Threebar
Door Closing Mechanism

As a first force analysis case study we choose a simple mechanism: the threebar door
closer. Figure 7.35 shows a schematic of the mechanism. A heavy steel door pivots on its

Door

D

Q

FQ

B

A

Spring

FIGURE 7.35
A threebar linkage has been selected for use as a door closing mechanism. The user pushes the door at its end
with a force FQ and a spring pulls the door closed when not in use.

425Force Analysis on Linkages

hinges at point A. An extension spring is attached between points B and D. As the door is
opened, the length of the spring increases, which exerts a tensile force between B and D.
We assume that the spring is unstretched when the door is in its closed position. A person
wishing to open the door pushes with a force FQ at the end of the door, and FQ is always
perpendicular to the plane of the door.

Figure 7.36 shows the dimensions of the steel door, which is a heavy commercial unit
used for fire protection – hence, the desire to keep it closed when not in use. Much of the
force exerted by the user will go into accelerating the door from its resting position.

The dimensions of the door closing mechanism are shown in Figure 7.37. The spring has
a constant of 1000 N/meter of stretch. That is, if we stretch the spring so that it is 1 m longer
than its natural length then it will exert a tensile force of 1000 N.

Finally, Figure 7.38 shows the door closing mechanism in the closed position. We assume
that the spring is unstretched in this position and exerts no tensile force. As seen in the
figure, the unstretched length of the spring is

 = −0b d a (7.108)

Thus, we may compute the amount that the spring has stretched, x, as

 = − 0x b b (7.109)

The force exerted by the spring is calculated using the spring law

 = kxkF (7.110)

where k is the spring constant (1000 N/m in this case).

Mass: 60 kg

0.05
All dimensions are in meters.

1.0

2.
0

FIGURE 7.36
Dimensions of the door. The door is hollow with steel cladding and has a mass of 60 kg.

426 Introduction to Mechanism Design

7.5.1 The Problem Statement

The goal of this case study is to determine the maximum amount of force, FQ, exerted by
the user in opening the door to an angle of θ2 = 90°. Because the door is so massive, the
user must exert a pushing force to get the door moving, and then a pulling force to get it
to stop at 90°. The spring should be strong enough to close the door (and possibly to assist
the user in stopping the door at 90°), but not so strong that it prevents the user from eas-
ily opening the door. The user should be able to open the door in a reasonable amount of
time: for this study, we choose 2 seconds as the time interval between θ2 = 0° and θ2 = 90°.
We will follow a “recipe” to solve this problem, and the same recipe will be used in the
remaining case studies.

 1. Determine the critical dimensions of the linkage.
 2. Calculate the inertial properties of each body in the mechanism.

Spring constant: 1000 N/m

0.4

1.0

0.1
5

D

Q

FQ

B

A

FIGURE 7.37
Dimensions of the door closing mechanism. The spring has a constant of 1000 N/m of stretch.

B

a b

d

A D

FIGURE 7.38
View of the door closer mechanism with the door in the closed position. The spring is at its natural, unstretched
length in this position and exerts no force.

427Force Analysis on Linkages

 3. Determine the nature of the external forces acting on the mechanism.
 4. Draw free-body diagrams of each link in the mechanism showing internal and

external forces and moments.
 5. Determine the nature of the movement of crank. Does it move with constant angu-

lar velocity, or does it receive an acceleration pulse?
 6. Use the matrix equation given in the previous section to solve for the pin forces

and driving torque (or force) and plot the desired results.

Use Save As to save the threebar force analysis code to the file ThreebarDoorCloser.m.
We will modify this code to conduct the force analysis on the door closer mechanism.

7.5.1.1 Critical Dimensions of the Linkage

There are only two important dimensions for this linkage, the crank length and distance
between ground pins. We will also need the dimensions of the door for calculating its
moment of inertia, and the unstretched length of the spring will come in handy as well.
We have chosen an arbitrary total length of the slider to be 0.3 m; this is only used to find
the location of its center of mass. Modify the top of your code as follows:

% Threebar_Force_Analysis_DoorCloser.m
% Conducts a force analysis on the threebar crank-slider linkage
% used in the door-closer example
% and calculates the driving force and pin forces
% by Eric Constans, June 20, 2017

% Prepare Workspace
clear variables; close all; clc;

% Linkage dimensions
a = 0.150; % crank length (m)
d = 0.400; % length between ground pins (m)
p = 0.300; % total length of slider (m)
H = 2.0; % height of door (m)
W = 1.0; % width of door (m)
L = 0.050; % thickness of door (m)
b0 = d - a; % unstretched spring length
k = 1000; % spring constant (N/m)

% ground pins
x0 = [0;0]; % ground pin at A (origin)
xD = [d;0]; % ground pin at D
v0 = [0;0]; % velocity of origin
a0 = [0;0]; % accel of origin
Z2 = zeros(2); Z21 = zeros(2,1); Z12 = zeros(1,2); U2 = eye(2);

7.5.1.2 Inertial Properties of the Mechanism

There are two moving bodies in the mechanism: the door and the slider. The slider
is a relatively small piece of stamped steel, and its mass and moment of inertia may
be neglected relative to that of the door. The door is a rectangular parallelpiped with

428 Introduction to Mechanism Design

mass 60 kg. From the tables in the Appendix we see that the centroidal moment of inertia
of the door is

 ()= +
122

2 2I
m

W L (7.111)

It is easiest to have MATLAB perform this calculation, especially if we wish to use the code
to model doors with different dimensions.

% Inertial properties
m2 = 60; % mass of crank (kg)
m3 = 0.0; % mass of slider (kg)
I2 = (m2/12)*(W^2+L^2); % moment of inertia of crank about CM (kg-m2)
I3 = 0.0; % moment of inertia of slider about CM (kg-m2)

% CM locations
xbar2 = [W/2; 0]; % CM of crank from point A
xbar3 = [p/2; 0]; % CM of slider from point B

Since we have a force, FQ, acting at the end of the crank we must “change” the crank to a
three-pin link using our LinkCG function:

 [eA2,nA2,LA2,s2A,s2B,s2Q] = LinkCG(a,W,0,xbar2,theta2(i));

7.5.1.3 External Forces Acting on the Mechanism

Figure 7.39 shows the external forces acting on the bodies of the mechanism. The force
exerted by the user, FQ, creates a torque on the door given by

 = × ⋅ = ⋅ˆ
2 2T kQ Q Q Qr F s F (7.112)

where = 2r WQ e and W is the width of the door – the length from A to Q. The spring force
acts in the direction of the slider such that

 ()= − 0 3k b bkF e (7.113)

The spring exerts a force of equal magnitude and opposite direction on pin D, but this is
not important for our analysis since pin D is grounded.

7.5.1.4 Free-Body Diagrams of each Link in the Mechanism

The free-body diagrams of the door and slider can be seen in Figure 7.40. They are identical
to the diagrams of the threebar linkage from the previous section with the exception that
the driving torque, T2, has been replaced by an unknown driving force, FQ, and a spring
force has been added. The force equation for the door is

 − + = 2 2mA B QF F F a (7.114)

429Force Analysis on Linkages

Q

FQ

rQ

Fk

n2

n3

e3

e2

B

A

FIGURE 7.39
External forces acting on the door closer mechanism.

D

Q

FQ

FB

–FB
Fk

FA

–FD

B

B

A

FIGURE 7.40
Free-body diagrams of the door and slider.

430 Introduction to Mechanism Design

and its moment equation is

 α⋅ − ⋅ + ⋅ =2 2 2 2 2IA A B B Q Qs F s F s F (7.115)

The force equation for the slider requires the addition of the spring force

 − = −3 3mB D kF F a F (7.116)

Since the spring force is aligned with the link, it exerts no moment. Therefore, the moment
equation on the slider is the same as before.

 α⋅ − ⋅ =3 3 3 3IB B D Ds F s F (7.117)

The force at pin D acts normal to the slider, so that we have (as before)

 ⋅ = 03 De F (7.118)

And because the user force, FQ, acts perpendicular to the door

 ⋅ = 02 Qe F (7.119)

Arranging these equations into matrix form gives

A

T
B

T
Q

T

B
T

D
T

T

T

=

−
−

−

−

0
0 0

0

0 0

0 0 0

0 0 0

2 2 2 2

2 2 2 2

2 2 12 2

12 3 3 12

12 12 3 12

12 12 12 2

S

U U U
U U

s s s

s s

e

e

 (7.120)

 α
α

=

=

−

0
0

2 2

3 3

2 2

3 3

m
m

I
I

A

B

D

Q

k

f

F
F
F
F

t

a
a F

 (7.121)

As you can see, only slight modifications are needed to the threebar matrix equations
derived earlier. Of course, we must calculate the spring force at each time step as well.
Modify the S matrix and t vector in your code as follows:

% Conduct force analysis
 Fk = k*(b(i) - b0)*e3;
 S_Mat = [U2 -U2 Z2 U2;
 Z2 U2 -U2 Z2;
 s2A’ -s2B’ Z12 s2Q’;

431Force Analysis on Linkages

 Z12 s3B’ -s3C’ Z12;
 Z12 Z12 e3’ Z12;
 Z12 Z12 Z12 e2’];

 t_Vec = [m2*a2(:,i);
 m3*a3(:,i) - Fk;
 I2*alpha2(i);
 I3*alpha3(i);
 0;
 0];

7.5.1.5 Motion of the Crank

We wish the crank to start from a resting state at θ2 = 0° and end in a resting state at θ2 = 90°,
so the angular velocity of the crank will be non-constant. Let us use the technique of the
angular acceleration pulse developed earlier in Section 6.3. The opening of the door lasts
2 seconds, so that

 = 2 sT (7.122)

If the angular acceleration pulse starts and ends at zero, a suitable function is

 α π=

sin

2
2 A

T
t (7.123)

where A is the (unknown) amplitude of the acceleration pulse. The reader can easily
 confirm that this takes on the value of zero for t = 0 sec and t = T. Let us define the constant
λ = 2π/T such that

 α λ= sin2 A t (7.124)

Integrate this once to find the angular velocity

 ω
λ

λ= − +cos2 1
A

t C (7.125)

We require that the door be at rest when t = T, so that

λ

=1C
A

 (7.126)

Integrate again to find the crank angle, θ2

 θ
λ

λ
λ

= − + +sin2 2 2
A

t
A

t C (7.127)

Since the crank angle begins at zero, C2 = 0. The crank angle is π/2 at t = T so that

λπ λ= =
2 4

2

A
T

 (7.128)

432 Introduction to Mechanism Design

Thus, the crank angle function is

θ λ λ

ω λ λ

α λ λ

()

()

= −

= −

=

1
4

sin

4
1 cos

4
sin

2

2

2

2

t t

t

t

 (7.129)

Immediately after defining the center of mass locations, enter the following (constant)
parameters for the acceleration pulse.

% Acceleration pulse parameters
T = 2; % time it takes to open door
lambda = 2*pi/T; % door opening “frequency”
N = 1001; % number of time steps
dt = T/(N-1); % time increment
t = 0:dt:T; % vector of simulation time

The crank angle, angular velocity, and angular acceleration must also be changed within
the main loop.

 theta2(i) = 0.25*(lambda*t(i) - sin(lambda*t(i)));
 omega2(i) = 0.25*lambda*(1-cos(lambda*t(i)));
 alpha2(i) = 0.25*lambda^2*sin(lambda*t(i));

7.5.1.6 Solving for the Pin Forces and Plotting Results

Solving the force matrix equations proceeds in the same manner as in the previous sec-
tion; however, you will need to update your code to “retrieve” values from your solution
and assign them to the appropriate variables.

 f_Vec = S_Mat_Vec;
 FA(:,i) = [f_Vec(1); f_Vec(2)];
 FB(:,i) = [f_Vec(3); f_Vec(4)];
 FD(:,i) = [f_Vec(5); f_Vec(6)];
 FQ(:,i) = [f_Vec(7); f_Vec(8)];

A plot of the force exerted by the user is shown in Figure 7.41. The force is relatively
large (50 N) at the beginning of the motion when the user must accelerate the door. Less
force is required to decelerate the door because of the assistance of the spring. The force
at the end of the motion (−25 N) is needed to overcome the tensile force of the spring
that is trying to close the door. A 50 N force may be considered excessive for opening a
door, and it is likely that the requirement of opening such a heavy door in 2 seconds is
too severe. Increasing the length of time for opening the door to 4 secs reduces the user
force to a more manageable 12 N. Similarly, the force required to hold open the door
at 90° would probably defeat any doorstop device (e.g. a rubber wedge) used to hold it
open. Cutting the spring constant in half reduces this force by half, and may be a better
design. As with all mechanical design problems, there is no single “right” answer – the
judgment of the engineer plays the most critical role. Now that we have developed a

433Force Analysis on Linkages

force analysis code for the mechanism, it is easy to tweak the design until a feasible
solution has been found.

7.5.2 Verification of the Code

We can use the conservation of power to verify the code as we did in the previous section.
There are two external forces acting on the door: FQ and Fk.

 = ⋅ = ⋅Q Q Q k k BF FP v P v (7.130)

The velocity at point B has already been found in the motion analysis of the linkage, but
we must add a line of code to find the velocity at point Q.

 vQ(:,i) = FindVel(v0, W, omega2(i), n2);

The external power is then

 Pk = dot(Fk,vB(:,i));
 PQ = dot(FQ(:,i),vQ(:,i));
 PExt(i) = PQ + Pk;

A plot of the kinetic and external power is shown in Figure 7.42. Since the two curves
match exactly, we can have some confidence that the code is producing accurate results.

A second method for verification makes use of the fact that the spring stores potential
energy as it stretches. The potential energy stored in a spring is given by

 = 1
2

2PE kxk (7.131)

0

0

–20

–30

–10

50

40

20

30

10

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s)

User force on door closer mechanism

FQx
FQy

Fo
rc

e (
N

)

FIGURE 7.41
Force exerted by the user in opening the door. The largest force occurs near the beginning of the motion when
the user must accelerate the door and the force at the end of the motion is required to overcome the spring.

434 Introduction to Mechanism Design

where x is the amount that the spring has stretched from its neutral position, given by
Equation (7.109)

 = − 0x b b (7.132)

To convert this to a power, take the derivative with respect to time

()

() ()

()

= −

= − ⋅ −

= −

1
2 0

2

0 0

0

P
d
dt

k b b

k b b
d
dt

b b

k b b b

k

 (7.133)

where we have again used the chain rule to perform the differentiation. Since the potential
energy of the spring is internal to the system, it should be added to the kinetic power and
the power caused by the spring force should be removed.

 P2 = InertialPower(m2,I2,v2(:,i),a2(:,i),omega2(i),alpha2(i));
 P3 = InertialPower(m3,I3,v3(:,i),a3(:,i),omega3(i),alpha3(i));
 Pk = k*bdot(i)*(b(i)-b0);
 PKin(i) = P2 + P3 + Pk;

 PQ = dot(FQ(:,i),vQ(:,i));
 PExt(i) = PQ;

0

0

–20

–60

–40

60

40

20

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s)

Po
w

er
 (W

)

External vs. kinetic power

Kinetic
External

FIGURE 7.42
Kinetic and external power for the door closer mechanism. The two curves are identical.

435Force Analysis on Linkages

The resulting power plot is shown in Figure 7.43. It is slightly different from the plot in
Figure 7.42 since we have added the spring power to the kinetic power (and removed it
from the external power).

7.5.3 Summary

We have used a simple door closer mechanism to demonstrate a general technique for
performing the force analysis on a practical mechanism. Some of the mechanisms in the
sections that follow will be rather complicated, and it is easy to become overwhelmed with
the code – especially when it can run to 200 lines or more! It is therefore a good idea to
have a systematic procedure for conducting the analysis, one that will work for any mecha-
nism. The steps we took in analyzing the door closer are repeated in Table 7.1. Review the
steps and make sure you understand each one before proceeding to the more complicated
mechanisms.

0

0

–20

–30

–10

60

40

50

20

30

10

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s)

Po
w

er
 (W

)

External vs. kinetic power

Kinetic
External

FIGURE 7.43
Kinetic and external power for the door closer mechanism. Here we have added the power from the spring
potential energy to the kinetic power and removed it from the external power.

TABLE 7.1

General Procedure for Force Analysis of a Mechanism

1. Determine the critical dimensions of the linkage.
2. Calculate the inertial properties of each body in the linkage.
3. Determine the magnitude and direction of the external forces acting on the linkage.
4. Draw free-body diagrams of each link showing internal and external forces and moments.
5. Determine the nature of the movement of crank. Does it move with constant angular velocity, or does it

receive an acceleration pulse?
6. Use the matrix equation to solve for the pin forces and driving torque (or force) and plot the desired results.

436 Introduction to Mechanism Design

7.6 Force Analysis of the Slider-Crank

We are now in a position to calculate forces and torques on the slider-crank linkage.
Figure 7.44 shows a generic slider-crank mechanism with a vertically offset slider. A con-
stant horizontal force FP is applied to the piston. Our goal is to find the driving torque, T2,
necessary to sustain a constant angular velocity of the crank. We will use the techniques
developed here to analyze a practical mechanism – an air compressor – in the next section.
We assume that a complete position, velocity, and acceleration analysis has already been
performed on the slider-crank linkage as described in Chapters 4–6.

Figure 7.45 shows a free-body diagram of the parts of the slider-crank mechanism. The
ground pin force is FA, the force on the pin attaching the crank to the connecting rod is
FB, the force between connecting rod and piston is FC and FD gives the force that holds the
 piston in the cylinder. For our initial model we will ignore friction, so that FD has only
a vertical component. The force holding the piston in the cylinder is distributed in an
unknown fashion around the outer cylindrical face of the piston. To simplify matters we

A

B

C FP

T2

FIGURE 7.44
The slider-crank mechanism has a horizontal force, FP, applied to the piston. Our goal is to find the driving
torque, T2, necessary to sustain a constant crank angular velocity, ω2.

FP

FB

–FB

–FC

–FDFC

r2A

r2B

r3B

r3C

r4C

FA

T2

M

FIGURE 7.45
Free-body diagram of the parts of the slider-crank linkage.

437Force Analysis on Linkages

will assume that the resultant force is applied directly to the center of mass of the piston.
The cylinder also exerts an unknown moment, M, on the piston which keeps it from
rotating.

Summing forces and torques on the crank is the same as for the threebar linkage

 − = 2 2mA BF F a (7.134)

 α⋅ − ⋅ + =2 2 2 2 2T IA A B Bs F s F (7.135)

The connecting rod forces and torques are similar to those for the threebar slider, minus
the applied force at point P.

 − = 3 3mB CF F a (7.136)

 α⋅ − ⋅ =3 B 3 3 3IB C Cs F s F (7.137)

Finally, we sum forces on the piston.

 − + = 4 4mC D PF F F a (7.138)

To sum moments, we note that the cylinder force, FD, acts through the center of mass and
creates no moment. The external force, FP, also acts through the center of mass. Since the
piston cannot rotate, its angular acceleration is zero.

 ⋅ + = 04 MC Cs F (7.139)

Since we have assumed that there is no friction, the horizontal force on the piston, FDx, is
zero. We could eliminate FDx from the list of unknowns, but we will retain it for now. When
we model friction in the cylinder in a later section FDx will not be zero.

So far, we have ten unknowns (FA, FB, FC, FD, T2, and M) but only nine equations. If we
stipulate that the cylinder force, FD, act only in the vertical direction then we have

 ⋅ = 01 De F (7.140)

This provides the tenth equation. Summarizing the equations that we have developed so
far, and moving the known quantities to the right-hand sides, gives

 α

α

− =

− =

− = −

⋅ − ⋅ + =

⋅ − ⋅ =

⋅ + =

⋅ =

F F a

F F a

F F a F

s F s F

s F s F

s F

e F

T I

I

0

0

2 2

3 3

4 4

2 2 2 2 2

3 3 3 3

4

1

m

m

m

M

A B

B C

C D P

A A B B

B B C C

C C

D

 (7.141)

438 Introduction to Mechanism Design

Writing Equation (7.141) in matrix form gives

 =

−
−

−
−

−

S

U U 0 0 0 0
0 U 0 0 0 0
0 0 U U 0 0

s s 0 0

0 s s 0
0 0 s 0

0 0 0 e

0 1

0 0
1 0

0 0

2 2 2 2 21 21

2 2 2 2 21 21

2 2 2 2 21 21

2 2 12 12

12 3 3 12

12 12 4 12

12 12 12 1

A
T

B
T

B
T

C
T

C

T

 (7.142)

 α
α

=

=
−

0
02

2 2

3 3

4 4

2 2

3 3
M
T

m
m

m
I
I

A

B

C

D

P

f

F
F
F
F

t

a
a

a F
 (7.143)

This matrix equation is remarkably similar to the one for the threebar linkage. There are
10 unknowns and the S matrix has dimension 10 × 10.

7.6.1 Force Analysis of the Example Linkage

Let us now add some specific numbers to our example slider-crank. The dimensions of the
example linkage are shown in Figure 7.46. Here we will assume that the crank is a steel
disk with diameter 100 mm and thickness 25 mm. The length from ground pin to point B
is 40 mm. The connecting rod length is 120 mm. Starting with the slider-crank acceleration
code, enter the following dimensions at the top of the file.

C

120
B

10

40

(All dimensions in millimeters)

Crank length: 40 Crank mass: 1.5 kg

Piston mass: 0.16 kg

Crank moment of inertia: 0.02 kg m2

Con rod mass: 0.08 kg
Con rod moment of inertia: 0.0001 kg m2

Connecting rod length: 120
Distance from C to CM of piston: 10
Crank angular velocity: 10 rad/s
Crank angular acceleration: 0 rad/s

A

FIGURE 7.46
Dimensions of the example slider-crank linkage.

439Force Analysis on Linkages

% Linkage dimensions
a = 0.040; % crank length (m)
b = 0.120; % connecting rod length (m)
c = 0.0; % vertical slider offset (m)
p = 0.01; % distance from point C to CM of piston (m)

Next, enter the inertial properties of the crank, connecting rod, and piston.

% Inertial properties
m2 = 1.5; % mass of crank (kg)
m3 = 0.08; % mass of con rod (kg)
m4 = 0.16; % mass of piston (kg)
I2 = 0.002; % moment of inertia of crank about CM (kg-m2)
I3 = 0.0001; % moment of inertia of con rod about CM (kg-m2)

% CM locations
xbar2 = [0; 0]; % CM of crank
xbar3 = [b/2; 0]; % CM of coupler
xbar4 = [p; 0]; % CM of piston

Much of the remaining code can be copied directly from the threebar-force analysis pro-
gram, although the force analysis matrices must be modified appropriately. A full listing
of the code is given at the end of this section, if you get stuck.

Figure 7.47 shows a plot of the driving torque for the example mechanism. It looks sur-
prisingly like a sine wave, but isn’t really. To prove this, try increasing the crank speed to
100 rad/s. You should obtain the decidedly non-sinusoidal plot shown in Figure 7.48.

This is a good time to conduct the conservation of power check discussed in the pre-
vious section. The driving torque is the only source of external power, and we must

0

0

–2

–3

–1

–4

–5

4

5

2

3

1

60 120 180 240 300 360
Crank angle (°)

To
rq

ue
 (N

m
)

Driving torque for slider-crank

FIGURE 7.47
Driving torque for the example problem with crank speed 10 rad/s.

440 Introduction to Mechanism Design

calculate kinetic power for the crank, connecting rod, and piston. The crank has no
translational kinetic energy since its center of mass does not move, and the piston has no
 rotational kinetic energy since it is not permitted to rotate.

Figure 7.49 shows the external and kinetic power for the example compressor without
pressure force or friction. As you can see, the two curves overlay each other exactly. Make
sure that your power curves match these before proceeding to the next section.

0

–2

–4

–6

4

6

2

0 60 120 180 240 300 360
Crank angle (°)

To
rq

ue
 (N

m
)

Driving torque for slider-crank

FIGURE 7.48
Driving torque for the example problem with crank speed 100 rad/s.

0

–0.15

–0.2

–0.25

–0.1

–0.05

0.2

0.25

0.1

0.15

0.05

Po
w

er
 (W

)

External vs. kinetic power

Kinetic
External

0 60 120 180 240 300 360
Crank angle (°)

FIGURE 7.49
External and kinetic power for the example slider-crank with crank speed 10 rad/s.

441Force Analysis on Linkages

Finally, it is interesting to plot the cylinder moment, M, for crank speeds 10 rad/s and
100 rad/s. As seen in Figures 7.50 and 7.51, the shape of the curve matches that of the driv-
ing torque, although the magnitudes are lower. This is the moment that the cylinder must
exert in order to keep the piston oriented horizontally. Since it changes direction with
every cycle, it will contribute to the vibration forces caused by the movement of the linkage.

0

–0.4

–0.2

–0.1

–0.3

0.2

0.3

0.1

0.4

0 60 120 180 240 300 360
Crank angle (°)

Cylinder moment for slider-crank

M
om

en
t (

N
m

)

FIGURE 7.50
Cylinder moment for example slider-crank with crank speed 10 rad/s. The shape of the curve matches the
 driving torque, but the magnitude is lower.

0

–0.4

–0.5

–0.2

–0.1

–0.3

0.2

0.3

0.1

0.4

0.5

0 60 120 180 240 300 360
Crank angle (°)

Cylinder moment for slider-crank

M
om

en
t (

N
m

)

FIGURE 7.51
Cylinder moment for example slider-crank with crank speed 100 rad/s.

442 Introduction to Mechanism Design

% SliderCrank_Force_Analysis.m
% performs a force analysis on the slider-crank mechanism and
% plots the driving torque
% by Eric Constans, June 20, 2017

% Prepare Workspace
clear variables; close all; clc;

% Linkage dimensions
a = 0.040; % crank length (m)
b = 0.120; % connecting rod length (m)
c = 0.0; % vertical slider offset (m)
p = 0.01; % distance from point C to CM of piston (m)

% ground pins
x0 = [0;0]; % ground pin at A (origin)
v0 = [0;0]; % velocity of origin
a0 = [0;0]; % accel of origin
Z2 = zeros(2); Z21 = zeros(2,1); Z12 = zeros(1,2); U2 = eye(2);

% Inertial properties
m2 = 1.5; % mass of crank (kg)
m3 = 0.08; % mass of con rod (kg)
m4 = 0.16; % mass of piston (kg)
I2 = 0.002; % moment of inertia of crank about CM (kg-m2)
I3 = 0.0001; % moment of inertia of con rod about CM (kg-m2)

% CM locations
xbar2 = [0; 0]; % CM of crank
xbar3 = [b/2; 0]; % CM of coupler
xbar4 = [p; 0]; % CM of piston

% external loads
FP = [-100; 0]; % force on face of piston

% Angular velocity and acceleration of crank
omega2 = 10; % angular velocity of crank (rad/s)
alpha2 = 0; % angular acceleration of crank (rad/s^2)

N = 361; % number of times to perform position calculations
[xB,x2,x3,x4] = deal(zeros(2,N)); % pos of B, crank, con rod, piston
[vB,v2,v3,v4] = deal(zeros(2,N)); % vel of B, crank, con rod, piston
[aB,a2,a3,a4] = deal(zeros(2,N)); % acc of B, crank, con rod, piston

[theta2,theta3,d] = deal(zeros(1,N)); % link angles
[omega3,omega4,ddot] = deal(zeros(1,N)); % link angular velocities
[alpha3,alpha4,dddot] = deal(zeros(1,N)); % link angular accelerations

[FA,FB,FC,FD] = deal(zeros(2,N)); % pin forces
[P,M,T2,PExt,PKin] = deal(zeros(1,N)); % driving torque, moment and
powers

% Main loop
for i = 1:N

443Force Analysis on Linkages

 theta2(i) = (i-1)*(2*pi)/(N-1);
 theta3(i) = asin((c - a*sin(theta2(i)))/b);
 d(i) = a*cos(theta2(i)) + b*cos(theta3(i));

% calculate unit vectors
 [e1,n1] = UnitVector(0);
 [e2,n2] = UnitVector(theta2(i));
 [e3,n3] = UnitVector(theta3(i));
 [eA2,nA2,LA2,s2A,s2B,~] = LinkCG(a,0,0,xbar2,theta2(i));
 [eB3,nB3,LB3,s3B,s3C,~] = LinkCG(b,0,0,xbar3,theta3(i));
 [eC4,nC4,LC4,s4C,s4D,~] = LinkCG(p,0,0,xbar4,0);

% solve for position of point B on the linkage
 xB(:,i) = FindPos(x0, a, e2);

% conduct velocity analysis to solve for omega3 and omega4
 A_Mat = [b*n3 -e1];
 b_Vec = -a*omega2*n2;
 omega_Vec = A_Mat\b_Vec; % solve for angular velocities

 omega3(i) = omega_Vec(1); % decompose omega_Vec into
 ddot(i) = omega_Vec(2); % individual components

% calculate velocity at important points on linkage
 vB(:,i) = FindVel(v0, a, omega2, n2);
 v2(:,i) = FindVel(v0, LA2, omega2, nA2);
 v3(:,i) = FindVel(vB(:,i), LB3, omega3(i), nB3);
 v4(:,i) = FindVel(vB(:,i), b, omega3(i), n3);

% conduct acceleration analysis to solve for alpha3 and dddot
 ac = a*omega2^2;
 at = a*alpha2;
 bc = b*omega3(i)^2;

 C_Mat = A_Mat;
 d_Vec = -at*n2 + ac*e2 + bc*e3;
 alpha_Vec = C_Mat\d_Vec; % solve for angular accelerations

 alpha3(i) = alpha_Vec(1);
 dddot(i) = alpha_Vec(2);

% find acceleration of pins
 aB(:,i) = FindAcc(a0, a, omega2, alpha2, e2, n2);
 a2(:,i) = FindAcc(a0, LA2, omega2, alpha2, eA2, nA2);
 a3(:,i) = FindAcc(aB(:,i), LB3, omega3(i), alpha3(i), eB3, nB3);
 a4(:,i) = FindAcc(aB(:,i), b, omega3(i), alpha3(i), e3, n3);

% conduct force analysis
 S_Mat = [U2 -U2 Z2 Z2 Z21 Z21;
 Z2 U2 -U2 Z2 Z21 Z21;
 Z2 Z2 U2 -U2 Z21 Z21;
 s2A’ -s2B’ Z12 Z12 0 1;
 Z12 s3B’ -s3C’ Z12 0 0;
 Z12 Z12 s4C’ Z12 1 0;
 Z12 Z12 Z12 e1’ 0 0];

444 Introduction to Mechanism Design

 t_Vec = [m2*a2(:,i);
 m3*a3(:,i);
 m4*a4(:,i) - FP;
 I2*alpha2;
 I3*alpha3(i);
 0;
 0];

 f_Vec = S_Mat _Vec;
 FA(:,i) = [f_Vec(1); f_Vec(2)];
 FB(:,i) = [f_Vec(3); f_Vec(4)];
 FC(:,i) = [f_Vec(5); f_Vec(6)];
 FD(:,i) = [f_Vec(7); f_Vec(8)];
 M(i) = f_Vec(9);
 T2(i) = f_Vec(10);

 P2 = InertialPower(m2,I2,v2(:,i),a2(:,i),omega2,alpha2);
 P3 = InertialPower(m3,I3,v3(:,i),a3(:,i),omega3(i),alpha3(i));
 P4 = InertialPower(m4, 0,v4(:,i),a4(:,i), 0, 0);
 PKin(i) = P2 + P3 + P4; % kinetic power
 PF = dot(FP,v4(:,i)); % power from external force
 PT = T2(i) * omega2; % power from crank torque
 PExt(i) = PF + PT; % total external power
end

% plot the driving torque
plot(theta2*180/pi,T2,’Color’,[0 110/255 199/255])
title(‘Driving Torque for Slider-Crank’)
xlabel(‘Crank angle (degrees)’)
ylabel(‘Torque (N-m)’)
grid on
set(gca,’xtick’,0:60:360)
xlim([0 360])

7.7 Force Analysis Example 2 – The Air Compressor Mechanism

We will now conduct a dynamic analysis of a specific device: an air compressor. Along the
way we will learn several techniques that are useful in modeling dynamic systems. We
will start with a very simple model and add complexity (and fidelity) as we proceed.

Figure 7.52 shows a sketch of the air compressor mechanism. The purpose of an air
compressor, obviously, is to compress air. As the piston moves to the right in the cylinder,
the volume diminishes and the air inside the cylinder is compressed. The pressurized air
creates a force, FP, on the piston, which is given by

 = − ⋅

0
P A

PF (7.144)

where A is the cross-sectional area of the piston and P is the gauge pressure (above atmo-
spheric) inside the cylinder. The negative sign is included because the pressure force acts

445Force Analysis on Linkages

in the negative x direction. A motor drives the crank with torque T2. The goals of making
the compressor model are:

• To determine the motor torque, T2, necessary to drive the compressor and achieve
the desired air pressure in the cylinder.

• To determine the forces acting on the pins and the wall of the cylinder.

Once the driving torque and speed are known, we can choose an appropriate motor from
an industrial supplier or motor manufacturer. Knowledge of the pin forces will enable us
to choose the proper materials for the pins, and also to choose bearings rated for the given
loads.

7.7.1 First, a Simple Model

To begin, we will create a dynamic model of the mechanism alone, ignoring friction and
the force from the high-pressure air. This model will simulate the situation where the top
of the cylinder is left open, and no air is compressed. The dimensions of the mechanism
are given in Figure 7.53. Note that the vertical offset of the cylinder (given as c in previous
chapters) is set to zero. The length of the crank is a = 40 mm and the length of the con-
necting rod is b = 120 mm. In this mechanism, the crank takes the form of a flywheel – a
heavy disk with large moment of inertia. The center of mass of the flywheel is located at
the ground pin so that the translational acceleration of the crank is zero.

The free-body diagram of the compressor is the same as it was for the slider-crank in the
previous section, although the force on the face of the piston will be more complicated this
time. For our initial model we will ignore friction, so that FD has only a vertical component.

FP

T2

FIGURE 7.52
The air compressor mechanism. The crank is link 2, the connecting rod is link 3, and the piston is link 4.

C

120
B

40

(All dimensions in millimeters)

Crank length: 40 Crank angular velocity: 10 rad/s
Crank angular acceleration: 0 rad/sConnecting rod length: 120

A

FIGURE 7.53
Dimensions of the compressor mechanism. The vertical offset of the cylinder is zero.

446 Introduction to Mechanism Design

Modeling friction is tricky, and we will add it in a later section. The matrix equation of
motion will also be the same as in the previous section.

7.7.2 Inertial Properties of the Links

Figures 7.54–7.56 show the dimensions of each link in millimeters. The crank and connect-
ing rod are made of steel and the piston is made of aluminum. Holes have been drawn at
the pin locations, but we will find the Mass Properties of each link without the holes, since
we assume each hole is filled by a pin. If the pins are of a material different from the link
then you should fill each hole with a cylinder of the proper material. Here we assume that
the pins are made of steel.

Since the crank is a uniform cylinder, its center of mass lies at its center, which is also
the origin. Thus

 = =0 mm 0 mm2 2x y

The connecting rod is symmetric in the x and y directions so its center of mass lies at its
geometric center

 = =60 mm 0 mm3 3x y

The piston has a nonuniform shape, so we use the Mass Properties feature in
SOLIDWORKS to find the coordinates of its center of mass (with the holes suppressed).

25
Ø100

40

FIGURE 7.54
Dimensions of the crank in millimeters. The crank is a 100 mm diameter steel disk with thickness 25 mm. The
hole diameters are not shown since they are assumed to be filled with pins of a similar material to the links.

120

R10 5
Ø25

15

FIGURE 7.55
Dimensions of the connecting rod in millimeters. The connecting rod is made of steel and is 5 mm thick. All
corners have radius 10 mm.

447Force Analysis on Linkages

The x coordinate of the center of mass is 19 mm away from the top face of the piston,
which means that it is (35 mm − 19 mm = 16 mm) from the center of the hole. Thus,

 = =16 mm 0 mm4 4x y

Using the Mass Properties feature in SOLIDWORKS, we obtain the following inertial
properties of each link (with the holes suppressed).

1.551 kg 0.096 kg 0.163 kg

0.001939 kg m 0.000189 kg m

2 3 4

2
2

3
2

m m m

I I

= = =

= =

7.7.3 Driving Torque without Pressure Force

Use Save As to save your slider-crank force analysis code to the file
SliderCrankCompressor.m. Enter the following dimensions at the top of the file.

% Linkage dimensions
a = 0.040; % crank length (m)
b = 0.120; % connecting rod length (m)
c = 0.0; % vertical slider offset (m)
p = 0.016; % distance from pin C to CM of piston (m)

Next, enter the inertial properties into the code as shown.

35

Ø
50

50

20

Ø40

FIGURE 7.56
Dimensions of the piston in millimeters. The piston is a hollowed-out aluminum cylinder of diameter 50 mm.

448 Introduction to Mechanism Design

% Inertial properties
m2 = 1.551; % mass of crank (kg)
m3 = 0.096; % mass of con rod (kg)
m4 = 0.163; % mass of piston (kg)
I2 = 0.001939; % moment of inertia of crank about CM (kg-m2)
I3 = 0.000189; % moment of inertia of coupler about CM (kg-m2)

Set the pressure force FP equal to zero for now, and change the crank angular velocity to
1200 rpm. You can convert from rpm to radians per second using

π π= ⋅ = ⋅rad

sec
2
60

rpm
30

rpm (7.145)

Figure 7.57 shows a plot of the driving torque for the example compressor without the force
from the compressed air and neglecting friction. While the driving torque is relatively
small, you might be surprised that it isn’t zero, since the compressor isn’t doing any “useful
work” like compressing air. Remember that a certain amount of torque is required to accel-
erate and decelerate the piston and connecting rod as the linkage moves through the cycle.

7.7.4 And Now, a Little Thermo

Our next step is to calculate the pressure inside the cylinder as a function of the piston
position. We will make a few assumptions in order to keep the model simple:

• The compression process happens so quickly that no heat from the compressed
air is transmitted to the cylinder. That is, the compression process is assumed to
be adiabatic.

0

–4

–2

–1

–3

2

3

1

4

0 60 120 180 240 300 360
Crank angle (°)

Driving torque for compressor with no air pressure

To
rq

ue
 (N

m
)

FIGURE 7.57
Driving torque for the example problem without pressure force and friction

449Force Analysis on Linkages

• The linkage must exert a certain amount of mechanical work to create the thermody-
namic work of compressing the air. We assume that the thermodynamic work can
be converted back to mechanical work without loss of energy. In other words, the
compressed air could be used to “back drive” the linkage.

• Air behaves as an ideal gas and obeys the ideal gas law.

The combination of these three assumptions leads to the conclusion that the compression
process is isentropic; that is, entropy remains constant through the compression process.
For isentropic compression, we obtain the following relationship between pressure and
volume (see [1, pp. 282–283]).

 =

2 1

1

2

1.4

P P
V
V

 (7.146)

where P1 and V1 are the pressure and volume at state 1 and P2 and V2 are the pressure and
volume at state 2, respectively.

Figure 7.58 shows the dimensions of the compressor that are needed to calculate the vol-
ume inside the cylinder. We will define the term “Bottom Dead Center” (BDC) to denote
the position of the piston when it is at its left-most extreme and “Top Dead Center” (TDC)
when it is furthest to the right. We will assume that the air inside the cylinder is at atmo-
spheric pressure when the piston is at BDC; this is also the position where the volume
inside the cylinder is at its maximum.

 = = 101 kPa1P Patm (7.147)

The piston does not entirely reach the top of the cylinder at TDC and there is a small head
space, h, between the top of the piston and the inside of the cylinder. If the head space were
not present (i.e. if the volume inside the cylinder were zero), the pressure inside the cylin-
der would reach infinity at TDC. Examining Figure 7.58, we see that

 + + + = + + +a b H h d H x h (7.148)

a b

d x

h

H

H

FIGURE 7.58
Dimensions of the compressor used to calculate the volume inside the cylinder.

450 Introduction to Mechanism Design

where x is the displacement of the piston from TDC. Solving for x gives

 = + −x a b d (7.149)

Since d is known from conducting the position analysis, we conclude that the volume
inside the cylinder at an arbitrary time is

 ()= + − +2V A a b d h (7.150)

The maximum displacement of the piston from TDC is

 = 2x aBDC (7.151)

So that the volume at BDC (the maximum volume) is

 ()= +21V A a h (7.152)

Thus, using Equation (7.146) we find that the pressure inside the cylinder at an arbitrary
point during the stroke is

 = +
+ − +

2
2

1.4

P P
a h

a b d h
atm (7.153)

This equation gives the absolute pressure in the cylinder. Since the backside of the piston
is always subject to atmospheric pressure, we must use the net pressure to calculate the
pressure force.

()= − −

0
2F

A P P
P

atm (7.154)

Add the following lines of code near the top of the file to define some of the constants
associated with the pressure calculations

% Pressure constants
h = 0.015; % head space (m)
D = 0.05; % diameter of piston (m)
A = pi*D^2/4; % area of piston
Patm = 101e3; % atmospheric pressure

Inside the main loop, before the force analysis section, calculate the pressure inside the
cylinder at the current time step:

% calculate pressure force
 P(i) = Patm*((2*a+h)/(a+b-d(i)+h))^1.4;
 FP = [-A*(P(i)-Patm); 0];

If you run the code and plot the absolute pressure inside the cylinder, the result should
be similar to Figure 7.59. The piston is at TCD when the crank angle is 0° or 360°, so the
pressure reaches a maximum at these crank angles. When the piston is at BDC (crank
angle = 180°) the air pressure is at one atmosphere. With our current design, the compressor

451Force Analysis on Linkages

will achieve a net pressure of 1.24 MPa (or roughly 180 psi, for those who insist on using
Imperial units!)

If you now use the code to plot the driving torque necessary to compress the air, the
result should resemble Figure 7.60. You might question the presence of negative torque

0.4

0

0.2

0.8

1

0.6

1.2

1.4

0 60 120 180 240 300 360
Crank angle (°)

Cylinder pressure for slider-crank (absolute)

Pr
es

su
re

 (M
Pa

)

FIGURE 7.59
Pressure inside the cylinder for the example problem.

0

–40

–20

–10

–30

20

30

10

40

0 60 120 180 240 300 360
Crank angle (°)

Driving torque for compressor

To
rq

ue
 (N

m
)

FIGURE 7.60
Driving torque needed to compress air in the example problem. Note the presence of negative torque in the first
half of the plot.

452 Introduction to Mechanism Design

during the first 180° of the cycle – this is the effect of the high-pressure air inside the cyl-
inder back-driving the linkage. Imagine using the compressor to fill a tank of compressed
air, as would be the case for a portable air-powered tool setup. If the pressure inside the
cylinder is greater than inside the tank, air will flow from the cylinder to the tank. When
the tank is full, however, the air in the cylinder has nowhere to go and must remain inside
the cylinder. In this situation the same “chunk” of air will be repeatedly compressed and
decompressed until the compressor is switched off. It is the decompression part of the
cycle that back-drives the linkage.

7.7.5 Adding Friction to the Model

We will now add friction between the piston and cylinder to the model. This is the trickiest
part of the project, since friction is a nonlinear effect. This means that the force of friction
is not directly proportional to any of the kinematic or dynamic quantities we have dis-
cussed so far. Recall that without friction the horizontal force between cylinder and piston
was zero

 D ()⋅ =e F 0 no friction1 (7.155)

If we add friction to the model, then the horizontal force between cylinder and piston will
not be zero any more:

 ⋅ =1 FD fe F (7.156)

where Ff is the friction force. The friction force is proportional to the normal force between
piston and cylinder:

 = µFf DyF (7.157)

where μ is the coefficient of friction. Note that we have used the magnitude for each of the
forces. The friction force opposes the motion of the piston: if the piston is traveling to the
right in the cylinder then the friction force acts to the left, and vice versa. The magnitude of
the friction force is proportional to the magnitude of the vertical force between piston and
cylinder – it does not matter whether the vertical force is pointing upward or downward.
Since we cannot know in advance which direction the vertical force is pointing, we must
use its magnitude to calculate the friction force.

Recall that the magnitude of a quantity is found by taking the square root of the quantity
squared

 =Dy DyF F2 (7.158)

This is the reason that the phenomenon of friction is nonlinear – it is impossible to write
Equation (7.158) as part of a matrix equation. To model friction, we must employ a few
tricks.

First, note that the direction of the piston depends upon the crank angle. If the crank
angle is between 0° and 180°, the piston is moving to the left in the cylinder, and the fric-
tion force acts to the right. For the remainder of the cycle, the friction force acts to the left.
Therefore, we have

453Force Analysis on Linkages

θ µ

θ µ

° < < ° =

° < < ° = −

if 0 180

if 180 360

2

2

F F

F F

f Dy

f Dy

 (7.159)

But FDy is one of the variables being solved for in the matrix equation, so we cannot place
the quantity µ FDy in the vector of known quantities, t. Instead, we will make the assump-
tion that the normal force, FDy, does not change a great deal from one time step to the
next. We can then use the normal force from the previous time step in calculating the
friction force.

() ()

() ()
° < θ < ° = µ −

° < θ < ° = −µ −

F

F

f Dy

f Dy

if 0 180 i F i 1

if 180 360 i F i 1

2

2

 (7.160)

Near the top of the code, add the definition of the coefficient of friction (assumed to be 0.1
for our example). The friction force must be initialized to zero in order to have a value for
the first time step (when i – 1 = 0).

mu = 0.1; % coefficient of friction btw piston and cylinder
Ff = 0; % friction force starts at zero

Inside the main loop, add the following code to calculate the friction force.

 % Calculate Friction Force
 if (i > 1)
 if (theta2 < pi)
 Ff = mu*abs(FD(2,i-1));
 else
 Ff = -mu*abs(FD(2,i-1));
 end
 end

The first if statement is necessary because we are using the normal force from the previ-
ous time step, and FDy(0) does not exist – MATLAB doesn’t allow zero or negative indices.
This is why we initialized Ff to be zero before the main loop. Next, modify the t vector to
include the friction force.

 t_Vec = [m2*a2(:,i);
 m3*a3(:,i);
 m4*a4(:,i) - FP;
 I2*alpha2;
 I3*alpha3(i);
 0;
 Ff];

Figure 7.61 shows the normal and friction forces acting on the piston for the example prob-
lem. The friction force acts in the positive x direction for the first 180° of crank rotation – as
the piston is moving in the negative x direction.

454 Introduction to Mechanism Design

If we next create a conservation of power plot for the compressor with friction the result
should resemble Figure 7.62. The curves do not match, and it appears as though we have
violated the law of Conservation of Energy!

To make the curves match, we must remember to account for the power consumed
by friction as the compressor moves through its cycle. The frictional power can be
 calculated as

0

–50

50

100

–100

150

–150

200

–200

–250
0 60 120 180 240 300 360

Crank angle (°)

Fo
rc

e (
N

)

Forces on piston in slider-crank

Friction force
Normal force

FIGURE 7.61
Horizontal and vertical forces on piston with friction added to the model.

0

0

60 120

400

600

–600

200

–200

–400

180 240 300 360
Crank angle (°)

Po
w

er
 (W

)

External vs. kinetic power

Kinetic
External

FIGURE 7.62
Conservation of power plot for the compressor with friction added. Power does not appear to be conserved!

455Force Analysis on Linkages

 = ⋅P F vf D 4 (7.161)

Since the velocity of the piston has a zero y component, the y component of the dot product
will be zero, and only frictional power will be computed. We must remember to subtract
the power consumed by friction since it does negative work on the system. Subtracting the
frictional power from the overall external power produces the plot shown in Figure 7.63.
Happily, power appears to be conserved once again.

7.7.6 Potential Energy of Air Inside the Cylinder

We may also create a pair of conservation of power curves by noting that compressing the
air inside the cylinder increases its potential energy, much like a spring. If the absolute
pressure inside the cylinder is P, then the net force on the piston is

 ()= −F A P Pnet atm (7.162)

where we must subtract the atmospheric pressure because it acts on both faces of the pis-
ton. If we move the piston forward by a distance dx, then the work done is [1, pp. 87–92]

 ()= − −dW A P P dxair atm (7.163)

The sign is negative because the pressure force acts to oppose the motion. The work done
to compress the air increases its potential energy, such that

 ()= − − dPE P P A dxair atm (7.164)

0

–300

400

500

100

–100

300

–500

200

–200

–400

0 60 120 180 240 300 360
Crank angle (°)

External vs. kinetic power

Kinetic
External

Po
w

er
 (W

)

FIGURE 7.63
Power curves with the power consumed by friction taken into account. The curves are now identical, and
Conservation of Energy is preserved.

456 Introduction to Mechanism Design

The quantity A dx is equal to a differential change in volume, so that

 ()= − −dPE P P dVair atm (7.165)

The total increase in potential energy is found by adding (integrating) the individual,
 differential changes in potential energy.

 ∫ ∫() ()= − − = − −
0 0

PE P P dV P P
dV
dt

dtair

t

atm

t

atm (7.166)

The volume of air inside the cylinder is, from Equation (7.150)

 ()= + + −V A a b h d (7.167)

Thus, the change in volume with respect to time is

 = −dV
dt

Ad (7.168)

The power consumed in compressing the air is then

 ()= = −P
d
dt

PE Ad P Pair air atm
 (7.169)

In retrospect, this result should have been obvious! The velocity of the piston is d, and the
net force on the piston is A(P – Patm), so that Equation (7.169) is merely a restatement of

 = ⋅ 4P F vF P (7.170)

which is the power created by the pressure force. Sometimes it is nice just to arrive at the
same result in a different way!

7.8 Force Analysis of the Fourbar Linkage

Now that we have the force analysis of two linkages under our belts, analysis of the four-
bar will seem almost easy. A general fourbar linkage is shown in Figure 7.64. For this case
we assume that a known load (FP) is applied to point P on the linkage, and also that the
rocker must overcome a known load torque, T4. The goal of our analysis is to find the motor
torque, T2, required to drive the crank through a rotation. Along the way we will solve for
the forces at all of the pins. As before, we assume that a complete position, velocity, and
acceleration analysis has been conducted earlier.

To perform the force analysis, we first draw a free-body diagram of each link, as shown
in Figure 7.65. Summing forces and moments for the crank gives

 − = 2 2mA BF F a (7.171)

457Force Analysis on Linkages

 2 2 2 2 2T IA A B B α⋅ − ⋅ + =s F s F (7.172)

Doing the same for the coupler results in

 − + = 3 3mB C PF F F a (7.173)

 3 3 3 3 3IB B C C P P α⋅ − ⋅ + ⋅ =s F s F s F (7.174)

And finally, the equations for the rocker are

 − = 4 4mC DF F a (7.175)

 α⋅ − ⋅ + =4 4 4 4 4T IC C D Ds F s F (7.176)

T4

FP

T2

P

FIGURE 7.64
The fourbar linkage above has an applied load FP and an applied torque T4. Our goal is to determine the driving
torque, T2, necessary to sustain the motion and drive the loads.

FP

FC

FA

FB

–FC

–FD

P

–FB

r4D

r4C

r3B

r3P

r3C
r2B

r2A T4

T2

FIGURE 7.65
Free-body diagram of each link in the fourbar linkage.

458 Introduction to Mechanism Design

Remember that the accelerations on the right-hand side of the equations are taken at the
center of mass of each link, and the moments of inertia are also calculated about the center
of mass. If we rearrange the equations to place the unknowns on the left-hand side and the
knowns on the right, we obtain

α

α

α

− =

− = −

− =

⋅ − ⋅ + =

⋅ − ⋅ = − ⋅

⋅ − ⋅ = −

2 2

3 3

4 4

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

m

m

m

T I

I

I T

A B

B C P

C D

A A B B

B B C C P P

C C D D

F F a

F F a F

F F a

s F s F

s F s F s F

s F s F

 (7.177)

There are nine unknowns (FA, FB, FC, FD, and T2) and nine equations, so we have all of the
information we need.

 =

−
−

−
−

−
−

A
T

B
T

B
T

C
T

C
T

D
T

S

U U 0 0 0
0 U U 0 0
0 0 U U 0

s s 0 0

0 s s 0

0 0 s s

1

0

0

2 2 2 2 21

2 2 2 2 21

2 2 2 2 21

2 2 12 12

12 3 3 12

12 12 4 4

 (7.178)

α

α
α

=

=

−

− ⋅
−

2

2 2

3 3

4 4

2 2

3 3 3

4 4 4
T

m
m

m
I

I
I T

A

B

C

D

P

P P

f

F
F
F
F

t

a
a F

a

s F

 (7.179)

Since each of the forces has both an x and y component, the S matrix has dimension 9 × 9,
and the f and t vectors have dimension 9 × 1.

7.8.1 Force Analysis of the Sample Linkage

The dimensions and Mass Properties of our example fourbar linkage are shown in
Figure 7.66. We are now ready to begin modifying our fourbar acceleration analysis code
to perform the force analysis on the fourbar linkage. Add the code below near to the begin-
ning of the file.

% Inertial properties
m2 = 0.124; % mass of crank (kg)
m3 = 0.331; % mass of coupler (kg)
m4 = 0.157; % mass of rocker (kg)

459Force Analysis on Linkages

I2 = 0.000255; % moment of inertia of crank about CM (kg-m2)
I3 = 0.001188; % moment of inertia of coupler about CM (kg-m2)
I4 = 0.000503; % moment of inertia of rocker about CM (kg-m2)

Since the crank and rocker are symmetric, we use a/2 and c/2 to define the center
of mass locations for each. The coupler center of mass is found geometrically or using
SOLIDWORKS.

% CM locations
xbar2 = [a/2; 0]; % CM of crank
xbar3 = [0.1071; 0.0148]; % CM of coupler
xbar4 = [c/2; 0]; % CM of rocker

For this example, we will assume that the load applied at point P is 100 N downward, so
we define the applied loads as

% Applied Loads
FP = [0; -100]; % force at point P (N)
T4 = 0; % torque applied to rocker (N-m)

The applied torque on the rocker is assumed to be zero for this example. Next, define the
S matrix and t vector as

 S_Mat = [U2 -U2 Z2 Z2 Z21;
 Z2 U2 -U2 Z2 Z21;

A D

C

P

B

200
20°

150

220

170

130

(All dimensions in millimeters)

Crank length: 130 Crank mass: 0.124 kg

Crank moment of inertia: 0.000255 kg m2
Coupler moment of inertia: 0.001188 kg m2

Rocker moment of inertia: 0.000503 kg m2

Coupler length: 200 Coupler mass: 0.331 kg

Coupler CM: (107.1, 14.8)

Rocker length: 170 Rocker mass: 0.157 kg
Distance betweet ground pins: 220
Distance from B to P: 150
Angle PBC: 20°
Crank angular velocity: 10 rad/s
Crank angular acceleration: 0 rad/s

FIGURE 7.66
The fourbar linkage used in the example. There is a 100 N downward force applied at point P.

460 Introduction to Mechanism Design

 Z2 Z2 U2 -U2 Z21;
 s2A’ -s2B’ Z12 Z12 1;
 Z12 s3B’ -s3C’ Z12 0;
 Z12 Z12 s4C’ -s4D’ 0];

 t_Vec = [m2*a2(:,i);
 m3*a3(:,i) - FP;
 m4*a4(:,i);
 I2*alpha2;
 I3*alpha3(i) - dot(FP,s3P);
 I4*alpha4(i) - T4];

And finally, we solve for the pin forces and driving torque:

 f_Vec = S_Mat _Vec;
 FA(:,i) = [f_Vec(1); f_Vec(2)];
 FB(:,i) = [f_Vec(3); f_Vec(4)];
 FC(:,i) = [f_Vec(5); f_Vec(6)];
 FD(:,i) = [f_Vec(7); f_Vec(8)];
 T2(i) = f_Vec(9);

The driving torque for the example linkage is shown in Figure 7.67. In this example, the
crank has a constant angular velocity of ω2 = 10 rad/s. Finally, add the following plot-
ting commands to compare the computed kinetic power with the external power. Both
plots should overlay each other exactly, regardless of crank speed. The power plot for the
example is shown in Figure 7.68. The complete code for the fourbar force analysis is given
below. In the next section, we will pursue a full example with the fourbar linkage from
design through force analysis.

0

0

60–15 120

5

–5

15

10

–10

20

180 240 300 360
Crank angle (°)

To
rq

ue
 (N

m
)

Driving torque for fourbar linkage

FIGURE 7.67
Driving torque for the example fourbar linkage. The angular velocity of the crank is 10 rad/s and the angular
acceleration of the crank is zero.

461Force Analysis on Linkages

% Fourbar_Force_Analysis.m
% solves for the pin forces and driving torques of the fourbar linkage
% by Eric Constans, June 21, 2017

% Prepare Workspace
clear variables; close all; clc;

% Linkage dimensions
a = 0.130; % crank length (m)
b = 0.200; % coupler length (m)
c = 0.170; % rocker length (m)
d = 0.220; % length between ground pins (m)
p = 0.150; % length from B to P (m)
gamma3 = 20*pi/180; % angle between BP and coupler (converted to rad)

% ground pins
x0 = [0;0]; % ground pin at A (origin)
xD = [d;0]; % ground pin at D
v0 = [0;0]; % velocity of origin
a0 = [0;0]; % accel of origin
Z2 = zeros(2); Z21 = zeros(2,1); Z12 = zeros(1,2); U2 = eye(2);

% Inertial properties
m2 = 0.124; % mass of crank (kg)
m3 = 0.331; % mass of coupler (kg)
m4 = 0.157; % mass of rocker (kg)
I2 = 0.000255; % moment of inertia of crank about CM (kg-m2)
I3 = 0.001188; % moment of inertia of coupler about CM (kg-m2)

0

0

60

–15

120

5

–5

15

–25

10

–10

–20

180 240 300 360
Crank angle (°)

External vs. kinetic power

Kinetic
External

Po
w

er
 (W

)

FIGURE 7.68
Comparison of external and kinetic power for the example problem. Both traces overlay each other exactly, and
we conclude that the driving torque is being calculated correctly.

462 Introduction to Mechanism Design

I4 = 0.000503; % moment of inertia of rocker about CM (kg-m2)

% CM locations
xbar2 = [a/2; 0]; % CM of crank
xbar3 = [0.1071; 0.0148]; % CM of coupler
xbar4 = [c/2; 0]; % CM of rocker

% Applied Loads
FP = [0; -100]; % force at point P (N)
T4 = 0; % torque applied to rocker (N-m)

% Angular velocity and acceleration of crank
omega2 = 10; % angular velocity of crank (rad/s)
alpha2 = 0; % angular acceleration of crank (rad/s^2)

N = 361; % number of times to perform position calculations
[xB,xC,xP,x2,x3,x4] = deal(zeros(2,N)); % positions
[vB,vC,vP,v2,v3,v4] = deal(zeros(2,N)); % velocities
[aB,aC,aP,a2,a3,a4] = deal(zeros(2,N)); % accelerations

[theta2,theta3,theta4] = deal(zeros(1,N)); % link angles
[omega3,omega4] = deal(zeros(1,N)); % link angular vel
[alpha3,alpha4] = deal(zeros(1,N)); % link angular acc

[FA,FB,FC,FD] = deal(zeros(2,N)); % pin forces
[T2,PExt,PKin] = deal(zeros(1,N)); % driving torque and powers

% Main Loop
for i = 1:N
 theta2(i) = (i-1)*(2*pi)/(N-1); % crank angle

% conduct position analysis to solve for theta3 and theta4
 r = d - a*cos(theta2(i));
 s = a*sin(theta2(i));
 f2 = r^2 + s^2; % f squared
 delta = acos((b^2+c^2-f2)/(2*b*c)); % angle between coupler and rocker

 g = b - c*cos(delta);
 h = c*sin(delta);

 theta3(i) = atan2((h*r - g*s),(g*r + h*s));
 theta4(i) = theta3(i) + delta;

% calculate unit vectors
 [e2,n2] = UnitVector(theta2(i));
 [e3,n3] = UnitVector(theta3(i));
 [e4,n4] = UnitVector(theta4(i));
 [eBP,nBP] = UnitVector(theta3(i) + gamma3);
 [eA2,nA2,LA2,s2A,s2B, ~] = LinkCG(a,0, 0,xbar2,theta2(i));
 [eB3,nB3,LB3,s3B,s3C,s3P] = LinkCG(b,p,gamma3,xbar3,theta3(i));
 [eD4,nD4,LD4,s4D,s4C, ~] = LinkCG(c,0, 0,xbar4,theta4(i));

% solve for positions of points B, C and P on the linkage
 xB(:,i) = FindPos(x0, a, e2);

463Force Analysis on Linkages

 xC(:,i) = FindPos(xD, c, e4);
 xP(:,i) = FindPos(xB(:,i), p, eBP);
 x2(:,i) = FindPos(x0, LA2, eA2);
 x3(:,i) = FindPos(xB(:,i), LB3, eB3);
 x4(:,i) = FindPos(xD, LD4, eD4);

% conduct velocity analysis to solve for omega3 and omega4
 A_Mat = [b*n3 -c*n4];
 b_Vec = -a*omega2*n2;
 omega_Vec = A_Mat\b_Vec; % solve for angular velocities

 omega3(i) = omega_Vec(1); % decompose omega_Vec into
 omega4(i) = omega_Vec(2); % individual components

% calculate velocity at important points on linkage
 vB(:,i) = FindVel(v0, a, omega2, n2);
 vC(:,i) = FindVel(v0, c, omega4(i), n4);
 vP(:,i) = FindVel(vB(:,i), p, omega3(i), nBP);
 v2(:,i) = FindVel(v0, LA2, omega2, nA2);
 v3(:,i) = FindVel(vB(:,i), LB3, omega3(i), nB3);
 v4(:,i) = FindVel(v0, LD4, omega4(i), nD4);

% conduct acceleration analysis to solve for alpha3 and alpha4
 ac = a*omega2^2;
 bc = b*omega3(i)^2;
 cc = c*omega4(i)^2;
 pc = p*omega3(i)^2;

 C_Mat = A_Mat;
 d_Vec = ac*e2 + bc*e3 - cc*e4;
 alpha_Vec = C_Mat\d_Vec; % solve for angular accelerations

 alpha3(i) = alpha_Vec(1);
 alpha4(i) = alpha_Vec(2);

% find acceleration of pins
 aB(:,i) = FindAcc(a0, a, omega2, alpha2, e2, n2);
 aC(:,i) = FindAcc(a0, c, omega4(i), alpha4(i), e4, n4);
 aP(:,i) = FindAcc(aB(:,i), p, omega3(i), alpha3(i), eBP, nBP);

% solve for accelerations at centers of mass of each link
 a2(:,i) = FindAcc(a0, LA2, omega2, alpha2, eA2, nA2);
 a3(:,i) = FindAcc(aB(:,i), LB3, omega3(i), alpha3(i), eB3, nB3);
 a4(:,i) = FindAcc(a0, LD4, omega4(i), alpha4(i), eD4, nD4);

 S_Mat = [U2 -U2 Z2 Z2 Z21;
 Z2 U2 -U2 Z2 Z21;
 Z2 Z2 U2 -U2 Z21;
 s2A’ -s2B’ Z12 Z12 1;
 Z12 s3B’ -s3C’ Z12 0;
 Z12 Z12 s4C’ -s4D’ 0];

 t_Vec = [m2*a2(:,i);
 m3*a3(:,i) - FP;

464 Introduction to Mechanism Design

 m4*a4(:,i);
 I2*alpha2;
 I3*alpha3(i) - dot(FP,s3P);
 I4*alpha4(i) - T4];

 f_Vec = S_Mat _Vec;
 FA(:,i) = [f_Vec(1); f_Vec(2)];
 FB(:,i) = [f_Vec(3); f_Vec(4)];
 FC(:,i) = [f_Vec(5); f_Vec(6)];
 FD(:,i) = [f_Vec(7); f_Vec(8)];
 T2(i) = f_Vec(9);

 P2 = InertialPower(m2,I2,v2(:,i),a2(:,i),omega2,alpha2);
 P3 = InertialPower(m3,I3,v3(:,i),a3(:,i),omega3(i),alpha3(i));
 P4 = InertialPower(m4,I4,v4(:,i),a4(:,i),omega4(i),alpha4(i));
 PKin(i) = P2 + P3 + P4; % kinetic power
 PF = dot(FP,vP(:,i)); % power from external force
 PT = T2(i) * omega2; % power from crank torque
 PExt(i) = PF + PT; % total external power
end

% plot the driving torque
plot(theta2*180/pi,T2,’Color’,[0 110/255 199/255])
title(‘Driving Torque for Fourbar Linkage’)
xlabel(‘Crank angle (degrees)’)
ylabel(‘Torque (N-m)’)
grid on
set(gca,’xtick’,0:60:360)
xlim([0 360])

% plot the external vs. kinetic power
figure
plot(theta2*180/pi,PKin,’o’,’Color’,[153/255 153/255 153/255])
hold on
plot(theta2*180/pi,PExt,’Color’,[0 110/255 199/255],’LineWidth’,2)

title(‘External vs. Kinetic Power’)
xlabel(‘Crank angle (degrees)’)
ylabel(‘Power (W)’)
legend(‘Kinetic’,’External’)
grid on
set(gca,’xtick’,0:60:360)
xlim([0 360])

7.9 Force Analysis Example 3 – The Grill Lid Lifting Mechanism

Some high-end outdoor grills, called “Kamado Grills” are made of solid ceramic, instead
of the traditional sheet metal. The thick ceramic walls enable the grills to maintain a steady
temperature for long periods of time, which is essential for proper slow-cooking of meats.
One major drawback for this type of grill is its weight – some Kamado grills can weigh

465Force Analysis on Linkages

over 100 kg! Since the lid is made of the same solid ceramic material, it is also very heavy.
It is common for these grills to have some type of lifting assistance mechanism instead of
an ordinary hinge, in order to help the user raise the heavy lid.

The goal of this example problem is to design and analyze a fourbar mechanism for
helping to raise the lid of a typical Kamado grill. The lid weighs 60 kg, and we wish to raise
it to an angle of 70° from horizontal. The lid should also move a distance of 65 mm away
from the base of the grill in order to provide a bigger open area over the cooking surface.
Figure 7.69 shows a diagram of the grill and the desired motion of the lid.

Figure 7.70 shows a very rough conceptual design of the lifting mechanism. At this
stage of the design process, it is helpful to make several sketches on some scrap paper
(not on a computer!) This will help you to eliminate many of the inevitable “silly” ideas
that arise during brainstorming. In our conceptual design, we attach the lid to the cou-
pler of the fourbar linkage, since the lid must translate and rotate. The base of the grill
will serve as the ground. For ease of manufacture, both of the ground pins are situated
on a line that is 40 mm away from the base. We will use a spring connected between
the coupler and ground to keep the lid in the raised position after lifting. Part of our
design exercise is to find out how strong to make the spring, and where to attach it to the
ground and coupler.

The ground pins are vertically aligned in Figure 7.70, but all of our analyses have
assumed that the ground pins are horizontally aligned. This means that we will need
to rotate the mechanism by 90° after the design is complete in order to perform the force
calculations – gravity will be acting horizontally in our analysis. We will keep the ground
pins vertically aligned during the design process to aid with visualization.

70°

65

FIGURE 7.69
Desired motion for the lid of the grill. The lid should move 65 mm horizontally and raise to an angle of 70°.

466 Introduction to Mechanism Design

Before diving into the details of the design, let us list the design requirements and
constraints:

 1. The lid should lift to an angle of 70° and move a distance of 65 mm away from the
base.

 2. The lid should stop at 70°, and the spring should keep it raised at this height.
 3. No part of the mechanism should penetrate the lid or base of the grill.
 4. The parts of the mechanism should be as small as possible, so that a cloth cover

can easily be placed over the entire grill.

7.9.1 Designing the Fourbar Mechanism

The first thing to observe about this problem is that it is extremely open-ended, and it is
difficult to know where to start. The beginning of the design process often consists of a
great deal of trial and error, but as we refine the design we will gain intuition as to what
works, and what doesn’t. Since we have to start somewhere, let us begin by sketching the
lid in its closed position in a SOLIDWORKS Drawing. Figure 7.71 shows such a sketch. The
blue rectangle represents the lid, and the black rectangle represents the body of the grill.
The line of ground pins is shown as a vertical centerline 40 mm away from the body of
the grill. The lid is attached to the lifting mechanism with a 15 mm wide metal band that
wraps around the circumference of the lid; thus, the centerline of this band is 7.5 mm above

40
Spring

Crank

Rocker
Coupler

FIGURE 7.70
We will use a fourbar linkage to construct the grill lifting mechanism. A spring attached to the base of the grill
will keep the lid in the raised position after it has been lifted.

467Force Analysis on Linkages

the top of the body of the grill. What is shown as the “bottom” of the lid in the figure is
actually the centerline of the band.

As a first guess, let us place the moving pins in line with the centerline of the band, as
shown in Figure 7.71 as points B and C. Our next step would be to draw the lid in its raised
position, as shown in Figure 7.72. It is helpful to use the Layers feature in SOLIDWORKS
to keep each position (and the dimensions) on their own layers.

With both lid positions visible, draw perpendicular bisectors between B1 – B2 and C1 –
C2. Remember that anywhere along these lines represents a valid ground point that will
achieve the desired motion for the lid. In the design requirements, however, we stipulated

CB

Line of ground pins

40

7.
50

40

70

FIGURE 7.71
A schematic drawing of the lid in its closed position. We will first try aligning the moving pins (B and C) with
the bottom of the lid.

C

B

40

65

70˚

FIGURE 7.72
The lid shown in the raised position, with the moving pins (B and C) added.

468 Introduction to Mechanism Design

that the ground pins should lie 40 mm away from the body of the grill. The intersection
of the perpendicular bisectors and the ground pin line is shown as points A and D in
Figure 7.73. This is a valid solution from a mathematical point of view, but from a practical
point of view the pins are too close together (they are 5.56 mm apart). With the holes this
close together, the pins would need to be too small in diameter for the required strength.
Interestingly, it doesn’t make much difference where you place the moving pins on the
line of the lid, the ground pins wind up too close together. We’ll need to try a different
solution.

Let us try moving the pin B downward until it is 60 mm away from pin C on a line −120°
from the horizontal, as shown in Figure 7.74. As seen in Figure 7.75, the newly found points
A and D are more widely separated, so we will use this design.

Figure 7.76 shows the dimensions for the final fourbar design. The crank is 30.04 mm,
the coupler is 60 mm, the rocker is 38.70 mm, and the distance between ground pins is
14.81 mm. We are now ready to begin the force analysis of the lid-lifting mechanism. To
keep ourselves organized, we will follow Steps 1–6 outlined in Section 7.5.

7.9.2 Determine the Critical Dimensions of the Linkage

We have found the dimensions using graphical linkage synthesis (with some trial and
error.) For the crank we have a = 30.04 mm, for the coupler we have b = 60 mm, for the
rocker we have c = 38.70 mm and the distance between ground pins is d = 14.81 mm. As

C1

B2

C2 D
A

B1

FIGURE 7.73
The first design iteration, with the lowered and raised lid positions shown.

C

B

60 12
0˚

FIGURE 7.74
For our second design, we will move the pin B downward until it is 60 mm away from pin C along a 120° line.

469Force Analysis on Linkages

seen in Figure 7.77 the crank is at an angle of 87.04° when the lid is closed and moves to
an angle of 179.78° when the lid is in the open position (see Figure 7.78). Use Save As to
save your fourbar force analysis code to the file Fourbar _ GrillLifter.m. Change the
 linkage dimensions as follows, and add the crank limiting angles.

% Linkage dimensions
a = 0.03004; % crank length (m)
b = 0.06000; % coupler length (m)
c = 0.03870; % rocker length (m)
d = 0.01481; % length between ground pins (m)
p = 0.59730; % length from B to P (m)
gamma3 = -55*pi/180; % angle between BP and coupler (converted to rad)
theta2min = 87.04*pi/180; % crank position with lid closed
theta2max = 179.78*pi/180; % crank position with lid open

C2

C1

B1

B2

D
A

FIGURE 7.75
Points A and D found using the new design for the coupler.

14
.8

130.04

60

38
.7

0

FIGURE 7.76
Final design for the grill lifter mechanism.

470 Introduction to Mechanism Design

7.9.3 Determine the Inertial Properties of Each Body in the Mechanism

Next, we will analyze the inertial properties of the links. The lid, which has a mass of
60 kg, is attached to the coupler. The rocker and crank are made of relatively thin stamped
steel, and their masses and moments of inertia may safely be neglected in comparison
with the lid. The lid is 450 mm wide and 220 mm high and its moment of inertia and loca-
tion of center of mass were found using the Mass Properties feature in SOLIDWORKS.

 m I= = ⋅60 kg 1.35 kg m3 3
2

Figure 7.79 shows the dimensions of the coupler and attached lid. In designing the coupler
we located pin C a distance of 40 mm away from the lid. The center of mass of the lid is
110 mm above the line CP and the handle is located at point P, which is 75 mm from the
front of the lid. In our previous analyses of the fourbar we placed the origin of the coupler

87
.04

˚

FIGURE 7.77
The crank begins its rotation at 87.04° from the horizontal.

179.78˚

FIGURE 7.78
The ending angle of the crank is 179.78° from the horizontal.

471Force Analysis on Linkages

at point B and measured the angle of the coupler from the line BC. We must, therefore,
find the location of the other points on the coupler (the center of mass and the handle at
point P) relative to the line BC. Figure 7.80 shows the location of the center of mass relative
to the line BC.

 = = −287.8 mm 174.5 mm3 3x y

The user lifts the lid with the handle located at point P, as shown in Figure 7.81. From the
figure, we see that

 597.3 mm 553p γ= = − °

We will assume that the centers of mass of the crank and rocker lie at their geometric
centers

 = =
2

02 2x
a

y

C

B

Handle

Center of mass

450

60

11
0

40

75

P

120°

FIGURE 7.79
Dimensions of the coupler, which is attached to the lid of the grill. The location of the center of mass has been
found using Mass Properties. The user lifts the lid with the handle at point P.

Center of mass

28
7.7

6

174.50

C

B

P

FIGURE 7.80
Location of the center of mass relative to the line BC on the coupler.

472 Introduction to Mechanism Design

 = =
2

04 4x
c

y

The code giving the inertial properties is shown below. Also given is the gravitational
force (which is constant) and the spring stiffness and unstretched length. Both of these are
design variables that we can “tweak” once we have a working force analysis code. For now,
we have entered a spring constant of zero.

% Inertial properties
m2 = 0.0; % mass of crank (kg)
m3 = 60.0; % mass of coupler including lid (kg)
m4 = 0.0; % mass of rocker (kg)
I2 = 0.0; % moment of inertia of crank about CM (kg-m2)
I3 = 1.35; % moment of inertia of coupler incl lid about CM (kg-m2)
I4 = 0.0; % moment of inertia of rocker about CM (kg-m2)
g = 9.81; % acceleration of gravity (m/s2)
Fg = [-m3*g; 0]; % force of gravity on the lid
xk0 = 0.01; % unstretched length of spring
k = 0; % spring constant (N/m)

% CM locations
xbar2 = [a/2; 0]; % CM of crank
xbar3 = [0.2878;-0.1745]; % CM of coupler including lid
xbar4 = [c/2; 0]; % CM of rocker

7.9.4 Determine the Nature of the External Forces Acting on the Linkage

We are now ready to begin analyzing the forces applied to the lid of the grill. In all of our
linkage analyses thus far the ground pins A and D have been horizontally aligned. We will
stick with this convention, and rotate the entire grill lifting mechanism 90° so that the line
AD is horizontal, as shown in Figure 7.82. Gravity now acts on the center of mass in the
negative x direction. The gravitational force acts on the coupler as

 =
−

0
3m g

gF

which is constant throughout the motion of the linkage. Also shown in the figure is the
spring, which is connected between point Q on the ground and the pin B. Since the pin
B attaches the crank to the coupler we can choose to have the spring force act on either of

Handle

PC

B 597.3

55°

FIGURE 7.81
Location of the handle at point P relative to the line BC on the coupler.

473Force Analysis on Linkages

these links. To keep the crank equations simple, we will assume that the spring force acts
on the coupler. The point Q is 50 mm (an arbitrary number!) away from point A on the line
AD. Let us define a vector rBQ that extends from point B to point Q.

 = −BQ B Qr x x

The spring force is then

 ()= − 0k xk BQ BQF r e

where k is the spring constant, x0 is the unstretched length of the spring and

 =BQ
BQ

BQ
e

r
r

is the unit vector acting in the direction of the spring.
The user lifts the lid with unknown force FP, which we assume acts perpendicular to the

line CP. We can write a vector from point C to point P as

 = −CP P Cr x x

Then the user force FP must satisfy

 ⋅ = 0P CPF e

where

 =CP
CP

CP
e

r
r

is the unit vector pointing from C to P.

7.9.5 Draw Free-body Diagrams of Each Link in the Mechanism

The free-body diagrams of each link in the lid-lifting mechanism are shown in Figure 7.83.
The crank has only the two-pin forces acting on it, so its equations of motion are

Coupler

Crank

Rocker

P

FP

50

B

Q

C
m3g

FIGURE 7.82
The grill has been rotated 90° to make the ground pins aligned with the horizontal.

474 Introduction to Mechanism Design

2 2

2 2 2 2

m

I

A B

A A B B α

− =

⋅ − ⋅ =

F F a

s F s F

The coupler is more complicated, since it has the spring force, the gravitational force, and
the force from the user acting on it. Since it acts at point B, moment arm of the spring force
is the same as for the force FB. Gravity exerts no moment on the coupler since it acts at the
center of mass. The equations of motion for the coupler are then

3 3

3 3 3 3 3 3

m

I

B C P k g

B B C C P P B k α

− + + + =

⋅ − ⋅ + ⋅ + ⋅ =

F F F F F a

s F s F s F s F

Finally, the equations of motion for the rocker are

α

− =

⋅ − ⋅ =

4 4

4 4 4 4

m

I

C D

C C D D

F F a

s F s F

since it experiences only the two forces at its pins. The unknown forces in these equa-
tions are FA, FB, FC, FD, and FP – a total of 10 unknowns. We assume that the spring force is
known once the position analysis has been carried out. The matrix force equation is mostly
unchanged from that of the generic fourbar

 =

−
−

−
−

−
−

A
T

B
T

B
T

C
T

P
T

C
T

D
T

CP
T

S

U U 0 0 0
0 U U 0 U
0 0 U U 0

s s 0 0 0

0 s s 0 s

0 0 s s 0

0 0 0 0 e

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 12 12 12

12 3 3 12 3

12 12 4 4 12

12 12 12 12

P

–FC

–FB

FP

FC

Fg

FB

Fk
FA

r2A

r2B

r3B

r3P

r4C

r4D
r3C

–FD

FIGURE 7.83
Free-body diagrams of each link in the lid-lifting mechanism

475Force Analysis on Linkages

F
F
F
F
F

a
a F F

a

s F
f t

0

2 2

3 3

4 4

2 2

3 3 3

4 4

α
α

α

=

=

− −

− ⋅

m
m

m
I

I
I

A

B

C

D

P

k g

B k

The force analysis portion of the code is

% conduct force analysis
 Fk = -k*(norm(xB(:,i)-xQ) - xk0)*eBQ;

 S_Mat = [U2 -U2 Z2 Z2 Z2;
 Z2 U2 -U2 Z2 U2;
 Z2 Z2 U2 -U2 Z2;
 s2A’ -s2B’ Z12 Z12 Z12;
 Z12 s3B’ -s3C’ Z12 s3P’;
 Z12 Z12 s4C’ -s4D’ Z12;
 Z12 Z12 Z12 Z12 eCP’];

 t_Vec = [m2*a2(:,i);
 m3*a3(:,i) - Fk - Fg;
 m4*a4(:,i);
 I2*alpha2;
 I3*alpha3(i) - dot(Fk,s3B);
 I4*alpha4(i);
 0];

 f_Vec = S_Mat\t_Vec
 FA(:,i) = [f_Vec(1); f_Vec(2)];
 FB(:,i) = [f_Vec(3); f_Vec(4)];
 FC(:,i) = [f_Vec(5); f_Vec(6)];
 FD(:,i) = [f_Vec(7); f_Vec(8)];
 FP(:,i) = [f_Vec(9); f_Vec(10)];

Remember that the norm function gives the magnitude of a vector – in this case the total
length of the spring.

7.9.6 Determine the Nature of the Motion of the Crank

We will use the same acceleration pulse technique that we used for the threebar door clos-
ing mechanism in order to open the grill lid. We will assume that the user takes 2 seconds
to open the grill. The only difference between the grill lifter and the door closer is that the
crank of the grill lid begins its rotation at 87.04° instead of zero. The crank equations of
motion for the grill lifter are

sin

1 cos

2

2

A t

A
t

α λ

ω
λ

λ()

=

= −

476 Introduction to Mechanism Design

 sin2 2 2 min
A

t
A

tθ
λ λ

λ θ= − +

where

λ θ θ()= −2 max 2 minA
T

The code that initializes the acceleration pulse parameters is

% Acceleration pulse parameters
T = 2; % time it takes to open door
lambda = 2*pi/T; % door opening “frequency”
N = 1001; % number of time steps
dt = T/(N-1); % time increment
t = 0:dt:T; % vector of simulation time
A = lambda*(theta2max - theta2min)/T; % amplitude of acceleration pulse

Inside the main loop, define the crank angle, angular velocity, and angular acceleration as

 theta2(i) = (A/lambda)*t(i) - (A/lambda^2)*sin(lambda*t(i)) + theta2min;
 omega2 = (A/lambda)*(1-cos(lambda*t(i)));
 alpha2 = A*sin(lambda*t(i));

This completes the definition of the crank motion.

7.9.7 Solve the Equations of Motion and Plot the Desired Results

Before we begin using our code to find the best spring constant we should do a few quick
verification calculations to make sure we are getting meaningful results. First, make sure
that the spring constant is set to zero. Lifting the lid in the presence of gravity will increase
its potential energy, where the gravitational potential energy of an object is

 =PE mgh

and h is the height that the object has been lifted. To convert this to a power, differentiate
with respect to time

 ()= = =P
d
dt

PE
d
dt

mgh mg
dh
dt

g

The quantity (dh/dt) is the velocity of the object in the direction of the gravitational field,
and mg is the gravitational force, so that we have:

 Pg g= ⋅F v

where v is the velocity of the center of mass of the object. This is the same power expres-
sion as we have used for calculating the power from any other external force. We can use
the same logic to find the power consumed in stretching the spring

 = ⋅Pk k BF v

477Force Analysis on Linkages

since the point Q at the other end of the spring is fixed. The power computations are then

 P2 = InertialPower(m2,I2,v2(:,i),a2(:,i),omega2,alpha2);
 P3 = InertialPower(m3,I3,v3(:,i),a3(:,i),omega3(i),alpha3(i));
 P4 = InertialPower(m4,I4,v4(:,i),a4(:,i),omega4(i),alpha4(i));
 PKin(i) = P2 + P3 + P4; % kinetic power

 Pg = dot(Fg,v3(:,i)); % gravitational power
 Pk = dot(Fk,vB(:,i)); % spring power
 PF = dot(FP(:,i),vP(:,i)); % power from handle force
 PExt(i) = PF+Pg; % total external power

The conservation of power plot with no spring force is shown in Figure 7.84. As you can
see, the two curves match exactly. Now change the spring constant to k = 10,000 N/m and
plot the power curves again. Interestingly, nothing seems to have changed! The additional
energy stored in the stretched spring goes directly into raising the potential energy of the
lid, so the net effect on the power curve is zero. Since our power curves line up so nicely,
we conclude that the code is providing meaningful results.

7.9.8 Using the Code to Improve the Design

Our primary design goal, as originally stated, is to develop a linkage and spring that
would assist the user in lifting the heavy lid. Remember that gravity is acting horizontally
in our simulation. To make the plots easier to interpret we define

 =
−

' F

F
P

Py

Px

F

External vs. kinetic power

Time (s)

1

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

–1

–2

–3

–4

–5

–6

Kinetic
External

 P
ow

er
 (W

)

FIGURE 7.84
Conservation of power plot for the linkage without the force from the spring.

478 Introduction to Mechanism Design

That is, we have rotated the axes 90° for plotting purposes. Change the spring constant
back to zero, and plot the lid lifting force, FP. The result is shown in Figure 7.85. At the
beginning of the motion the user must exert a 275 N vertical force to lift the lid – too much
for most users. Clearly, we will need the spring force to assist the user.

A secondary goal was to ensure that the lid remains in the upright position after it has
been raised so that the user does not need to keep the lid raised manually. Since the force
has two components, it is difficult to know whether we have achieved this goal. Let us
instead plot the torque created by the handle force

 = ⋅3 3T P PF s

At the beginning of the motion, the torque will be positive since the user is moving the lid
counterclockwise and raising it in the gravitational field. If the torque is negative at the end
of the motion it means that gravity is assisting the user in moving the lid, and that the lid
will stay open by itself after being raised.

The torque exerted by the user in order to lift the lid without the spring force is shown in
Figure 7.86. As expected, the torque starts out positive and ends negative. Now try increas-
ing the spring constant to 50,000 N/m.

As shown in Figure 7.87, the maximum required torque has been reduced to 50 N-m. For
the best user experience, we should try to reduce the peak torque level (positive or nega-
tive) to the minimum possible value.

The required torque and handle forces for a spring rate of 90,000 N/m are shown in
Figure 7.88 and Figure 7.89. The peak force has been reduced from 275 N to less than 80 N,
which is well within the capabilities of most adults. Thus, in a relatively short time we have
achieved a “pretty good” design through modifying only one of the design variables. We
have written the code in such a way that it would be easy to choose other variables to opti-
mize (e.g. the location of the fixed end of the spring, the unstretched length of the spring,

User force

Time (s)

300

250

0

0

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

200

150

100

50

–50

–100

FPx
FPy

 F
or

ce
 (N

)

FIGURE 7.85
Handle force exerted by the user in lifting the lid.

479Force Analysis on Linkages

etc.) but we leave this as an exercise for the reader. It should be noted that some of the
design variables – the link lengths – are quite a bit more difficult to optimize. If we change
any of the link lengths we must return to our SOLIDWORKS drawing to ensure that we
retain the desired motion and we must recalculate the crank starting and ending angles. In
addition, the center of mass location relative to the line BC will change. This is the reason
that path optimization of linkages is still an area of active research in kinematics today.

User torque

Time (s)

80

60

0

0

2 4 6 8 10 12 14 16 18 20

20

40

100

–20

To
rq

ue
 (N

m
)

FIGURE 7.86
Torque exerted by the user to lift the lid without the spring force.

User torque

Time (s)

50

30

0

20

40

–10

10

–20

To
rq

ue
 (N

m
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

FIGURE 7.87
User torque with a spring constant of 50,000 N/m. The maximum required torque has been reduced to 50 N m.

480 Introduction to Mechanism Design

User torque

Time (s)

25

–25

5

–5

0

20

15

–15

–10

10

–20

To
rq

ue
 (N

m
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

FIGURE 7.88
Torque exerted by the user with a spring constant of 90,000 N/m. The peak magnitude of the torque has been
reduced to approximately 20 N m.

User force

Time (s)

80

60

–40

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

40

20

0

–20

–60

–80

FPx
FPy

 F
or

ce
 (N

)

FIGURE 7.89
Force exerted by the user with a spring of 90,000 N/m. The peak force is slightly less than 80 N, which is achiev-
able by most users.

481Force Analysis on Linkages

7.9.9 Summary

This section has presented a practical design problem, a lifting mechanism for a heavy
grill lid. We began by using graphical linkage synthesis techniques to find a suitable four-
bar linkage for raising the lid to its desired position. We used the SOLIDWORKS Mass
Properties feature to calculate the center of mass and inertial properties of the lid. Next we
modified the fourbar force analysis code to account for the user force input at the handle,
instead of a crank motor torque. Finally, we demonstrated the use of the code for finding
a suitable value of one of the design variables – the spring constant. By using a systematic
approach, we were able to tackle this complicated design problem in a straightforward
way. In the end, we reached the conclusion that some design variable are quite simple
to modify, once the simulation code is complete, but others (e.g. link lengths) are more
challenging.

7.10 Force Analysis of the Inverted Slider-Crank

Force analysis on the inverted slider-crank is a little more complicated than it was for the
slider-crank. We proceed in the same manner as before, drawing a free-body diagram
of each link and summing forces and torques. Figure 7.90 shows a diagram of the slider-
crank with a known force, FP, applied at the end of the slider. The problem statement is
the same as for the fourbar and slider-crank: find the driving torque necessary to actuate
the linkage at the desired speed. Along the way, we will solve for the pin forces and the
moment between the slider and rocker.

The free-body diagram of the crank is the same as it was for the fourbar, see Figure 7.91.
The main distinguishing feature of the inverted slider-crank is the moving full-slider
joint. If we assume that friction is negligible, then the force between the slider and the
rocker can have no component parallel to the slider. Furthermore, rotating the slider will

B

C

DA

T2

FP

FIGURE 7.90
The inverted slider-crank linkage.

482 Introduction to Mechanism Design

create a moment that causes the rocker to rotate by the same amount. Remember that
one of the important features of the inverted slider-crank is that the slider and rocker
have the same rotation, angular velocity, and angular acceleration. The moment between
the two bodies is what enforces the rotational part of the full-slider constraint. Because
the full-slider makes no constraint along the axis of the slider, the force is zero in this
direction.

This discussion provides a new way to look at the various joints (or constraints) that
we discussed in Chapter 1. Each joint requires a set of forces or moments to enforce the
constraint condition. As seen in Figure 7.92, the pin joint requires two forces, one in the x
direction and one in the y direction. The full-slider requires a normal force and a moment.
The normal force keeps the slider in the slot, and the moment prevents the slider from
rotating relative to the slot. Finally, the half-slider has only a normal force that keeps the
pin inside the slot. Of course, we have assumed that friction is negligible in the joints. If
friction were present in the pin joint, a frictional moment would be created, and similar
results obtain for the other joints. As we saw in the preceding section, the presence of fric-
tion creates considerable difficulties in our analysis, and it is best to ignore it for a first-pass
analysis.

Pin joint Full slider

M

FN

FN

Fy

Fx

Half slider

FIGURE 7.92
The forces and moments required to enforce constraint conditions. The pin joint requires two forces (x and y),
the full-slider requires a normal force and a moment, and the half-slider requires only a normal force.

M

–M

FP

FC

–FC

–FD

–FB

FB

T2

FA

FIGURE 7.91
Free-body diagram of each link in the inverted slider-crank.

483Force Analysis on Linkages

The equations of motion for the crank are the same as those for the fourbar:

α

− =

⋅ − ⋅ + =

2 2

2 2 2 2 2

m

T I

A B

A A B B

F F a

s F s F

Adding forces and moments on the slider gives

α

− + =

⋅ − ⋅ + ⋅ + =

3 3

3 3 3 3 3

m

M I

B C P

B B C C P P

F F F a

s F s F s F

where M is the unknown moment created by the full-slider joint. The equations of motion
for the rocker are

 − = 4 4mC DF F a

 α⋅ − ⋅ − =4 4 4 4M IC C D Ds F s F

Note that we have used −M in the equation above to account for the fact that the unknown
moment acts in the opposite direction as on the slider. We now have nine equations (two
force and one moment equation for each link) and ten unknowns (FA, FB, FC, FD, M, T2). We
will obtain the final equation by considering the action of the full-slider joint on the force
FC. Since FC is perpendicular to the slider, we may write

 ⋅ = 03CF e

because e3 is parallel to the slider. This provides our final equation. Collecting the equa-
tions into matrix form gives

 =

−
−

−
−

−
− −

A
T

B
T

B
T

C
T

C
T

D
T

T

S

U U 0 0 0 0
0 U U 0 0 0
0 0 U U 0 0

s s 0 0

0 s s 0

0 0 s s

0 0 e 0

0 1

1 0

1 0

0 0

2 2 2 2 21 21

2 2 2 2 21 21

2 2 2 2 21 21

2 2 12 12

12 3 3 12

12 12 4 4

12 12 3 12

 α
α

α

=

=

−

− ⋅

0

2

2 2

3 3

4 4

2 2

3 3 3

4 4
M
T

m
m

m
I

I
I

A

B

C

D

P

P P

f

F
F
F
F

t

a
a F

a

s F

484 Introduction to Mechanism Design

Modify your code for the inverted slider crank acceleration analysis to perform the force
analysis.

Example 7.5

Calculate the driving torque for an inverted slider-crank with the dimensions and iner-
tial properties shown in Figure 7.93. A downward vertical force of 100 N is applied at
the end of the slider.

Solution

After modifying the inverted slider crank acceleration code to perform force analysis,
we should first conduct a power balance to ensure that our code is functioning correctly.
Figure 7.94 shows the kinetic and external power for the example linkage. Because the
plots match exactly, we can proceed with the analysis.

Figure 7.95 shows the driving torque for the example linkage. Make sure your torque
plot matches this before proceeding with the homework problems.

% InvSlider_Force_Analysis.m
% Conducts a force analysis on the inverted slider-crank linkage
% and plots the driving torque
% by Eric Constans, June 26, 2017

% Prepare Workspace

A D

C

P

B

b
60˚

350

200

130

80

(All dimensions in millimeters)
Crank length: 80 Crank mass: 0.1 kg

Crank moment of inertia: 0.0004 kg m2

Slidermoment of inertia: 0.0010 kg m2

Rocker moment of inertia: 0.0007 kg m2
Overall slider length: 350

Slider mass: 0.3 kgRocker length: 130
Rocker mass: 0.15 kgDistance betweet ground pins: 200

Angle between slider and rocker: 60˚

Crank angular velocity: 10 rad/s
Crank angular acceleration: 0 rad/s

θ2

FIGURE 7.93
Example inverted slider-crank linkage.

485Force Analysis on Linkages

clear variables; close all; clc;

% Linkage dimensions
a = 0.080; % crank length (m)
c = 0.130; % rocker length (m)
d = 0.200; % length between ground pins (m)
p = 0.350; % slider length (m)

External vs. kinetic power

Crank angle (°)

Kinetic
External

Po
w

er
 (W

)

0

0

–5

–10

–15

5

10

15

20

60 120 180 240 300 360

FIGURE 7.94
Power balance plot for the example inverted slider-crank.

Driving torque on the inverted slider-crank linkage

Crank angle (°)

To
rq

ue
 (N

m
)

0

0

–5

–10

–15

5

10

–20

–25
60 120 180 240 300 360

FIGURE 7.95
Driving torque for the example inverted slider-crank linkage.

486 Introduction to Mechanism Design

delta = 60*pi/180; % angle between slider and rocker (converted to rad)
gamma3 = 0; % angle to point P on slider
h = c*sin(delta); % h is a constant, only calculate it once

% ground pins
x0 = [0;0]; % ground pin at A (origin)
xD = [d;0]; % ground pin at D
v0 = [0;0]; % velocity of origin
a0 = [0;0]; % accel of origin
Z2 = zeros(2); Z21 = zeros(2,1); Z12 = zeros(1,2); U2 = eye(2);

% Inertial properties
m2 = 0.1; % mass of crank (kg)
m3 = 0.3; % mass of slider (kg)
m4 = 0.15; % mass of rocker (kg)
I2 = 0.0004; % moment of inertia of crank about CM (kg-m2)
I3 = 0.0010; % moment of inertia of slider about CM (kg-m2)
I4 = 0.0007; % moment of inertia of rocker about CM (kg-m2)

% CM locations
xbar2 = [a/2; 0]; % CM of crank
xbar3 = [p/2; 0]; % CM of slider
xbar4 = [c/2; 0]; % CM of rocker

% Applied loads
FP = [0; -100]; % force at point P (N)

% Angular velocity and acceleration of crank
omega2 = 10; % angular velocity of crank (rad/sec)
alpha2 = 0; % angular acceleration of crank (rad/sec2)

N = 361; % number of times to perform position calculations
[xB,xC,xP] = deal(zeros(2,N)); % allocate for position of B,C,P
[x2,x3,x4] = deal(zeros(2,N)); % allocate for position of CM of links
[vB,vC,vP] = deal(zeros(2,N)); % allocate for velocity of B,C,P
[v2,v3,v4] = deal(zeros(2,N)); % allocate for velocity of CM of links
[aB,aC,aP] = deal(zeros(2,N)); % allocate for accel of B,C,P
[a2,a3,a4] = deal(zeros(2,N)); % allocate for accel of CM of links

[theta2,theta3,theta4] = deal(zeros(1,N)); % allocate for link angles
[omega3,alpha3] = deal(zeros(1,N)); % allocate for vel and accel

[b,bdot,bddot] = deal(zeros(1,N)); % b, bdot, bddot
[FA,FB,FC,FD] = deal(zeros(2,N)); % pin forces
[M,T2,PExt,PKin] = deal(zeros(1,N)); % driving torque and powers

for i = 1:N
 theta2(i) = (i-1)*(2*pi)/(N-1);
 r = d - a*cos(theta2(i));
 s = a*sin(theta2(i));
 f2 = r^2 + s^2; % f squared

 b(i) = c * cos(delta) + sqrt(f2 - h^2);
 g = b(i) - c*cos(delta);

 theta3(i) = atan2((h*r - g*s),(g*r + h*s));
 theta4(i) = theta3(i) + delta;

% calculate unit vectors
 [e1,n1] = UnitVector(0);
 [e2,n2] = UnitVector(theta2(i));

487Force Analysis on Linkages

 [e3,n3] = UnitVector(theta3(i));
 [e4,n4] = UnitVector(theta4(i));
 [eBP,nBP] = UnitVector(theta3(i) + gamma3);
 [eA2,nA2,LA2,s2A,s2B, ~] = LinkCG(a,0, 0,xbar2,theta2(i));
 [eB3,nB3,LB3,s3B,s3C,s3P] = LinkCG(b(i),p,gamma3,xbar3,theta3(i));
 [eD4,nD4,LD4,s4D,s4C, ~] = LinkCG(c,0, 0,xbar4,theta4(i));

% solve for positions of points B, C and P on the linkage
 xB(:,i) = FindPos(x0,a,e2);
 xC(:,i) = FindPos(xD,c,e4);
 xP(:,i) = FindPos(xB(:,i),p,eBP);
 x2(:,i) = FindPos(x0,LA2,eA2);
 x3(:,i) = FindPos(xB(:,i),LB3,eB3);
 x4(:,i) = FindPos(xD,LD4,eD4);

% conduct velocity analysis to solve for omega3 and omega4
 A_Mat = [b(i)*n3-c*n4 e3];
 b_Vec = -a*omega2*n2;
 omega_Vec = A_Mat\b_Vec; % solve for angular velocities

 omega3(i) = omega_Vec(1); % decompose omega_Vec into
 bdot(i) = omega_Vec(2); % individual components

% calculate velocity at important points on linkage
 vB(:,i) = FindVel(v0, a, omega2, n2);
 vC(:,i) = FindVel(v0, c, omega3(i), n4);
 vP(:,i) = FindVel(vB(:,i), p, omega3(i), nBP);
 v2(:,i) = FindVel(v0, LA2, omega2, nA2);
 v3(:,i) = FindVel(vB(:,i), LB3, omega3(i), nB3);
 v4(:,i) = FindVel(v0, LD4, omega3(i), nD4);

% conduct acceleration analysis to solve for alpha3 and bddot
 ac = a*omega2^2;
 at = a*alpha2;
 bC = 2*bdot(i)*omega3(i);
 bc = b(i)*omega3(i)^2;
 cc = c*omega3(i)^2;

 C_Mat = A_Mat;
 d_Vec = -at*n2 + ac*e2 - bC*n3 + bc*e3 - cc*e4;
 alpha_Vec = C_Mat\d_Vec; % solve for angular accelerations

 alpha3(i) = alpha_Vec(1);
 bddot(i) = alpha_Vec(2);

% calculate acceleration at important points on linkage
 aB(:,i) = FindAcc(a0, a, omega2, alpha2, e2, n2);
 aC(:,i) = FindAcc(a0, c, omega3(i), alpha3(i), e4, n4);
 aP(:,i) = FindAcc(aB(:,i), p, omega3(i), alpha3(i), eBP, nBP);
 a2(:,i) = FindAcc(a0, LA2, omega2, alpha2, eA2, nA2);
 a3(:,i) = FindAcc(aB(:,i), LB3, omega3(i), alpha3(i), eB3, nB3);
 a4(:,i) = FindAcc(a0, LD4, omega3(i), alpha3(i), eD4, nD4);

% Conduct force analysis
 S_Mat = [U2 -U2 Z2 Z2 Z21 Z21;
 Z2 U2 -U2 Z2 Z21 Z21;
 Z2 Z2 U2 -U2 Z21 Z21;
 s2A’ -s2B’ Z12 Z12 0 1;
 Z12 s3B’ -s3C’ Z12 1 0;
 Z12 Z12 s4C’ -s4D’ -1 0;
 Z12 Z12 e3’ Z12 0 0];

488 Introduction to Mechanism Design

 t_Vec = [m2*a2(:,i);
 m3*a3(:,i) - FP;
 m4*a4(:,i);
 I2*alpha2;
 I3*alpha3(i) - dot(s3P,FP);
 I4*alpha3(i);
 0];

 f_Vec = S_Mat\t_Vec
 FA(:,i) = [f_Vec(1); f_Vec(2)];
 FB(:,i) = [f_Vec(3); f_Vec(4)];
 FC(:,i) = [f_Vec(5); f_Vec(6)];
 FD(:,i) = [f_Vec(7); f_Vec(8)];
 M(i) = f_Vec(9);
 T2(i) = f_Vec(10);

 P2 = InertialPower(m2,I2,v2(:,i),a2(:,i),omega2,alpha2);
 P3 = InertialPower(m3,I3,v3(:,i),a3(:,i),omega3(i),alpha3(i));
 P4 = InertialPower(m4,I4,v4(:,i),a4(:,i),omega3(i),alpha3(i));
 PKin(i) = P2 + P3 + P4;
 PF = dot(FP,vP(:,i));
 PT = T2(i) * omega2;
 PExt(i) = PF + PT;
end

% plot the driving torque
plot(theta2*180/pi,T2,’Color’,[0 110/255 199/255])
title(‘Driving Torque on the Inverted Slider-Crank Linkage’)
xlabel(‘Crank angle (degrees)’)
ylabel(‘Torque (N-m)’)
grid on
set(gca,’xtick’,0:60:360)
xlim([0 360])

7.11 Force Analysis Example 4 – The Bicycle Air Pump

A very commonly encountered inverted slider-crank mechanism is the foot-operated bicy-
cle pump shown in Figure 7.96. The user operates the mechanism by pressing downward
on the pedal.

Figure 7.97 shows the bicycle pump in the retracted position, with the crank at 90° from
the horizontal. The air inside the cylinder is at atmospheric pressure in this position, and
the volume inside the cylinder is at its maximum value. Figure 7.98 shows what happens
to the linkage when the user steps on the pedal: the cylinder volume decreases and the air
is compressed. For this mechanism the crank can rotate from a starting point of 90° in the
clockwise direction until it reaches a final value of 20°. This means that the angular velocity
of the crank will be negative, since the crank angle decreases with time.

At first glance, the bicycle pump mechanism might appear to be quite different from
the inverted slider-crank; there is no obvious link corresponding to the rocker. If we take
the length of the rocker, c, to be zero and the angle between slider and rocker, δ, to be
180° then we obtain the situation shown in Figure 7.99. The unit vectors for slider and cyl-
inder are collinear, but point in opposite directions. Since the two links are collinear there
is no obvious location for point C, which was the point of intersection between slider and

489Force Analysis on Linkages

FIGURE 7.96
A common example of the inverted slider-crank is a bicycle pump, shown here. The crank is attached to the
foot pedal, the slider is the piston and the rocker is the cylinder. The rocker length is zero in this mechanism.

FIGURE 7.97
The bicycle pump in the retracted position, with the crank at 90°. The air inside the cylinder is at atmospheric
pressure.

FIGURE 7.98
The bicycle pump in the extended position with the crank at 20°. The air inside the cylinder has been compressed.

490 Introduction to Mechanism Design

rocker. For this analysis we will merge the points C and P on the front face of the piston
such that

 = 3pBPr e

We will now follow the usual six-step procedure to conduct the force analysis on the bicy-
cle pump.

7.11.1 Determine the Critical Dimensions of the Linkage

The dimensions of the example bicycle pump are shown in Figure 7.100. The crank length,
a, is 70 mm and the distance between ground pins, d, is 250 mm. The length from point B
to the top of the piston, p, is 150 mm and the total length of the pedal arm, q, is 200 mm.
Finally, the distance from point D to the top of the cylinder, H, is 25 mm.

% Linkage dimensions
a = 0.070; % crank length (m)
c = 0.0; % rocker length (m)
d = 0.250; % length between ground pins (m)
p = 0.150; % length of piston (m)
q = 0.200; % length of pedal arm (m)
delta = 180*pi/180; % angle between piston and cylinder (converted to rad)
gamma3 = 0; % angle to point P on piston
H = 0.025; % distance btw point D and top of cylinder
h = c*sin(delta); % h is a constant, only calculate it once

7.11.2 Calculate the Inertial Properties of Each Body in the Mechanism

The inertial properties of the example bicycle pump are shown in Figure 7.100. The coordi-
nates of the center of mass for each body are given below.

100mm 100mm 55mm

0mm 0mm 0mm

2 3 4

2 3 4

= = =

= = =

x x x

y y y

A

B
p

C, P
D

e4
e3

FIGURE 7.99
The rocker has been replaced by a cylinder and the angle between slider and cylinder is 180°.

491Force Analysis on Linkages

% Inertial properties
m2 = 0.090; % mass of crank (kg)
m3 = 0.240; % mass of slider (kg)
m4 = 0.200; % mass of rocker (kg)
I2 = 0.0004; % moment of inertia of crank about CM (kg-m2)
I3 = 0.0003; % moment of inertia of slider about CM (kg-m2)
I4 = 0.0006; % moment of inertia of rocker about CM (kg-m2)

% CM locations
xbar2 = [0.100; 0]; % CM of crank
xbar3 = [0.100; 0]; % CM of slider
xbar4 = [0.055; 0]; % CM of rocker

7.11.3 Determine the External Forces

As shown in Figure 7.101, there are two external forces acting on the bicycle pump: the
user applies an unknown force FQ to the pedal and the compressed air applies a known
force FP to the face of the piston. We will assume that the pedal force acts perpendicular to
the pedal link at all times. The pressure force is determined by the instantaneous volume
inside the cylinder.

We will make the same assumption of isentropic compression as we did for the slider-
crank compressor mechanism.

A D

Q

B b

70
20

0

250

25

150

(All dimensions in millimeters)

Crank length: 70 Crank mass: 0.090 kg

Crank moment of inertia: 0.0004 kg m2

Slider/piston moment of inertia: 0.0003 kg m2

Rocker/cylinder moment of inertia: 0.0006 kg m2
Pedal arm length: 200

Slider/piston mass: 0.240 kgDistance between ground pins: 250
Rocker/cylinder mass: 0.200 kgLength of piston: 150

Cylinder head height: 25

Piston diameter: 45

FIGURE 7.100
Dimensions of the bicycle pump.

492 Introduction to Mechanism Design

 =

2 1

1

2

1.4

P P
V
V

The maximum cylinder volume, V1, occurs when the crank is at 90°, as seen in Figure 7.102.
In this position, the distance from point B to point D can be found using the Pythagorean
theorem, since the linkage forms a right triangle.

()+ + = +

= + − −

1
2 2 2

1
2 2

p x H a d

x a d p H

FQ

FP D

Q

B

A

FIGURE 7.101
External forces acting on the bicycle pump. The force from the compressed air acts on the piston face and the
user generates a force FQ at the pedal.

B

a

A D

d

H
x

p

FIGURE 7.102
The dimensions used in calculating the maximum cylinder volume.

493Force Analysis on Linkages

Thus, the maximum volume inside the cylinder is

 ()= + − −1
2 2V A a d p H

where A is the cross-sectional area of the cylinder. As shown in Figure 7.100, the instanta-
neous volume inside the cylinder is given by

 ()= − −2V A b p H

Thus, the instantaneous pressure is

 ()=
− −

2

1

1.4

P P
V

A b p H
atm

Before the main loop enter the constants for the pressure calculations. Make sure to allo-
cate memory for P, the instantaneous (absolute) air pressure inside the cylinder.

% Pressure constants
D = 0.045; % diameter of piston (m)
A = pi*D^2/4; % area of piston
Patm = 101e3; % atmospheric pressure
V1 = A*(sqrt(a^2 + d^2) - p - H); % maximum cylinder volume

Enter the instantaneous pressure calculations inside the main loop, before the force
 analysis section.

% Pressure calculations
 V2 = A*(b(i) - p - H); % current volume in cylinder
 P(i) = Patm*(V1/V2)^1.4;
 FP = -A*(P(i)-Patm)*e3;

7.11.4 Draw Free-Body Diagrams of Each Link in the Mechanism

A free-body diagram of each link in the bicycle pump mechanism is shown in Figure 7.103.
The forces and torques on the crank are the same as before, with the addition of the pedal
force FQ.

α

− + =

⋅ − ⋅ + ⋅ =

2 2

2 2 2 2 2

m

I

A B Q

A A B B Q Q

F F F a

s F s F s F

The equations of motion for the piston are a little trickier. In the previous section, the
normal force between piston and cylinder, FC was placed at point C – the intersection of
the slider and rocker. In this case, the piston is much shorter in length than the slider. For
convenience we choose to place the normal force FC at point P at the end of the piston, since
we have already defined a dimension, p, that specifies this location. In reality, the force FC
is distributed in an unknown fashion around the cylindrical outer face of the piston, so
there is no simple method for finding its exact location, anyway. The equations of motion
for the piston are then

494 Introduction to Mechanism Design

α

− = −

⋅ − ⋅ + = − ⋅

3 3

3 3 3 3 3

m

M I

B C P

B B P C P P

F F a F

s F s F s F

where M is the unknown moment created by the full-slider joint. The equations of motion
for the rocker are

α

− =

⋅ − ⋅ − =

4 4

4 4 4 4

m

M I

C D

P C D D

F F a

s F s F

The challenge with FC is that its position moves with piston. In all cases thus far, the posi-
tion vectors from the center of mass of a link to a pin joint have remained constant. To
address this problem we treat the cylinder as a two-pin link with one pin at D and the
other pin at P, on the face of the piston. Defining the vector from point D to point P as

 ()= − 4b pDPr e

allows us to use the LinkCG function can find s4P in the usual manner.

 [eA2,nA2,LA2,s2A,s2B,s2Q] = LinkCG(a, q, 0,xbar2,theta2(i));
 [eB3,nB3,LB3,s3B,s3P, ~] = LinkCG(p, 0, 0,xbar3,theta3(i));
 [eD4,nD4,LD4,s4D,s4P, ~] = LinkCG(b(i)-p, 0, 0,xbar4,theta4(i));

There are eleven unknowns (FA, FB, FC, FD, FQ, M) but thus far we have found only nine
equations. The remaining two can be found by noting that FQ is always perpendicular to
the crank and FC is always perpendicular to the slider.

⋅ =

⋅ =

0

0

2

3

Q

C

F e

F e

M

–M

FP
FB

FA

–FC

–FB

–FD

FC

FQ

FIGURE 7.103
Free-body diagrams of each link in the bicycle pump mechanism.

495Force Analysis on Linkages

The matrix equation of motion is then

 =

−
−

−
−

−
− −

A
T

B
T

Q
T

B
T

P
T

P
T

D
T

T

T

S

U U 0 0 U 0
0 U U 0 0 0
0 0 U U 0 0

s s 0 0 s

0 s s 0 0

0 0 s s 0

0 0 e 0 0

0 0 0 0 e

0

1

1

0

0

2 2 2 2 2 21

2 2 2 2 2 21

2 2 2 2 2 21

2 2 12 12 2

12 3 3 12 12

12 12 4 4 12

12 12 3 12 12

12 12 12 12 2

with the vector of unknowns

 =

M

A

B

C

D

Q

f

F
F
F
F
F

and the vector of knowns

 α
α

α

=

−

− ⋅

0
0

2 2

3 3

4 4

2 2

3 3 3

4 4

m
m

m
I

I
I

P

P P

t

a
a F

a

s F

7.11.5 Determine the Nature of the Movement of Crank

The crank receives an angular acceleration pulse, starting at 90° and ending at 20°. We
may use the same procedure as we did for the grill lifter mechanism to calculate the crank
angle, angular velocity and angular acceleration. Before the main loop define the accelera-
tion parameters:

% Acceleration pulse parameters
theta2min = 90*pi/180; % crank position at top of stroke
theta2max = 20*pi/180; % crank position at bottom of stroke
T = 2; % time it takes to open door
lambda = 2*pi/T; % door opening “frequency”

496 Introduction to Mechanism Design

N = 1001; % number of time steps
dt = T/(N-1); % time increment
t = 0:dt:T; % vector of simulation time
B = lambda*(theta2max - theta2min)/T; % amplitude of acceleration pulse

and then at the beginning of the main loop calculate the crank angle, etc.

 theta2(i) = (B/lambda)*t(i) - (B/lambda^2)*sin(lambda*t(i)) + theta2min;
 omega2 = (B/lambda)*(1-cos(lambda*t(i)));
 alpha2 = B*sin(lambda*t(i));

7.11.6 Solve for the Pin Forces and Driving Force

The solution procedure is the same as for the inverted slider-crank, although we must
solve for the pedal force, FQ.

 f_Vec = S_Mat _Vec;
 FA(:,i) = [f_Vec(1); f_Vec(2)];
 FB(:,i) = [f_Vec(3); f_Vec(4)];
 FC(:,i) = [f_Vec(5); f_Vec(6)];
 FD(:,i) = [f_Vec(7); f_Vec(8)];
 FQ(:,i) = [f_Vec(9); f_Vec(10)];
 M(i) = f_Vec(11);

To verify our calculations, we should first create a conservation of power plot. The inertial
powers are calculated in the normal fashion, and we have two external powers caused by
the pedal force and the air pressure force.

 P2 = InertialPower(m2,I2,v2(:,i),a2(:,i),omega2,alpha2);
 P3 = InertialPower(m3,I3,v3(:,i),a3(:,i),omega3(i),alpha3(i));
 P4 = InertialPower(m4,I4,v4(:,i),a4(:,i),omega3(i),alpha3(i));
 PKin(i) = P2 + P3 + P4;
 PP = dot(FP,vP(:,i));
 PQ = dot(FQ(:,i),vQ(:,i));
 PExt(i) = PP + PQ;

Figure 7.104 shows the conservation of power plot for the bicycle pump in its current con-
figuration. Since the curves match, there is a good chance that we have calculated the cor-
rect results. The kinetic power is very low because the links have very little mass and are
moving slowly.

Next, plot the air pressure inside the cylinder, as shown in Figure 7.105. The final pressure
is approximately 1.7 MPa. The maximum recommended tire pressure for a road bicycle is
around 900 kPa, so our current design is something of an overachiever. Luckily, we have
written the code in such a way that tweaking the design is simple. To lower the maximum
pressure produced by the pump, we can simply lower the value of p, which will increase
the volume of air inside the cylinder.

Try reducing the value of p to 145 mm; the results are shown in Figure 7.106. The maxi-
mum gauge pressure developed by the pump is now 1.05 MPa, which is much more
reasonable. For completeness, we should also modify the CM location of the piston accord-
ingly, although this will likely have a negligible effect on our calculations. When changing
variables be aware of the impact it may have on the rest of the design. If we shorten p too

497Force Analysis on Linkages

much, we may have to reconsider the length of the cylinder to ensure the piston does not
“pop” out the back.

Finally, we should plot the force FQ exerted by the user to operate the pump. Figure 7.107
shows the force plot with the shortened value of p taken into account. The maximum

External vs. kinetic power

Crank angle (°)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

4 × 10–3

1

2

3

–3

Kinetic
External

0

–1

–2

–4

Po
w

er
 (W

)

FIGURE 7.104
Conservation of power plot for the bicycle pump mechanism.

Cylinder pressure for the bicycle pump

Time (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1.2

1.4

1.6

1.8

1

0.2

0.8

0.6

0.4

0

G
au

ge
 p

re
ss

ur
e (

M
Pa

)

FIGURE 7.105
Gauge pressure inside the cylinder.

498 Introduction to Mechanism Design

magnitude of the force required by the user is 268.7 N, which is a reasonable amount of force
to apply with the legs. Consider that the gravitational force exerted by a person with a
weight of 40 kg is 392.4 N; by standing on the pump even a lightweight person can achieve
maximum pressure.

Cylinder pressure for the bicycle pump

Time (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1.2

1

0.2

0.8

0.6

0.4

0

G
au

ge
 p

re
ss

ur
e (

M
Pa

)

FIGURE 7.106
By reducing the length p to 145 mm we have lowered the maximum air pressure to 1.05 MPa, a much safer value.

Pedal force

Time (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

150

100

–200

50

0

–50

–150

–100

–250

–300

FQx
FQy

 F
or

ce
 (N

)

FIGURE 7.107
Pedal force exerted by the user.

499Force Analysis on Linkages

As a final exercise, it is interesting to plot the mechanical advantage of the bicycle pump
as a function of the crank angle. Here, we define mechanical advantage to be the output
force divided by the input force:

 =MA P

Q

F
F

A mechanical advantage plot for our current design is shown in Figure 7.108. It is fairly low
when the crank is vertical, but reaches a value of 6.2 when the crank is at 20°. This is desir-
able because the maximum air pressure also occurs near the bottom of the stroke. Since the
value seems to increase as crank angle diminishes, we suspect that even greater mechani-
cal advantage would be achieved if we could rotate the crank below 20°. Unfortunately, the
pedal makes contact with the cylinder shortly below 20°, so we would need to modify the
crank arm to achieve this.

7.12 Force Analysis of the Geared Fivebar Linkage

Force analysis on the geared fivebar is relatively straightforward, although there are a few
new aspects to it that are worth discussing. Figure 7.109 shows the geared fivebar linkage
with the links labeled. The problem statement is the usual one: find the motor torque,
T2, required to drive the load FQ with a given fivebar linkage and solve for the forces at
the pins.

20

3

300 40

4

2

6

5

1

7

50 60 70 80 90
Crank angle (°)

M
ec

ha
ni

ca
l a

dv
an

ta
ge

 F
P/

F Q

Mechanical advantage for the bicycle pump

FIGURE 7.108
Mechanical advantage of the bicycle pump as a function of crank angle.

500 Introduction to Mechanism Design

7.12.1 Some Gear Geometry

Let the number of teeth in the first gear be N1 and the number of teeth in the second gear be
N2. The distance between the ground pins, d, is also known as the center distance between
the two gears. The number of teeth in a gear is proportional to its diameter, through the
relation

 =N
D
M

 (7.180)

where D is the pitch diameter and M is the module of the gear, given in mm/tooth. The
pitch radii of the two gears must add to the center distance, so that

 ()= + = +
21 2 1 2d r r
M

N N (7.181)

where M must be the same for each gear to enable meshing. Recall from Section 4.14 that
we defined the gear ratio as

 ρ = 1

2

N
N

 (7.182)

We can solve for the radius of each gear by combining Equations (7.180–7.182)

ρ

ρ
=

+

11r
d

ρ

=
+ 12r
d

Crank

Gear 1

T2

FQ

Gear 2

Coupler 1

Coupler 2

Rocker

FIGURE 7.109
The geared fivebar linkage.

501Force Analysis on Linkages

Thus, by knowing the center distance and the gear ratio, we can calculate the pitch radius
of each gear. This will be important for determining the moment caused by the contact
force between the gears.

Figure 7.110 shows a magnified view of the two gears in contact. The line between the
centers of the gears is called, sensibly enough, the line of centers. The line perpendicular to
the line of centers is the common tangent, or pitch line. If you picture the two gears as two
circles making contact at a single point, then the common tangent is tangent to both circles
at this point. Because of the shape of the gear teeth (which we shall have much to say about
in Chapter 8 on gears) the force between the two gears is at an angle α with the common
tangent, as shown in the figure. The angle α is known as the pressure angle and takes on
certain standard values (e.g. 14.5° or 20°) in real gears. Thus, the gear force, Fg, has a verti-
cal and horizontal component. The vertical component transmits the torque between the
two gears, and is the component that does the actual work of the gearset. The horizontal
component transmits no torque, and instead increases the load on the pin at point A.

Now imagine a situation where the second gear “back-drives” the first gear. This might
happen when the applied load on the linkage tries to rotate gear 2 faster than it would be
driven by the motor on gear 1. In this case, as shown in Figure 7.111, the vertical (torque-
inducing) component of the gear force has changed direction, but the horizontal (useless)

A

Common tangent Fg
α

Line of centers

FIGURE 7.110
Torque is transmitted between gears with the force Fg. The gear force is at an angle α with the common tangent
between the two gears.

A

α
Fg

FIGURE 7.111
The second gear is “back-driving” the first gear. The horizontal component of the gear force Fg always points
toward the pin at A.

502 Introduction to Mechanism Design

component is still pointing toward pin A. This phenomenon will add some difficulty to
our force analysis of the geared fivebar.

A free-body diagram of each link in the geared fivebar is shown in Figure 7.112. Here
we have separated the x and y components of the gear force. The x component of the gear
force always points toward the ground pin on a given gear, while the y force may change
direction depending upon which gear is driving, and which is driven. The magnitude of
the x component of each gear force is

 α= tanF Fgx gy (7.183)

The force from gear 2 acting on gear 1 is

 =
−

1

F

Fg
gx

gy
F (7.184)

and the force from gear 1 acting on gear 2 is

 =
−

2

F

Fg
gx

gy
F (7.185)

As you can see, these forces are equal and opposite, but the absolute value operator in
Equation (7.183) ensures that the horizontal component of the gear forces always points in
the correct direction.

FB

FA
–FD

T2 r1 r2

–FB

–Fgy

Fgy

Fgx –Fgx

–FC

FC

FQ

–FE

FE

FIGURE 7.112
Free-body diagram of each link in the geared fivebar.

503Force Analysis on Linkages

The procedure for summing forces on each link is the same as it was for the previous
linkages.

 − + =1 2 2mA B gF F F a (7.186)

 − = 3 3mB EF F a (7.187)

 − = −4 4mE C QF F a F (7.188)

 − + =2 5 5mC D gF F F a (7.189)

The moment equations for the two-coupler links are also derived in the usual manner

 α⋅ − ⋅ =3 3 3 3IB B E Es F s F

 α⋅ − ⋅ = − ⋅4 4 4 4 4IE E C C Q Qs F s F s F

Recall from Section 7.2 that there are two possible points to sum moments about on a link:
the center of mass or a grounded pivot. For the two gears we choose to sum moments
about the grounded pivots at A and D, since this will eliminate FA and FD from these equa-
tions. In addition, the horizontal component of the gear force will not be present in the
equations, since it creates no moment about the ground pivot. The moment equation for
gear 1 is

 α− ⋅ + + =1 2 2 2r F T IAB B gy As F

where sAB is the normal to the vector from point A to point B. The moment equation for
gear 2 is

 α⋅ + =2 5 5r F IDC C gy Ds F

Note that in both equations we have used the moment of inertia about the ground pin. Using
the moment of inertia about the center of mass would be invalid since we have summed
moments about the ground pins. We will use the parallel axis theorem to calculate the
moments of inertia about the ground pins.

 = + ⋅2 2 2 2 2I I mA x x

 = + ⋅5 5 5 5 5I I mD x x

where we have made use of the fact that

 ⋅ =

⋅

= +2 2x

y
x
y

x yx x

Since we have computed the unit vectors and normals for each link during the position
analysis, calculating sAB and sDC is quite simple.

504 Introduction to Mechanism Design

=

=

2

5

a

u

AB

DC

s n

s n

We now have a total of 12 unknowns (FA, FB, FC, FD, FE, Fgy, T2) and 12 equations (four force
equations and four moment equations). Unfortunately, Equations (184) and (185) are non-
linear since Fg1 and Fg2 contain the absolute values of Fgy. Because of this nonlinearity, we
cannot place all 12 equations into a matrix and solve them simultaneously. But because
we summed moments about the ground pins for the two gears, the quantities FA and FD
appear only in Equations (186) and (189), so we can solve these equations separately. Let us
collect the other equations

α

α

α

α

− =

− = −

− ⋅ + + =

⋅ − ⋅ =

⋅ − ⋅ = − ⋅

⋅ + =

3 3

4 4

1 2 2 2

3 3 3 3

4 4 4 4 4

2 5 5

m

m

r F T I

I

I

r F I

B E

E C Q

AB B gy A

B B E E

E E C C Q Q

DC C gy D

F F a

F F a F

s F

s F s F

s F s F s F

s F

These are now eight equations and eight unknowns (FB, FC, FE, Fgy, T2) and all of the
 equations are linear. We may, therefore, collect them into matrix form as

 =

−
−

− ′
− ′ − ′

− ′ − ′
− ′

r

r

AB

B E

C E

DC

S

U 0 U 0 0
0 U U 0 0
s 0 0
s 0 s

0 s s
0 s 0

1
0 0
0 0

0

2 2 2 21 21

2 2 2 21 21

12 12 1

3 12 3

12 4 4

12 12 2

 =

2

F

T

B

C

E

gy

f

F
F
F

α

α
α

α

=

−

− ⋅

3 3

4 4

2 2

3 3

4 4 4

5 5

m
m

I
I

I

I

Q

A

Q Q

D

t

a
a F

s F

505Force Analysis on Linkages

Once the matrix equation has been solved, we can use Equations (186) and (189) to solve
for the ground pin forces

= + −

= − +

2 2 1

5 5 2

m

m

A B g

D C g

F F a F

F F a F

where Fg1 and Fg2 have been defined in Equations (184) and (185).
Now is a good time to modify your code for the fivebar acceleration analysis to perform

the force analysis using the matrix equation above.

Example 7.6

Calculate the driving torque for a geared fivebar linkage with the dimensions and iner-
tial properties shown in Figure 7.113. A downward vertical force of 100 N is applied at
point Q.

Solution

After modifying the geared fivebar acceleration code to perform force analysis, we
should first conduct a power balance to ensure that our code is functioning correctly.
Figure 7.114 shows the kinetic and external power for the example linkage. Because the
plots match exactly, we can proceed with the analysis.

Another way to check the code is to perform a static balance on the entire linkage, as
we did for the threebar. This is especially useful in making sure that we have defined

180

E

DA

B C

P Q

250

120

20
0

200

12
0

250

20° 20
°

(All dimensions in millimeters)

Length of link on gear 1: 120
Coupler 1 length: 250
Coupler 2 length: 250
Length of link on gear 2: 120
Distance between ground pins: 180
Length from B to P: 200
Length from C to Q: 200
Teeth on gear 1: 48
Teeth on gear 2: 24
Angular velocity of gear 1: 10 rad/s
Angular acceleration of gear 1: 0 rad/s

Mass of gear 1: 0.100 kg
Mass of coupler 1: 0.200 kg
Mass of coupler 2: 0.200 kg
Mass of gear 2: 0.100 kg
Moment of inertia of gear 1: 0.0001 kg m2

Moment of inertia of coupler 1: 0.0002 kg m2

Moment of inertia of coupler 2: 0.0002 kg m2

Moment of inertia of gear 2: 0.0001 kg m2

x2 = (60, 0) x3 = (125, 0)
x4 = (125, 0) x5 = (60, 0)

FIGURE 7.113
Example geared fivebar linkage.

506 Introduction to Mechanism Design

the internal gear forces in the correct direction. Set the crank angular velocity to a very
small number (e.g. 0.0001 rad/s) and plot the resultant of FA – FD in both the x and y
directions, as shown in Figure 7.115. Since there is no external force acting in the x direc-
tion, the x component of FA – FD is zero. The y component is 100 N, since this exactly
balances the y component of FQ, which was defined as −100 N. Make sure to return ω2 to
10 rad/s before creating the remaining plots.

It is interesting to plot the gear contact force Fg as the linkage performs its cycle. As
shown in Figure 7.116, the y component of the gear force changes sign several times

Po
w

er
 (W

)

150

100

50

0

–50

–100

–150

–200

Crank angle (°)

External vs. kinetic power

Kinetic

0 60 120 180 240 300 360

External

FIGURE 7.114
Power balance plot for the example geared fivebar linkage.

Fo
rc

e (
N

)

120

100

80

60

40

20

0

–20

Crank angle (°)

Static balance for geared fivebar linkage

FAx – FDx

FAy – FDy

0 60 120 180 240 300 360

FIGURE 7.115
Static balance for the geared fivebar linkage. The pin forces in the x direction cancel out and the
pin forces in the y direction add up to the force FQ.

507Force Analysis on Linkages

during the cycle, which means that gear 1 is alternately driving and being driven
by gear 2. The horizontal component of the gear force, on the other hand, is always
 negative – always directed inward toward the ground pin A. This must be the case,
since the two gears cannot pull on one another, they can only push.

Finally, Figure 7.117 shows the driving torque for the example linkage. Make sure
your torque plot matches this before proceeding with the homework problems.

Fo
rc

e (
N

)

300

200

100

0

–100

–200

–300

–400

Crank angle (°)

Gear force

Fgx
Fgy

0 60 120 180 240 300 360

FIGURE 7.116
Gear contact force for the geared fivebar linkage. Notice that the x component is always negative –
it is always directed inward toward the ground pin.

To
rq

ue
 (N

m
)

80

60

40

20

0

–20

–40

Crank angle (°)

Crank torque for geared fivebar linkage

0 60 120 180 240 300 360

FIGURE 7.117
Driving torque for the example geared fivebar linkage.

508 Introduction to Mechanism Design

% Fivebar_Force_Analysis.m
% solves for the pin forces on the geared fivebar linkage and
% plots the driving torque
% by Eric Constans, June 28, 2017

% Prepare Workspace
clear variables; close all; clc;

% Linkage dimensions
a = 0.120; % crank length (m)
b = 0.250; % coupler 1 length (m)
c = 0.250; % coupler 2 length (m)
d = 0.180; % distance between ground pins (m)
u = 0.120; % length of link on gear 2 (m)
N1 = 48; % number of teeth on gear 1
N2 = 24; % number of teeth on gear 2
phi = 0; % offset angle between gears
alpha = 20*pi/180; % pressure angle for gears
gamma3 = 20*pi/180; % angle to point P on coupler 1
gamma4 = -20*pi/180; % angle to point Q on coupler 2
p = 0.200; % distance to point P on coupler 1
q = 0.200; % distance to point Q on coupler 2

% some gear calculations
rho = N1/N2; % gear ratio
r1 = rho*d/(rho+1); % radius of gear 1
r2 = d/(rho+1); % radius of gear 2

% ground pins
x0 = [0;0]; % ground pin at A (origin)
xD = [d;0]; % ground pin at D
v0 = [0;0]; % velocity of origin
a0 = [0;0]; % accel of origin
Z2 = zeros(2); Z21 = zeros(2,1); Z12 = zeros(1,2); U2 = eye(2);

% Inertial properties
m2 = 0.100; % mass of crank (kg)
m3 = 0.200; % mass of coupler 1 (kg)
m4 = 0.200; % mass of coupler 2 (kg)
m5 = 0.100; % mass of gear 2(kg)
I2 = 0.0001; % moment of inertia of crank about CM (kg-m2)
I3 = 0.0002; % moment of inertia of coupler 1 about CM (kg-m2)
I4 = 0.0002; % moment of inertia of coupler 2 about CM (kg-m2)
I5 = 0.0001; % moment of inertia of gear 2 about CM (kg-m2)

% CM locations
xbar2 = [a/2; 0]; % CM of gear 1
xbar3 = [b/2; 0]; % CM of coupler 1
xbar4 = [c/2; 0]; % CM of coupler 2
xbar5 = [u/2; 0]; % CM of gear 2
I2A = I2 + m2*dot(xbar2,xbar2); % moment of inertia about pin A
I5D = I5 + m5*dot(xbar5,xbar5); % moment of inertia about pin D

% External forces
FQ = [0;-100];

% Angular velocity and acceleration of crank
omega2 = 10; % angular velocity of crank (rad/sec)
alpha2 = 0; % angular acceleration of crank (rad/sec^2)
omega5 = -omega2 * rho; % angular velocity of second gear
alpha5 = -alpha2 * rho; % angular accel of second gear

509Force Analysis on Linkages

% Main Loop
N = 361; % number of times to perform position calculations
[xB,xC,xE,xP,xQ] = deal(zeros(2,N)); % pin positions
[x2,x3,x4,x5] = deal(zeros(2,N)); % CM positions
[vB,vC,vE,vP,vQ] = deal(zeros(2,N)); % pin velocities
[v2,v3,v4,v5] = deal(zeros(2,N)); % CM velocities
[aB,aC,aE,aP,aQ] = deal(zeros(2,N)); % pin accelerations
[a2,a3,a4,a5] = deal(zeros(2,N)); % CM accelerations

[theta2,theta3,theta4] = deal(zeros(1,N)); % link angles
[omega3,omega4] = deal(zeros(1,N)); % link angular vels
[alpha3,alpha4] = deal(zeros(1,N)); % link angular accels

[FA,FB,FC,FD,FE,Fg] = deal(zeros(2,N)); % pin forces
[T2,PKin,PExt] = deal(zeros(1,N)); % torque and powers

for i = 1:N
 theta2(i) = (i-1)*(2*pi)/(N-1); % crank angle
 theta5 = -rho*theta2(i) + phi; % angle of second gear
 [e2,n2] = UnitVector(theta2(i)); % unit vector for crank
 [e5,n5] = UnitVector(theta5); % unit vector for second gear

 xC(:,i) = FindPos(xD, u, e5); % coords of pin C

 dprime = sqrt(xC(1,i)^2 + xC(2,i)^2); % distance to pin C
 beta = atan2(xC(2,i),xC(1,i)); % angle to pin C

 r = dprime - a*cos(theta2(i) - beta);
 s = a*sin(theta2(i) - beta);
 f2 = r^2 + s^2; % f squared

 delta = acos((b^2+c^2-f2)/(2*b*c));
 g = b - c*cos(delta);
 h = c*sin(delta);

 theta3(i) = atan2((h*r - g*s),(g*r + h*s)) + beta;
 theta4(i) = theta3(i) + delta;

 [e3,n3] = UnitVector(theta3(i)); % unit vector for first coupler
 [e4,n4] = UnitVector(theta4(i)); % unit vector for second coupler

 [eBP,nBP] = UnitVector(theta3(i) + gamma3); % unit vec from B to P
 [eCQ,nCQ] = UnitVector(theta4(i) + gamma4); % unit vec from C to Q

 [eA2,nA2,LA2,s2A,s2B, ~] = LinkCG(a, 0, 0,xbar2,theta2(i));
 [eB3,nB3,LB3,s3B,s3E,s3P] = LinkCG(b, p,gamma3,xbar3,theta3(i));
 [eC4,nC4,LC4,s4C,s4E,s4Q] = LinkCG(c, q,gamma4,xbar4,theta4(i));
 [eD5,nD5,LD5,s5D,s5C, ~] = LinkCG(u, 0, 0,xbar5,theta5);

 xB(:,i) = FindPos(x0, a, e2);
 xE(:,i) = FindPos(xB(:,i), b, e3);
 xP(:,i) = FindPos(xB(:,i), p, eBP);
 xQ(:,i) = FindPos(xC(:,i), q, eCQ);
 x2(:,i) = FindPos(x0, LA2, eA2);
 x3(:,i) = FindPos(xB(:,i), LB3, eB3);
 x4(:,i) = FindPos(xC(:,i), LC4, eC4);
 x5(:,i) = FindPos(xD, LD5, eD5);

% conduct velocity analysis to solve for omega3 and omega4
 A_Mat = [b*n3 -c*n4];

510 Introduction to Mechanism Design

 b_Vec = -a*omega2*n2 + u*omega5*n5;
 omega_Vec = A_Mat\b_Vec; % solve for angular velocities

 omega3(i) = omega_Vec(1); % decompose omega_Vec into
 omega4(i) = omega_Vec(2); % individual components

% calculate velocity at important points on the linkage
 vB(:,i) = FindVel(v0, a, omega2, n2);
 vC(:,i) = FindVel(v0, u, omega5, n5);
 vE(:,i) = FindVel(vB(:,i), b, omega3(i), n3);
 vP(:,i) = FindVel(vB(:,i), p, omega3(i), nBP);
 vQ(:,i) = FindVel(vC(:,i), q, omega4(i), nCQ);
 v2(:,i) = FindVel(v0, LA2, omega2, nA2);
 v3(:,i) = FindVel(vB(:,i), LB3, omega3(i), nB3);
 v4(:,i) = FindVel(vC(:,i), LC4, omega4(i), nC4);
 v5(:,i) = FindVel(v0, LD5, omega5, nD5);

% conduct acceleration analysis to solve for alpha3 and alpha4
 ac = a*omega2^2;
 at = a*alpha2;
 bc = b*omega3(i)^2;
 cc = c*omega4(i)^2;
 uc = u*omega5^2;
 ut = u*alpha5;

 C_Mat = A_Mat;
 d_Vec = -at*n2 + ac*e2 + bc*e3 - cc*e4 + ut*n5 - uc*e5;
 alpha_Vec = C_Mat\d_Vec; % solve for angular accelerations

 alpha3(i) = alpha_Vec(1);
 alpha4(i) = alpha_Vec(2);

% find accelerations of important points on linkage
 aB(:,i) = FindAcc(a0, a, omega2, alpha2, e2, n2);
 aC(:,i) = FindAcc(a0, u, omega5, alpha5, e5, n5);
 aE(:,i) = FindAcc(aB(:,i), b, omega3(i), alpha3(i), e3, n3);
 aP(:,i) = FindAcc(aB(:,i), p, omega3(i), alpha3(i), eBP, nBP);
 aQ(:,i) = FindAcc(aC(:,i), q, omega4(i), alpha4(i), eCQ, nCQ);

% find accelerations at centers of mass of each link
 a2(:,i) = FindAcc(a0, LA2, omega2, alpha2, eA2, nA2);
 a3(:,i) = FindAcc(aB(:,i), LB3, omega3(i), alpha3(i), eB3, nB3);
 a4(:,i) = FindAcc(aC(:,i), LC4, omega4(i), alpha4(i), eC4, nC4);
 a5(:,i) = FindAcc(a0, LD5, omega5, alpha5, eD5, nD5);

 sAB = a*n2; % normal to vector from A to B
 sDC = u*n5; % normal to vector from D to C

% conduct force analysis
 S_Mat = [U2 Z2 -U2 Z21 Z21;
 Z2 -U2 U2 Z21 Z21;
 -sAB’ Z12 Z12 r1 1;
 s3B’ Z12 -s3E’ 0 0;
 Z12 -s4C’ s4E’ 0 0;
 Z12 sDC’ Z12 r2 0];

 t_Vec = [m3*a3(:,i);
 m4*a4(:,i) - FQ;
 I2A*alpha2;
 I3*alpha3(i);
 I4*alpha4(i) - dot(s4Q,FQ);
 I5D*alpha5];

511Force Analysis on Linkages

 f_Vec = S_Mat\t_Vec
 FB(:,i) = [f_Vec(1); f_Vec(2)];
 FC(:,i) = [f_Vec(3); f_Vec(4)];
 FE(:,i) = [f_Vec(5); f_Vec(6)];
 Fg(2,i) = f_Vec(7); % y component of gear force
 Fg(1,i) = -abs(Fg(2,i))*tan(alpha); % x component of gear force
 T2(i) = f_Vec(8);

 FA(:,i) = FB(:,i) + m2*a2(:,i) - Fg(:,i);
 FD(:,i) = FC(:,i) - m5*a5(:,i) - Fg(:,i);

 P2 = InertialPower(m2,I2,v2(:,i),a2(:,i), omega2,alpha2);
 P3 = InertialPower(m3,I3,v3(:,i),a3(:,i),omega3(i),alpha3(i));
 P4 = InertialPower(m4,I4,v4(:,i),a4(:,i),omega4(i),alpha4(i));
 P5 = InertialPower(m5,I5,v5(:,i),a5(:,i), omega5,alpha5);
 PKin(i) = P2 + P3 + P4 + P5;
 PF = dot(FQ,vQ(:,i));
 PT = T2(i)*omega2;
 PExt(i) = PF + PT;
end

% plot the crank torque
plot(180*theta2/pi,T2,’Color’,[0 110/255 199/255],’LineWidth’,2)
title(‘Crank Torque for Geared Fivebar Linkage’)
xlabel(‘Crank Angle (deg)’)
ylabel(‘Torque (N-m)’)
grid on
set(gca,’xtick’,0:60:360)
xlim([0 360])

7.13 Force Analysis of the Sixbar Linkage

Force analysis on the sixbar linkage is straightforward, although somewhat tedious.
Figure 7.118 shows a Stephenson Type I sixbar linkage with the links labeled. The problem
statement is the usual one: find the motor torque, T2, required to drive the load FW with a
given sixbar linkage and solve for the forces at the pins.

A free-body diagram of each link in the Stephenson Type I sixbar is shown in Figure 7.119.
We can immediately begin writing force and moment equations for each link. For the
crank we have

α

− − =

⋅ − ⋅ − ⋅ + =

2 2

2 2 2 2 2 2

m

T I

A B E

A A B B E E

F F F a

s F s F s F

For the coupler

α

− =

⋅ − ⋅ =

3 3

3 3 3 3

m

I

B C

B B C C

F F a

s F s F

512 Introduction to Mechanism Design

For the rocker

α

− + =

⋅ − ⋅ + ⋅ =

4 4

4 4 4 4 4

m

I

C D F

C C D D F F

F F F a

s F s F s F
For link 5

α

− =

⋅ − ⋅ =

5 5

5 5 5 5

m

I

E G

E E G G

F F a

s F s F

FG
–FG

–FC

FC

–FD

FF

–FF

FW

FA

–FB

FB
FE

–FE

FIGURE 7.119
Free-body diagram of each link in the geared fivebar.

G
W

6
5

2

3

4

1

FW

FE

B

A
T2

D

C

FIGURE 7.118
The Stephenson Type I sixbar linkage.

513Force Analysis on Linkages

and finally, link 6

α

− = −

⋅ − ⋅ = − ⋅

6 6

6 6 6 6 6

m

I

G F W

G G F F W W

F F a F

s F s F s F

We now have a total of 15 unknowns (FA, FB, FC, FD, FE, FF, FG T2) and 15 equations (five
force equations and five moment equations). We may, therefore, collect them into matrix
form as

A

T
B

T
E

T

B
T

C
T

C
T

D
T

F
T

E
T

G
T

F
T

G
T

=

− −
−

−
−

−
− −

−
−

−
−

1

0

0

0

0

2 2 2 2 2 2 2 21

2 2 2 2 2 2 2 21

2 2 2 2 2 2 2 21

2 2 2 2 2 2 2 21

2 2 2 2 2 2 2 21

2 2 12 12 2 12 12

12 3 3 12 12 12 12

12 12 4 4 12 4 12

12 12 12 12 5 12 5

12 12 12 12 12 6 6

S

U U 0 0 U 0 0 0
0 U U 0 0 0 0 0
0 0 U U 0 U 0 0
0 0 0 0 U 0 U 0
0 0 0 0 0 U U 0

s s 0 0 s 0 0

0 s s 0 0 0 0

0 0 s s 0 s 0

0 0 0 0 s 0 s

0 0 0 0 0 s s

 { }= 2TA B C D E F G

T
f F F F F F F F

α
α
α
α

α

=
−

− ⋅

2 2

3 3

4 4

5 5

6 6

2 2

3 3

4 4

5 5

6 6 6

m
m
m
m

m
I
I
I
I

I

W

W W

t

a
a
a
a

a F

s F

The S matrices for the remaining sixbar linkages can be derived in the same manner, and
are shown at the end of this section. It is interesting to note that the t vector is identical
for all five types of sixbar linkage as long as the external load is applied at point W. If it is
applied at another point then the t vector must be modified accordingly. Modify your code
for the Stephenson Type I sixbar acceleration analysis to perform the force analysis using
the matrix equation above.

514 Introduction to Mechanism Design

Example 7.7

Calculate the driving torque for the Stephenson Type I sixbar linkage with the dimen-
sions shown in Figure 7.120. The inertial properties of the linkage are given in Table 7.2.
A downward vertical force of 100 N is applied at point W.

Solution

After modifying the geared sixbar acceleration code to perform force analysis, we
should first conduct a power balance to ensure that our code is functioning correctly.
Figure 7.121 shows the kinetic and external power for the example linkage. Because the
plots match exactly, we can proceed with the analysis.

9070

110

E

DA

B
C

F

G

W

150

120 150

15
0

160

100

–20°

20°
20°

(All dimensions in millimeters)
Crank length: 70
Length AE on crank: 150
Internal angle of crank: 20°
Coupler length: 100
Distance between ground pins: 110
Crank angular velocity: 10 rad/s

Rocker length: 90
Length DF on rocker: 150
Internal angle of rocker: –20°
Length of link 5: 120
Length of link 6: 160
Crank angular acceleration: 0 rad/s

FIGURE 7.120
Dimensions of the example Stephenson Type I linkage.

TABLE 7.2

Inertial Properties of Example Stephenson Type I Sixbar Linkage

Mass (kg) Moment of Inertia (kg m2) x (m) y (m)

Crank 0.200 0.0002 0.035 0.0175
Coupler 0.100 0.0001 0.050 0.0
Rocker 0.200 0.0002 0.045 −0.0225
Link 5 0.100 0.0001 0.060 0.0
Link 6 0.150 0.00015 0.080 0.04

515Force Analysis on Linkages

Finally, Figure 7.122 shows the driving torque for the example linkage. Make sure
your torque plot matches this before proceeding with the homework problems. The
remainder of this section gives example driving torque plots for the other sixbar link-
ages. In each case, a downward vertical force of 100 N is applied to the point W on link 6
(Figures 7.123–7.130 and Tables 7.3–7.6).

To
rq

ue
 (N

m
)

60

50

30

40

20

10

0

–20

–10

Crank angle (°)

Crank torque for Stephenson type I sixbar linkage

0 60 120 180 240 300 360

FIGURE 7.122
Driving torque for the example Stephenson Type I sixbar linkage.

Po
w

er
 (W

)

60

40

20

0

–20

–40

–60

–80

Crank angle (°)

External vs. kinetic power

External

0 60 120 180 240 300 360

Kinetic

FIGURE 7.121
Power balance plot for the example Stephenson Type I sixbar linkage.

516 Introduction to Mechanism Design

250

105

E

F

G

B

DA

C

W150

19
5

22
5

20°

30°

75

45

–30°

180

120

165

Rocker length: 105
Length DF on rocker: 225
Internal angle of rocker: –30°
Length of link 5: 120
Length of link 6: 180
Crank angular acceleration: 0 rad/s

(All dimensions in millimeters)
Crank length: 45
Coupler length: 75
Length BE on coupler: 195
Internal angle of coupler: 30°
Distance between ground pins: 165
Crank angular velocity: 10 rad/s

FIGURE 7.123
Dimensions of the example Stephenson Type II sixbar linkage.

To
rq

ue
 (N

m
)

8

6

2

4

0

–2

–4

–6

–8

–10

Crank angle (°)

Crank torque for Stephenson type II sixbar linkage

0 60 120 180 240 300 360

FIGURE 7.124
Driving torque for the example Stephenson Type II sixbar linkage.

517Force Analysis on Linkages

120

180

195

E

G

F

B

DA

C

W

225

80

18
0

100

20°

–20°
–20°

105

135

Internal angle of ground: –20°
Length AF on ground: 195
Rocker length: 120
Length of link 5: 180
Length of link 6: 180
Crank angular acceleration: 0 rad/s

(All dimensions in millimeters)

Crank length: 80
Coupler length: 105
Internal angle of coupler: 20°
Length BE on coupler: 225
Distance between ground pins: 135
Crank angular velocity: 10 rad/s

FIGURE 7.125
Dimensions of the example Stephenson Type III sixbar linkage.

To
rq

ue
 (N

m
)

2

4

0

–2

–4

–6

–8

Crank angle (°)

Crank torque for Stephenson type III sixbar linkage

0 60 120 180 240 300 360

FIGURE 7.126
Driving torque for the example Stephenson Type III sixbar linkage.

518 Introduction to Mechanism Design

To
rq

ue
 (N

m
)

15

10

5

0

–5

–10

–15

–20

–25

–30

Crank angle (°)

Crank torque for Watt type I sixbar linkage

0 60 120 180 240 300 360

FIGURE 7.128
Driving torque for the example Watt Type I sixbar linkage.

120
120

108

E

G

F

B

DA

C

W
120

84

18
0

80

30°

–20°

–50°

180

132

Rocker length: 108
Internal angle of rocker: –50°
Length DF on rocker: 180
Length of link 5: 120
Length of link 6: 120
Crank angular acceleration: 0 rad/s

(All dimensions in millimeters)

Crank length: 84
Coupler length: 120
Internal angle of coupler: 30°
Length BE on coupler: 180
Distance between ground pins: 132
Crank angular velocity: 10 rad/s

FIGURE 7.127
Dimensions of the example Watt Type I sixbar linkage.

519Force Analysis on Linkages

120

110

16
0

E

G

B

DA

C

W

F

70

100

90

–20°

–30°

–20°

100

15
0

150

(All dimensions in millimeters)
Rocker length: 90
Internal angle of rocker: –30°
Length DE on rocker: 150
Length of link 5: 120
Length of link 6: 160
Crank angular acceleration: 0 rad/sec

Crank length: 70
Coupler length: 100
Distance between ground pins: 110
Internal angle of ground: –20°
Length AF on ground: 150
Crank angular velocity: 10 rad/sec

FIGURE 7.129
Dimensions of the example Watt Type II sixbar linkage.

To
rq

ue
 (N

-m
)

10

5

0

–5

–10

–15

–20

Crank angle (°)

Crank torque for Watt type II sixbar linkage

0 60 120 180 240 300 360

FIGURE 7.130
Driving torque for the example Watt Type I sixbar linkage.

520 Introduction to Mechanism Design

TABLE 7.3

Inertial Properties of the Example Stephenson Type II Sixbar Linkage

Mass (kg) Moment of Inertia (kg m2) xx (m) yy (m)

Crank 0.100 0.0001 0.0225 0.0
Coupler 0.200 0.0002 0.0375 0.01875
Rocker 0.250 0.00025 0.0525 −0.02625
Link 5 0.100 0.0001 0.060 0.0
Link 6 0.150 0.00015 0.090 0.045

TABLE 7.4

Inertial Properties of the Example Stephenson Type III Sixbar Linkage

Mass (kg) Moment of Inertia (kg m2) xx (m) yy (m)

Crank 0.100 0.0001 0.040 0.0
Coupler 0.200 0.0002 0.0525 0.02625
Rocker 0.100 0.0001 0.060 0.0
Link 5 0.100 0.0001 0.090 0.0
Link 6 0.150 0.00015 0.090 −0.045

TABLE 7.5

Inertial Properties of the Example Watt Type I Sixbar Linkage

Mass (kg) Moment of Inertia (kg m2) xx (m) yy (m)

Crank 0.100 0.0001 0.042 0.0
Coupler 0.200 0.0002 0.060 0.030
Rocker 0.200 0.0002 0.054 −0.027
Link 5 0.100 0.0001 0.060 0.0
Link 6 0.150 0.00015 0.060 −0.030

TABLE 7.6

Inertial Properties of the Example Watt Type II Sixbar Linkage

Mass (kg) Moment of Inertia (kg m2) xx (m) yy (m)

Crank 0.100 0.0001 0.035 0.0
Coupler 0.100 0.0001 0.050 0.0
Rocker 0.200 0.0002 0.045 0.0225
Link 5 0.100 0.0001 0.060 0.0
Link 6 0.150 0.00015 0.080 −0.040

521Force Analysis on Linkages

7.13.1 Force Matrices for Sixbar Linkages

=

− −
−

−
−

−
− −

−
−

−
−

A
T

B
T

E
T

B
T

C
T

C
T

D
T

F
T

E
T

G
T

F
T

G
T

U U 0 0 U 0 0 0
0 U U 0 0 0 0 0
0 0 U U 0 U 0 0
0 0 0 0 U 0 U 0
0 0 0 0 0 U U 0

s s 0 0 s 0 0

0 s s 0 0 0 0

0 0 s s 0 s 0

0 0 0 0 s 0 s

0 0 0 0 0 s s

Stephenson TypeI 1

0

0

0

0

2 2 2 2 2 2 2 21

2 2 2 2 2 2 2 21

2 2 2 2 2 2 2 21

2 2 2 2 2 2 2 21

2 2 2 2 2 2 2 21

2 2 12 12 2 12 12

12 3 3 12 12 12 12

12 12 4 4 12 4 12

12 12 12 12 5 12 5

12 12 12 12 12 6 6

=

−
− −

−
−

−
−

− −
−

−
−

A
T

B
T

B
T

C
T

E
T

D
T

F
T

G
T

C
T

G
T

E
T

F
T

U U 0 0 0 0 0 0
0 U U 0 U 0 0 0
0 0 0 U 0 U U 0
0 0 U 0 0 0 U 0
0 0 0 0 U U 0 0

s s 0 0 0 0 0

0 s s 0 s 0 0

0 0 0 s 0 s s

0 0 s 0 0 0 s

0 0 0 0 s s 0

Stephenson TypeII 1

0

0

0

0

2 2 2 2 2 2 2 21

2 2 2 2 2 2 2 21

2 2 2 2 2 2 2 21

2 2 2 2 2 2 2 21

2 2 2 2 2 2 2 21

2 2 12 12 12 12 12

12 3 3 12 3 12 12

12 12 12 4 12 4 4

12 12 5 12 12 12 5

12 12 12 12 6 6 12

=

−
− −

−
−

−
−

− −
−

−
−

A
T

B
T

B
T

C
T

E
T

C
T

D
T

E
T

G
T

F
T

G
T

U U 0 0 0 0 0 0
0 U U 0 U 0 0 0
0 0 U U 0 0 0 0
0 0 0 0 U 0 U 0
0 0 0 0 0 U U 0

s s 0 0 0 0 0

0 s s 0 s 0 0

0 0 s s 0 0 0

0 0 0 0 s 0 s

0 0 0 0 0 s s

Stephenson TypeIII 1

0

0

0

0

2 2 2 2 2 2 2 21

2 2 2 2 2 2 2 21

2 2 2 2 2 2 2 21

2 2 2 2 2 2 2 21

2 2 2 2 2 2 2 21

2 2 12 12 12 12 12

12 3 3 12 3 12 12

12 12 4 4 12 12 12

12 12 12 12 5 12 5

12 12 12 12 12 6 6

=

−
− −

−
−

−
−

− −
−

−
−

A
T

B
T

B
T

C
T

E
T

C
T

D
T

F
T

E
T

G
T

F
T

G
T

U U 0 0 0 0 0 0
0 U U 0 U 0 0 0
0 0 U U 0 U 0 0
0 0 0 0 U 0 U 0
0 0 0 0 0 U U 0

s s 0 0 0 0 0

0 s s 0 s 0 0

0 0 s s 0 s 0

0 0 0 0 s 0 s

0 0 0 0 0 s s

Watt TypeI 1

0

0

0

0

2 2 2 2 2 2 2 21

2 2 2 2 2 2 2 21

2 2 2 2 2 2 2 21

2 2 2 2 2 2 2 21

2 2 2 2 2 2 2 21

2 2 12 12 12 12 12

12 3 3 12 3 12 12

12 12 4 4 12 4 12

12 12 12 12 5 12 5

12 12 12 12 12 6 6

522 Introduction to Mechanism Design

% Sixbar_S1_Force_Analysis.m
% conducts a force analysis on the Stephenson Type I linkage and
% plots the driving torque.
% by Eric Constans, June 29, 2017

% Prepare Workspace
clear variables; close all; clc;

% Linkage dimensions
a = 0.070; % crank length (m)
b = 0.100; % coupler length (m)
c = 0.090; % rocker length (m)
d = 0.110; % length between ground pins (m)
p = 0.150; % length to third pin on crank triangle (m)
q = 0.150; % length to third pin on rocker triangle (m)
u = 0.120; % length of link 5 (m)
v = 0.160; % length of link 6 (m)
w = 0.150; % length from pin F to point W (m)
gamma2 = 20*pi/180; % internal angle of crank triangle
gamma4 = -20*pi/180; % internal angle of rocker triangle
gamma6 = -20*pi/180; % internal angle of link 6

% Ground pins
x0 = [0; 0]; % ground pin at A (origin)
xD = [d; 0]; % ground pin at D
v0 = [0; 0]; % velocity of origin
a0 = [0; 0]; % acceleration of origin
Z2 = zeros(2); Z21 = zeros(2,1); Z12 = zeros(1,2); U2 = eye(2);

% Inertial properties
m2 = 0.200; % mass of crank (kg)
m3 = 0.100; % mass of coupler (kg)
m4 = 0.200; % mass of rocker (kg)
m5 = 0.100; % mass of link 5 (kg)
m6 = 0.150; % mass of link 6 (kg)
I2 = 0.0002; % moment of inertia of crank about CM (kg-m^2)
I3 = 0.0001; % moment of inertia of coupler about CM (kg-m^2)
I4 = 0.0002; % moment of inertia of rocker about CM (kg-m^2)

=

−
−

− −
−

−
−

−
− −

−
−

A
T

B
T

B
T

C
T

C
T

D
T

E
T

E
T

G
T

F
T

G
T

U U 0 0 0 0 0 0
0 U U 0 0 0 0 0
0 0 U U U 0 0 0
0 0 0 0 U 0 U 0
0 0 0 0 0 U U 0

s s 0 0 0 0 0

0 s s 0 0 0 0

0 0 s s s 0 0

0 0 0 0 s 0 s

0 0 0 0 0 s s

Watt TypeII 1

0

0

0

0

2 2 2 2 2 2 2 21

2 2 2 2 2 2 2 21

2 2 2 2 2 2 2 21

2 2 2 2 2 2 2 21

2 2 2 2 2 2 2 21

2 2 12 12 12 12 12

12 3 3 12 12 12 12

12 12 4 4 4 12 12

12 12 12 12 5 12 5

12 12 12 12 12 6 6

523Force Analysis on Linkages

I5 = 0.0001; % moment of inertia of link 5 about CM (kg-m^2)
I6 = 0.00015; % moment of inertia of link 6 about CM (kg-m^2)

% CM Locations
xbar2 = [a/2; a/4]; % CM of crank
xbar3 = [b/2; 0]; % CM of coupler
xbar4 = [c/2; -c/4]; % CM of rocker
xbar5 = [u/2; 0]; % CM of link 5
xbar6 = [v/2; v/4]; % CM of link 6

% Applied loads
FW = [0; -100]; % force at point W (N)

% Angular velocity and acceleration of crank
omega2 = 10; % angular velocity of crank (rad/sec)
alpha2 = 0; % angular acceleration of crank (rad/sec^2)

% allocate space for variables
N = 361; % number of times to perform position calculations
[xB,xC,xE,xF,xG,xW] = deal(zeros(2,N)); % position of B, C, E, F, G, W
[x2,x3,x4,x5,x6] = deal(zeros(2,N)); % CM position of links
[vB,vC,vE,vF,vG,vW] = deal(zeros(2,N)); % velocity of B, C, E, F, G, W
[v2,v3,v4,v5,v6] = deal(zeros(2,N)); % CM velocity of links
[aB,aC,aE,aF,aG,aW] = deal(zeros(2,N)); % acceleration of B, C, E, F, G
[a2,a3,a4,a5,a6] = deal(zeros(2,N)); % CM acceleration of links

[theta2,theta3,theta4,theta5,theta6] = deal(zeros(1,N)); % angles
[omega3,omega4,omega5,omega6] = deal(zeros(1,N)); % velocities
[alpha3,alpha4,alpha5,alpha6] = deal(zeros(1,N)); % accelerations

[FA,FB,FC,FD,FE,FF,FG] = deal(zeros(2,N)); % pin forces
[T2,PExt,PKin] = deal(zeros(1,N)); % driving torque and powers

% Main Loop
for i = 1:N

% solve lower fourbar linkage
 theta2(i) = (i-1)*(2*pi)/(N-1); % crank angle
 r = d - a*cos(theta2(i));
 s = a*sin(theta2(i));
 f2 = r^2 + s^2;
 delta = acos((b^2+c^2-f2)/(2*b*c));
 g = b - c*cos(delta);
 h = c*sin(delta);

 theta3(i) = atan2((h*r - g*s),(g*r + h*s)); % coupler angle
 theta4(i) = theta3(i) + delta; % rocker angle

% calculate unit vectors
 [e2,n2] = UnitVector(theta2(i));
 [e3,n3] = UnitVector(theta3(i));
 [e4,n4] = UnitVector(theta4(i));
 [eAE,nAE] = UnitVector(theta2(i) + gamma2);
 [eDF,nDF] = UnitVector(theta4(i) + gamma4);

524 Introduction to Mechanism Design

% solve for positions of points B, C, E, F
 xB(:,i) = FindPos(x0,a, e2);
 xC(:,i) = FindPos(xD,c, e4);
 xE(:,i) = FindPos(x0,p,eAE);
 xF(:,i) = FindPos(xD,q,eDF);

% solve upper fourbar linkage
 xFB = xF(1,i) - xB(1,i); yFB = xF(2,i) - xB(2,i);
 xEB = xE(1,i) - xB(1,i); yEB = xE(2,i) - xB(2,i);
 beta = atan2(yFB, xFB);
 alpha = atan2(yEB, xEB);
 aStar = sqrt(xEB^2 + yEB^2);
 dStar = sqrt(xFB^2 + yFB^2);
 theta2star = alpha - beta; % virtual crank angle on upper fourbar

 r = dStar - aStar*cos(theta2star);
 s = aStar*sin(theta2star);
 f2 = r^2 + s^2;
 delta = acos((u^2+v^2-f2)/(2*u*v));
 g = u - v*cos(delta);
 h = v*sin(delta);

 theta5star = atan2((h*r - g*s),(g*r + h*s)); % coupler and rocker angles
 theta6star = theta5star + delta; % on upper fourbar
 theta5(i) = theta5star + beta; % return angles to fixed
 theta6(i) = theta6star + beta; % fixed CS

% calculate remaining unit vectors
 [e5,n5] = UnitVector(theta5(i));
 [e6,n6] = UnitVector(theta6(i));
 [eFW,nFW] = UnitVector(theta6(i) + gamma6);

 [eA2,nA2,LA2,s2A,s2B,s2E] = LinkCG(a, p,gamma2,xbar2,theta2(i));
 [eB3,nB3,LB3,s3B,s3C, ~] = LinkCG(b, 0, 0,xbar3,theta3(i));
 [eD4,nD4,LD4,s4D,s4C,s4F] = LinkCG(c, q,gamma4,xbar4,theta4(i));
 [eE5,nE5,LE5,s5E,s5G, ~] = LinkCG(u, 0, 0,xbar5,theta5(i));
 [eF6,nF6,LF6,s6F,s6G,s6W] = LinkCG(v, w,gamma6,xbar6,theta6(i));

% calculate position of pins
 xG(:,i) = FindPos(xE(:,i), u, e5);
 xW(:,i) = FindPos(xF(:,i), w, eFW);
 x2(:,i) = FindPos(x0, LA2, eA2);
 x3(:,i) = FindPos(xB(:,i), LB3, eB3);
 x4(:,i) = FindPos(x0, LD4, eD4);
 x5(:,i) = FindPos(xE(:,i), LE5, eE5);
 x6(:,i) = FindPos(xF(:,i), LF6, eF6);

% Conduct velocity analysis to solve for omega3 - omega6
 A_Mat = [b*n3 -c*n4 Z21 Z21;
 Z21 -q*nDF u*n5 -v*n6];
 b_Vec = [-a*omega2*n2; -p*omega2*nAE];
 omega_Vec = A_Mat\b_Vec;

525Force Analysis on Linkages

 omega3(i) = omega_Vec(1);
 omega4(i) = omega_Vec(2);
 omega5(i) = omega_Vec(3);
 omega6(i) = omega_Vec(4);

% Calculate velocity at important points on linkage
 vB(:,i) = FindVel(v0, a, omega2, n2);
 vC(:,i) = FindVel(v0, c, omega4(i), n4);
 vE(:,i) = FindVel(v0, p, omega2, nAE);
 vF(:,i) = FindVel(v0, q, omega4(i), nDF);
 vG(:,i) = FindVel(vE(:,i), u, omega5(i), n5);
 vW(:,i) = FindVel(vF(:,i), w, omega6(i), nFW);
 v2(:,i) = FindVel(v0, LA2, omega2, nA2);
 v3(:,i) = FindVel(vB(:,i), LB3, omega3(i), nB3);
 v4(:,i) = FindVel(v0, LD4, omega4(i), nD4);
 v5(:,i) = FindVel(vE(:,i), LE5, omega5(i), nE5);
 v6(:,i) = FindVel(vF(:,i), LF6, omega6(i), nF6);

% Conduct acceleration analysis to solve for alpha3 - alpha6
 ac = a*omega2^2; at = a*alpha2;
 bc = b*omega3(i)^2; cc = c*omega4(i)^2;
 pt = p*alpha2; pc = p*omega2^2;
 uc = u*omega5(i)^2; vc = v*omega6(i)^2;
 qc = q*omega4(i)^2;

 C_Mat = A_Mat;
 d_Vec = [-at*n2 + ac*e2 + bc*e3 - cc*e4;
 -pt*nAE + pc*eAE + uc*e5 - vc*e6 - qc*eDF];
 alpha_Vec = C_Mat\d_Vec;

 alpha3(i) = alpha_Vec(1);
 alpha4(i) = alpha_Vec(2);
 alpha5(i) = alpha_Vec(3);
 alpha6(i) = alpha_Vec(4);

% Calculate acceleration at important points on linkage
 aB(:,i) = FindAcc(a0, a, omega2, alpha2, e2, n2);
 aC(:,i) = FindAcc(a0, c, omega4(i), alpha4(i), e4, n4);
 aE(:,i) = FindAcc(a0, p, omega2, alpha2, eAE, nAE);
 aF(:,i) = FindAcc(a0, q, omega4(i), alpha4(i), eDF, nDF);
 aG(:,i) = FindAcc(aE(:,i), u, omega5(i), alpha5(i), e5, n5);
 aW(:,i) = FindAcc(aF(:,i), w, omega6(i), alpha6(i), eFW, nFW);
 a2(:,i) = FindAcc(a0, LA2, omega2, alpha2, eA2, nA2);
 a3(:,i) = FindAcc(aB(:,i), LB3, omega3(i), alpha3(i), eB3, nB3);
 a4(:,i) = FindAcc(a0, LD4, omega4(i), alpha4(i), eD4, nD4);
 a5(:,i) = FindAcc(aE(:,i), LE5, omega5(i), alpha5(i), eE5, nE5);
 a6(:,i) = FindAcc(aF(:,i), LF6, omega6(i), alpha6(i), eF6, nF6);

% Conduct force analysis
 S_Mat = [U2 -U2 Z2 Z2 -U2 Z2 Z2 Z21;
 Z2 U2 -U2 Z2 Z2 Z2 Z2 Z21;
 Z2 Z2 U2 -U2 Z2 U2 Z2 Z21;
 Z2 Z2 Z2 Z2 U2 Z2 -U2 Z21;

526 Introduction to Mechanism Design

 Z2 Z2 Z2 Z2 Z2 -U2 U2 Z21;
 s2A’ -s2B’ Z12 Z12 -s2E’ Z12 Z12 1;
 Z12 s3B’ -s3C’ Z12 Z12 Z12 Z12 0;
 Z12 Z12 s4C’ -s4D’ Z12 s4F’ Z12 0;
 Z12 Z12 Z12 Z12 s5E’ Z12 -s5G’ 0;
 Z12 Z12 Z12 Z12 Z12 -s6F’ s6G’ 0];

 t_Vec = [m2*a2(:,i);
 m3*a3(:,i);
 m4*a4(:,i);
 m5*a5(:,i);
 m6*a6(:,i) - FW;
 I2*alpha2;
 I3*alpha3(i);
 I4*alpha4(i);
 I5*alpha5(i);
 I6*alpha6(i) - dot(s6W,FW)];

 f_Vec = S_Mat\t_Vec

 FA(:,i) = [f_Vec(1); f_Vec(2)];
 FB(:,i) = [f_Vec(3); f_Vec(4)];
 FC(:,i) = [f_Vec(5); f_Vec(6)];
 FD(:,i) = [f_Vec(7); f_Vec(8)];
 FE(:,i) = [f_Vec(9); f_Vec(10)];
 FF(:,i) = [f_Vec(11); f_Vec(12)];
 FG(:,i) = [f_Vec(13); f_Vec(14)];
 T2(i) = f_Vec(15);

% Calculate inertial powers
 P2 = InertialPower(m2,I2,v2(:,i),a2(:,i), omega2, alpha2);
 P3 = InertialPower(m3,I3,v3(:,i),a3(:,i),omega3(i),alpha3(i));
 P4 = InertialPower(m4,I4,v4(:,i),a4(:,i),omega4(i),alpha4(i));
 P5 = InertialPower(m5,I5,v5(:,i),a5(:,i),omega5(i),alpha5(i));
 P6 = InertialPower(m6,I6,v6(:,i),a6(:,i),omega6(i),alpha6(i));
 PKin(i) = P2 + P3 + P4 + P5 + P6;

% Calculate external power
 PF = dot(FW,vW(:,i));
 PT = T2(i)*omega2;
 PExt(i) = PF + PT;
end

% plot the crank torque
plot(180*theta2/pi,T2,’Color’,[0 110/255 199/255],’LineWidth’,2)
title(‘Crank Torque for Stephenson Type I Sixbar Linkage’)
xlabel(‘Crank Angle (deg)’)
ylabel(‘Torque (N-m)’)
grid on
set(gca,’xtick’,0:60:360)
xlim([0 360])

527Force Analysis on Linkages

7.14 Practice Problems

Problem 7.1

Determine the centers of mass of objects (a), (b), and (c) in Figure 7.131. All dimen-
sions are in centimeters.

Problem 7.2

Determine the mass moments of inertia of the objects in Problem 7.1 about the z
axis if each object is made of AISI 1020 steel with a thickness of 1 cm. Use hand
 calculations and confirm your results using the Mass Properties feature in
SOLIDWORKS.

Problem 7.3

Find the mass moments of inertia about the z axis of objects (a), (b), and (c) in
Figure 7.132. Use hand calculations and the inertial properties shown in Appendix
A. The objects in Parts (b) and (c) are made of aluminum.

Problem 7.4

Determine the mass, center of mass, and moment of inertia about the z axis of the
acrylic link shown in Figure 7.133 if its thickness is 1.0 cm. All dimensions are in
centimeters. Perform the calculations by hand, and confirm your answer using the
Mass Properties feature in SOLIDWORKS.

6

62

(a) (b)

(c)

2

2

y

x

100

50

50

20

35

60
x

y

5

35 2020

10

10

y

x

FIGURE 7.131
Problem 7.1.

528 Introduction to Mechanism Design

Problem 7.5

Figure 7.134 shows a cylindrical pressure vessel with length 3.5 m and outer diameter
2.0 m. Draw the vessel in SOLIDWORKS and determine the location of its center
of mass. All dimensions are in meters and the vessel is made of AISI 1020 steel.

Problem 7.6

Use the Mass Properties feature in SOLIDWORKS to determine the mass moment of
inertia of the pressure vessel in Problem 7.5 about the z axis.

m1

m2

x

y

1.1 m

1.1 m

m2 = 300 g
m1 = 500 g

Length = 3 m

(a) (b)

(c)

Diameter = 15 cm

x

y

z

0.25 m

2 m

1 mx

y

z

FIGURE 7.132
Problem 7.3.

20

10

5

y

x5

3.0 1.5 1.5

FIGURE 7.133
Problem 7.4.

529Force Analysis on Linkages

Problem 7.7

 a. Determine the moment about the pivot that is created by the 5 N force in
Figure 7.135a.

 b. Determine the moment about the pivot that is created by the 5 N force when it
is applied at an angle of 30° from the horizontal as shown in Figure 7.135b.

 c. For the configuration presented in Figure 7.135b determine the force that
would be required to produce the same moment calculated in Part (a).

Problem 7.8

Determine the angular acceleration of the link in Problem 7.7 (a) if

 a. The link is a cylindrical rod of diameter 20 mm, length 0.25 m, and mass 0.5 kg.
 b. The link is a massless rod with a point mass of 0.5 kg at the end of the rod

where the force is applied.

Problem 7.9

A 5 mm thick link with the dimensions presented in Figure 7.136 made of 6061-T6 alu-
minum has a 10 kg mass fixed to its end. Use MATLAB to plot the driving torque
of the link, which rotates at 100 rpm. Hint: use SOLIDWORKS to calculate the iner-
tial properties of the link without the point mass, then use MATLAB to add the
inertial properties of the mass to the link. Do not neglect gravity.

2.0

25 mm �ru (8×)1.9

y

x

y

z

1.5
3.5

0.025

FIGURE 7.134
Problem 7.5.

0.25 m

(a) (b)

30°

0.25 m

5 N

5 N

FIGURE 7.135
Problem 7.7.

530 Introduction to Mechanism Design

Problem 7.10

A 5 mm thick link shown in Figure 7.137 is made of 6061-T6 aluminum and has a
spring attached at its end. Use MATLAB to plot the driving torque of the link if
the spring constant is k = 1,000 N/m. The spring is in its neutral position when the
crank angle is 0° and the link rotates at 100 rpm. Use SOLIDWORKS to calculate
the inertial properties of the link.

Problem 7.11

Use MATLAB to plot the driving torque of the threebar linkage shown in Figure 7.138
if a 100 N vertical force is applied at point P and the crank rotates at 30 rad/s. The
masses and moments of inertia of the links are given below, and all dimensions
are in millimeters.

 = =0.10 kg 0.15 kg2 3m m

 = ⋅ = ⋅0.000075 kg m 0.000175 kg m2
2

3
2I I

10

10 kg

T

A

B

15

150
5

FIGURE 7.136
Problem 7.9.

10
300

A

T

B

k

D

15

5
150

FIGURE 7.137
Problem 7.10.

531Force Analysis on Linkages

Problem 7.12

Verify the code created in Problem 7.11 by plotting the external and kinetic power
consumed by the linkage versus crank angle.

Problem 7.13

A slider-crank mechanism has a crank length of 50 mm, connecting rod length
150 mm, and vertical offset −25 mm. The mechanism is driven by a motor with
constant angular velocity 10,000 rpm. All links are flat and made of aluminum,
with thickness 5 mm. The dimensions of the links are shown in Figure 7.139.
Calculate and plot:

 a. The x and y forces on the ground pivot versus crank angle.
 b. The driving torque versus crank angle needed to accomplish this motion.
 c. The reaction moment on the cylinder versus crank angle.
 d. The normal force on the cylinder versus crank angle.

50
P

B

100 N

100

33

FIGURE 7.138
Problem 7.11.

35

25

150 50

8

Ø5Ø12

FIGURE 7.139
Problem 7.13.

532 Introduction to Mechanism Design

Problem 7.14

The connecting rod, crank, and piston shown in Figure 7.140 are used to build an air
compressor. The cylinder has 10 mm head space when the piston is at top dead
center. The connecting rod and piston are made of 6061-T6 aluminum, while the
crank is made of 1020 steel. The coefficient of friction between the piston and the
cylinder wall is 0.05. Use MATLAB to generate the following plots:

 a. air pressure inside the cylinder versus crank angle.
 b. x and y components of the crank bearing force versus crank angle.
 c. reaction moment in the cylinder versus crank angle.
 d. driving torque versus crank angle.

Confirm your results by creating a kinetic/external power plot for one rotation of the
crank.

140

(a)

(b)

(c)

R1
0

5

Ø10

60

15

75

Ø75

Ø10Ø60

25

50

Ø12
0

Ø15

Ø10

Ø25

FIGURE 7.140
Problem 7.14.

533Force Analysis on Linkages

Problem 7.15

A sadistic carnival operator has designed a ride based on a fourbar linkage, shown
in Figure 7.141. The passenger sits at point P while the crank rotates at a constant
40 rpm. The thickness of all links is 25 mm, and all links are made of aluminum.
Assume that the rider is a point mass of 100 kg located at point P. The distance
between ground pins is 1200mm. Calculate and plot the forces in the x and y direc-
tion at the crank pivot, and the driving torque required to operate the ride. Do not
ignore gravity.

1.100
Ø0.025

0.600

1.850

1.500R0.050

20°

Ø0.075

Rocker

Coupler

Crank

B

A D

C

P

FIGURE 7.141
Problem 7.15.

534 Introduction to Mechanism Design

Problem 7.16

A threebar linkage and spring have been designed to ensure that a solid aluminum
door panel shuts properly after it has been opened. The door has a width and
height of 2 m and is 25 mm thick as shown in Figure 7.142. Use MATLAB to calcu-
late and plot the x and y components of the force FQ used to open the door. Assume
that the door takes 5 s to open and that the spring is in its neutral position when
the door is closed.

Problem 7.17

The sadistic carnival operator is at it again! This time he has designed a ride based
on an inverted slider-crank linkage, shown in Figure 7.143. The passenger sits at
point P while the crank rotates at a constant 40 rpm. The thickness of all links is
25 mm, and all links are made of aluminum. Assume that the rider is a point mass
of 100 kg located at point P. Calculate and plot the forces in the x and y direction at
the crank pivot, and the driving torque required to operate the ride. Do not ignore
gravity.

Spring

0.6

0.2
5

2

D
A

B

Q

FQ

Door

FIGURE 7.142
Problem 7.16.

535Force Analysis on Linkages

Problem 7.18

An inverted slider-crank linkage is being employed as a bicycle pump, as shown in
Figure 7.144. The air inside the cylinder is at atmospheric pressure when the crank
angle is at 90°, and reaches its maximum when the crank angle is at 10° from hori-
zontal. The links have the following inertial properties:

= = ⋅

= = ⋅

= = ⋅

m I

m I

m I

0.1 kg 0.0005 kg m

0.250 kg 0.0004 kg m

0.15 kg 0.0005 kg m

2 2
2

3 3
2

4 4
2

1600

825

C

A D

B

P

600

2000

(All dimensions in millimeters)

0.8

0.600

Crank

Ø0.025

Ø0.075 Rocker

0.3 +

+

Ø0.075

Ø0.100

0.05

0.050Slider

2

FIGURE 7.143
Problem 7.17.

536 Introduction to Mechanism Design

The diameter of the piston is 50 mm and it takes 1 second for one stroke of the pump.
Assume that the center of mass of each link is at its centroid. Use MATLAB to plot the air
pressure inside the cylinder and the x and y components of the user force at point Q for
one stroke of the pump.

Acknowledgments

Several images in this chapter were produced using SOLIDWORKS software. SOLIDWORKS
is a registered trademark of Dassault Systèmes SolidWorks Corporation.

Several images in this chapter were produced using MATLAB software.
MATLAB is a registered trademark of The MathWorks, Inc.

Work Cited

 1. Y. Cengel and M. Boles, Thermodynamics - An Engineering Approach, New York: McGraw-Hill, 1989.

300

180

25

25
0

84
bB

D

Q

A

(All dimensions in millimeters)

FIGURE 7.144
Problem 7.18.

537

8
Gears and Gear Trains

8.1 Introduction to Gears

Gears are used to transmit motion and torque from one shaft to another. In this section,
we will discuss the kinematics of gears; that is, the motion relationships between gears. In
a later section, we will learn how to conduct force and torque analysis on gears in order to
calculate bearing loads and the like. There are several different types of gears to choose
from, depending upon the application and the available budget.

8.1.1 Spur Gears

Spur gears transmit motion between parallel shafts, as shown in Figure 8.1. They are the
simplest gears to manufacture, and are the most commonly encountered in practice. They
are also relatively noisy and weak, compared to helical gears. The “reverse” gear in a manual
transmission is composed of spur gears – hence the distinctive noise when you back your car
up. Spur gears are made of almost every material, from the softest plastic to the hardest steel.

8.1.2 Helical Gears

Like spur gears, helical gears can transmit motion between parallel axes. The teeth of a heli-
cal gear are set at an angle, called the helix angle. A common value for the helix angle is 45°
as shown in Figure 8.2. Because of the helix angle, the teeth engage gradually (and therefore
quietly) instead of suddenly, as in the case of spur gears. All forward gears in a manual trans-
mission are helical, which is the main reason that manual transmissions are almost inaudible
at highway speeds. Helical gears have more teeth in contact than spur gears; this distributes
the load more evenly and makes helical gears, on average, stronger than spur gears.

 When purchasing helical gears you must remember to order one left-handed gear and
one right-handed gear, where the “handedness” refers to the direction of the helix, see
Figure 8.3. If you order two left-handed gears (or two right-handed gears) they will mesh as
shown in Figure 8.4. As you can see, the two right-handed helical gears are meshing on non-
parallel, non-intersecting shafts. This is kinematically quite interesting, but is impractical
in most situations since the high friction levels would make for an inefficient drivetrain.

8.1.3 Bevel Gears

Bevel gears transmit motion between non-parallel, intersecting shafts, in most cases the
shafts are perpendicular to one another. The two most common types of bevel gears are
straight bevel gears, shown Figure 8.5 left, and spiral bevel gears, shown in Figure 8.5 on

538 Introduction to Mechanism Design

FIGURE 8.2
Helical gears are available in left-handed and right-handed configurations.

FIGURE 8.3
Mating a left-handed helical gear with a right-handed helical gear transmits motion between parallel shafts.

FIGURE 8.1
Spur gears transmit motion between parallel shafts.

539Gears and Gear Trains

FIGURE 8.4
Mating two left-handed (or two right-handed) helical gears will transmit motion between perpendicular, non-
intersecting shafts.

FIGURE 8.5
Bevel gears can have straight teeth or spiral teeth.1

540 Introduction to Mechanism Design

the right. Spiral bevel gears are analogous to helical gears in that they have stronger teeth,
and are quieter than straight bevel gears.

8.1.4 Hypoid Gears

Hypoid gears, shown in Figure 8.6, are similar to bevel gears, but transmit torque between
non-parallel, non-intersecting shafts. A common application of hypoid gears is in the rear
differential in rear-wheel drive cars.

8.1.5 Worm Gears

A worm gearset transmits motion between non-parallel, non-intersecting shafts as
shown in Figure 8.7. The spiral shaped gear is called the “worm” and the gear it meshes
with is called the “worm gear.” Worm gears are typically quite strong, since they have
several teeth engaged at once, and very large reductions can be achieved in a compact
space. One very interesting feature of most worm gearsets is that the worm can drive the
gear, but the gear cannot drive the worm! This makes worm gearsets valuable in applica-
tions where the load must be prevented from “back-driving” the motor, as in the case of
a winch or crane.

8.1.6 Rack

A typical rack and pinion gearset is shown in Figure 8.8. A rack is a set of gear teeth
machined onto a straight bar, and is best understood as being an ordinary spur gear
with infinite diameter. Racks are most commonly used to change rotary motion to linear
motion. In a “rack and pinion” steering system, rotary motion from the steering wheel is
converted to linear motion of the steering linkage.

FIGURE 8.6
Hypoid gears transmit motion between perpendicular, non-intersecting shafts.1

541Gears and Gear Trains

8.1.7 Internal Gears

Internal gears have teeth machined into the interior of a circle, as shown in Figure 8.9.
They are often used where the output motion must be in the same direction as the input
motion, or where a large speed reduction in a small space is needed. We will encounter
internal gears quite a bit during our discussion of planetary gearsets.

FIGURE 8.7
Worm gearsets transmit motion between perpendicular, non-intersecting shafts. Most worm gearsets cannot be
“back-driven”; that is, trying to turn the gear will not rotate the worm.1

FIGURE 8.8
A rack is a straight gear that meshes with an ordinary, circular gear. It is used to convert rotary motion to linear
motion, or vice versa.

542 Introduction to Mechanism Design

8.2 Properties of the Involute Curve

One of the most noticeable features of gear teeth is that they are curved, rather than
straight. This is done to ensure constant velocity meshing; that is, to ensure that the speed of
the driven gear does not vary as teeth come in and out of contact. Constant-velocity mesh-
ing implies that the speed of the driven gear depends only upon the speed of the driving
gear, and does not depend upon the angle of rotation of either gear. In mathematical terms,
we would be written

 ω ρω= −2 1

where ω1 is the angular velocity of the driving gear, ω2 is the angular velocity of the driven
gear and ρ is the gear ratio, which must be constant for constant velocity meshing. The
negative sign occurs because the driven gear rotates in the opposite direction from the
driving gear for external gears.

The utility of constant-velocity meshing is probably obvious – we do not want the driven
gear to speed up and slow down when the driving gear is rotating at a constant speed.
The fact that the gear teeth must have a particular shape is not so obvious. To demonstrate
this, let us examine the worst-case scenario: a pair of gears with straight teeth. Figure 8.10
shows two of these “primitive” gears in mesh with each other. Let us assume that the gear
on the left is driving the gear on the right. As shown in the figure, the left gear has positive
angular velocity and the right gear has negative angular velocity.

A zoomed-in view of the two gears is shown in Figure 8.11. The center of the driving
gear is at point A and the center of the driven gear is at point B. The driving gear makes
contact with the driven gear at the tip of its tooth, which is shown as point C.

FIGURE 8.9
Internal gears can be used to achieve large speed reductions in a small space.

543Gears and Gear Trains

Now rotate the driving gear through an angle θ1. As seen in Figure 8.12, the driven gear
rotates through an unknown angle θ2. Let the center distance (the distance between points A
and B) be a constant c. The distance from the center of the driving gear to the tip of its teeth
(the distance between points A and C) is r. The coordinates of point C are then

 x
cos
sin

1

1
rC

θ
θ

=

 (8.1)

FIGURE 8.10
Two primitive gears in mesh with straight-sided teeth.

CA B

FIGURE 8.11
Zoomed-in view of the straight-toothed gears. The driving gear makes contact with the driven gear at point C,
which is the tip of its tooth.

C

A B
c

θ1 θ 2

r

FIGURE 8.12
The driving gear has been rotated by an angle θ1, which rotates the driven gear through an angle θ2.

544 Introduction to Mechanism Design

We can use these coordinates to solve for the angle θ2.

 θ θ
θ

=
−

tan
sin

cos2
1

1

r
c r

 (8.2)

Let us assume that the angular velocity of the driving gear, ω1, is constant. It is straight-
forward (though tedious) to differentiate Equation (8.2) to find the angular velocity of the
driven gear

 ω θ
θ

ω()= − −
− +

cos
2 cos2

1
2

1
2 1

r r c
c rc r

 (8.3)

The gear ratio is then:

 ρ θ
θ

()= −
− +

cos
2 cos

1
2

1
2

r r c
c rc r

 (8.4)

Thus, the speed of the driven gear is not constant, but depends upon the angle, θ1, of the
driving gear. This means that the driven gear would speed up and slow down as it rotates,
even though the speed of the driving gear is constant. This is clearly an undesirable situa-
tion, and the straight-toothed gear is unacceptable for practical gearing. Our goal is to find
a type of curve for the tooth profile that will provide constant velocity meshing.

Only a few families of curves guarantee constant velocity meshing, and many older
gearsets were made using cycloidal profiles. The tooth profile of almost all modern com-
mercial gearing takes the form of an involute of a circle. Some watch gears are still made
with cycloidal tooth profiles, but the involute profile has the advantage that slight varia-
tions in center distance will not impair the constant velocity meshing. It is entirely possible
(and common) to be able to design gearsets without understanding the constant velocity
meshing of the involute tooth profile, but the proof is interesting in its own regard.

The involute of a circle is shown in Figure 8.13. You can generate your own involute by
wrapping a string around an aluminum can and tying a pencil to the end of the string. As
you unwind the string from the can – making sure to keep the string taut – the resulting
curve is an involute. The outside surface of the can is called the base circle of the involute.
Because the string is always tangent to the outside surface of the can, every segment of the
involute is perpendicular to a line tangent to the base circle. This will be important as we
consider contact forces later in this section.

Now consider the two gears in mesh with involute teeth as shown in Figure 8.14. The
gear teeth make contact at point C. Draw a line from C that is tangent to the base circle and
label the intersection D. The line CD intersects the line of centers at point P. We will denote
the circle centered at A and passing through P the pitch circle of the gear.

Each gear has its own base circle, as shown in Figure 8.15. A line that is tangent to both
circles is called the common tangent. The common tangent starts at point D and extends to
point E. Point C is the point of contact between the two gears. Since point C is part of the
involute of gear 1 (the driving gear) the line CD is tangent to the base circle of gear 1. The
point C is also part of the involute of gear 2, so the line CE is tangent to the base circle of
gear 2. Thus, the point of contact between the two gears must lie on the common tangent
between the two base circles.

A magnified view of the zone of contact between the two gears is shown in Figure 8.16.
As can be seen, all of the contact points lie on the common tangents between the two base

545Gears and Gear Trains

circles. Since there are two common tangent lines between any two circles, the location of
the contact points depends upon which direction the driving gear is rotating. The impor-
tant thing to note is that all contact points lie in a straight line – the common tangent line.

We can calculate the velocity on gear 1 of point C by using the angular velocity formula

 v 1 1ACC ω= ⋅

where ω1 is the angular velocity of gear 1 – see Figure 8.17. Note that this velocity is per-
pendicular to the line AC. The component of this velocity that is normal to the face of the
tooth is

Base circle

Involute

Normal to tangent line

FIGURE 8.13
The involute of a circle can be generated by unwinding a string that is wrapped around the base circle.

Pitch circle

Base circle

A

D

C

P

FIGURE 8.14
Two gears in mesh. The gears make contact at point C.

546 Introduction to Mechanism Design

 ω γ= ⋅ ⋅ cos1ACCnv

where γ is the name we have given to the angle CAD. The triangle ADC is a right triangle
since the line of common tangents is perpendicular to the radial line AD. Thus

 γ= cosAD AC (8.5)

and

 ω= ⋅ 1ADCnv

As seen in Figure 8.18, we can apply the same logic to find the normal component of the
velocity at point C on gear 2

 ω δ= ⋅ ⋅ cos2BCCnv

or

 ω= ⋅ 2BECnv

The tangential component for the two gears will, in general, be different because the
gear teeth slide past each other as the gears mesh. The normal component, however, must
be the same. Thus, we can write

 2

1

AD
BE

ω
ω

=

This ratio must be constant for constant velocity meshing. It is interesting to note that
the normal to both gear teeth at the point C lies in the same direction, along the line DE.
Because of how the involute was constructed, this line is tangent to both base circles and
is commonly called the line of action.

Common tangent

B

E

C

D

A

Base circle 1

Base circle 2

FIGURE 8.15
Both gears have their own base circle. The common tangent line between the two base circles runs from point
D to point E.

547Gears and Gear Trains

Now define the point P where the line of action crosses the line of centers, as seen in
Figure 8.19. This is an important point in gear train design and is called the pitch point. Since
DE and AB are both straight lines, the angles DPA and EPB are equal. Angles ADP and BEP
are both right angles, so the triangles ADP and BEP are similar. Because of this we can write

 =AD
BE

AP
BP

Thus, the velocity ratio between the two gears is

E

Contact points

D

E

E

Contact points

D

FIGURE 8.16
A zoomed-in view of the area of contact between the two gears. All points of contact between the gears lie on
the common tangents between the base circles.

548 Introduction to Mechanism Design

C

D

P

E

α

α
BA

FIGURE 8.19
The line of action crosses the line of centers at the pitch point.

D

C

vCn

vC1

A

γ

γ

FIGURE 8.17
The velocity at the point of contact has a normal component and a sliding component.

B

E

C

vC2 vCn
δδ

FIGURE 8.18
The normal component of the velocity at point C must be the same for both gears.

549Gears and Gear Trains

ω
ω

=2

1

AP
BP

 (8.6)

For the velocity ratio to be constant, the point P must be stationary. Since it lies at the inter-
section of the line of common tangents and the line of centers, this is indeed the case. Thus,
we have proved that involute gear teeth produce constant velocity meshing.

It is interesting to observe what happens if the center distance between the two gears
is changed slightly, as might be the case if the shafts holding the two gears were located
incorrectly. As shown in Figure 8.20 the geometry of the situation is basically unchanged.
Although the lengths AP and BP have increased, the ratio

 =AD
BE

AP
BP

still holds and the velocity ratio is the same as it was before (since the base circle radii are
fixed). Thus, slight errors in center distance have no effect on the velocity ratio or the con-
stant velocity meshing. This (along with manufacturing considerations) is the reason that
involute gearing is so widely used in practice.

Note that using improperly spaced gears will introduce backlash into the gear train. If
the gears continue to spin in the same direction, then constant velocity meshing will be
maintained. However, if the driving gear changes direction, there will be a brief period
of time when the gear teeth lose contact with one another, which is known as backlash.
Once the teeth regain contact in their new direction constant meshing velocity is achieved
once again.

8.2.1 Base Circles and Pitch Circles

Despite its importance in generating the involute tooth shape the base circle is almost
never used in designing a gear train. The most fundamental quantity is instead the pitch
circle. As shown in Figure 8.21 each pitch circle passes through the pitch point, P, and both
are tangent to each other. Referring to Figure 8.19, we see that the base circle radius and
pitch radius are related to each other by

 α= cosr rb p (8.7)

D

A

C

P

E

B
α

α

FIGURE 8.20
Changing the center distance between the gears does not change the velocity ratio.

550 Introduction to Mechanism Design

where the angle α is called the pressure angle, for reasons that will become clear in the next
section. It is more common to specify the pitch diameter (the diameter of the pitch circle) for
a particular gear. If the pitch diameter of gear 1 is d1 and the pitch diameter of gear 2 is d2
then the center distance is

 = +
2

1 2c
d d

Figure 8.22 shows two gears that have the same base circle diameter but different numbers
of teeth. If a gear has a small number of teeth, each tooth will span a relatively large angle,
allowing more of the involute curve to be traced out. Gears with large tooth numbers have
relatively straight teeth. As we will see in the next section, the teeth of a rack (which is just
a gear with infinite diameter) are perfectly straight.

8.2.2 Force Analysis on Involute Gears

Figure 8.23 shows the force that gear 2 exerts on gear 1 as torque is transmitted from gear 1
to gear 2. If we assume that the sliding friction force on the gear teeth is negligible, then the
resulting force must be normal to the gear teeth; that is, directed along the line of action.

FIGURE 8.22
For a given base circle, the lower the number of teeth, the more curvature on the tooth profile.

Common tangent

A P B

Pitch circle 1

Pitch circle 2

FIGURE 8.21
Pitch circles are used in designing gearsets.

551Gears and Gear Trains

This means that the contact force is always oriented at an angle α with the vertical. This is
why the angle α is called the pressure angle.

The contact force has two components. The component Ft that is normal to the line AC
does the job of transmitting the torque between gears. The other component, Fn, is collin-
ear with AC. Since this component is directed inward toward the center of the gear, it does
no useful work, and merely increases the load on the bearing that supports the gear shaft.
The torque-transmitting component can be calculated as

 γ= cosFt F

This force creates a torque on gear 1 given by

 = ×1T AC Ft

Substituting Equation 8.5 into this relation gives

 = ×1T AD F

Recall that AD is the base circle radius. Since we normally work with the pitch radius (or
diameter) we can use Equation 8.7 to obtain

 α=
2

cos1
1T

d
F

It is somewhat inconvenient to work with the force F acting on the point of contact C,
since C moves as the gear rotates. Instead, let us calculate a statically equivalent set of
forces acting at point P, which is fixed, as shown in Figure 8.24. This is allowed since the
force F is always directed along the line of action and never changes direction. The torque-
producing component of F is vertical at point P, and the radius to point P is the pitch
radius. The torque produced by F at point P is

 α=
2

cos1
1T

d
F

F

α

α C

D

A

F
Ft

Fnγ

γ

C

D

A

FIGURE 8.23
Torque is transmitted between the two gears through the contact force, F. The contact force acts at an angle α
with the vertical.

552 Introduction to Mechanism Design

Thus, the component of F that creates torque is

 α= cosW F

and

 =
21
1T

d W

The remaining component of F that is orthogonal to W is

 α= sinN F

Since F is never needed directly for calculating torque or bearing reaction load, it is com-
mon to eliminate F entirely and use

 α= tanN W

We can conduct the same analysis on gear 2 after drawing the free-body diagram shown
in Figure 8.25. Since the torque-transmitting force is equal and opposite on both gears,
we have

T1

T2

–F

–F

F

F

FIGURE 8.25
Free-body diagram of both gears.

C
P

N

α

F
W

FIGURE 8.24
The force components W and N acting at P are statically equivalent to the force F acting at C.

553Gears and Gear Trains

 = =
2 21
1

2
2T

d W
T

d W

or, written as a torque ratio

 =2

1

2

1

T
T

d
d

Thus, using a small gear to drive a large gear will result in an increase in torque, and vice
versa. Comparing this with the speed ratio equation in Equation (8.6) we see that

ω
ω

=2

1

1

2

T
T

An increase in torque is accompanied by a decrease in speed. In fact, this is the purpose of
most gear trains – to decrease the speed and increase the torque of a particular motor. In
fact, almost all forward gears in an automotive transmission are used to reduce the speed
of the engine and increase its torque.

8.2.3 Summary

To conclude, we have demonstrated that involute gear profiles provide constant-velocity
meshing, even when the center distance is slightly out of specification. The force trans-
mitted between two gears acts along a line of action, which is directed at an angle α (the
pressure angle) from the vertical. Finally, a statically equivalent force system located at the
fixed point P was derived. It is customary to use the W, N force system to calculate trans-
mitted torques and bearing loads.

8.3 Gear Terminology

In this section, we will describe the set of gear parameters that are important for design.
Most of these parameters can be found in gear catalogs, and must be specified when order-
ing a set of gears. Figure 8.26 shows a typical spur gear. The circular pitch, pc, is the arc
distance between two adjacent teeth. The pitch diameter, d, is the nominal diameter of the
gear that is used in calculating center distances and speed/torque ratios. Circular pitch is
not often used in design, but pitch diameter is very important.

Figure 8.27 shows two spur gears in mesh. The smaller gear in a gear set is often called
the pinion, while the larger gear is simply denoted the gear. As we found in the previous
section, the center distance between the two gears can be found using the pitch diameter
of each gear.

 = +
2

1 2c
d d

 (8.8)

The number of teeth on a gear is proportional to its diameter. There are two systems for
specifying the ratio of gear teeth to diameter. In the United States, it is common to use the

554 Introduction to Mechanism Design

diametral pitch, P, which is given in teeth per diametral inch. In this system the relationship
between number of teeth and pitch diameter is

 =N Pd (8.9)

Thus, a gear with a diametral pitch of 10 teeth/in and a pitch diameter of 2 in would have
20 teeth. In the metric system, we specify a module in diametral millimeters per tooth. The
number of teeth on a metric gear is found using

 =N
d
m

 (8.10)

d

p c

FIGURE 8.26
A typical spur gear showing the circular pitch, pc, and pitch diameter, d.

Pinion Gear

BP

c

A

d2
d1

FIGURE 8.27
The center distance between two gears can be found using the pitch diameters.

555Gears and Gear Trains

Thus, a gear with a diameter of 50 mm and a module of 2.5 mm/tooth would have 20 teeth.
A list of some standard diametral pitches and modules is given in Table 8.1. This list is not
exhaustive, but shows some of the more common tooth pitches seen in practice and found
in gear catalogs. You should choose a standard pitch (or module) whenever possible in
order to keep manufacturing costs at a minimum. Both gears in a mating pair must have
the same module (or diametral pitch) in order to mesh. This is analogous to the situation
with threaded fasteners – a fine-pitch nut will not thread onto a coarse-pitch screw. We can
use the module (or pitch) to find the center distance between gears, given the number of
teeth by combining Equations (8.8) and (8.9).

 = +
2

1 2c
N N

P
 (8.11)

or Equations (8.8) and (8.10)

 = +
2

1 2c
N N

m (8.12)

 Example 8.1

Figure 8.28 shows three different gear pairs. If the space between holes on a construc-
tion brick beam is 8 mm, find the module of the gears.

Solution

There are three different gears shown in the figure: one with 8 teeth, one with 24 teeth,
and one with 40 teeth. Since all three mesh together, they must all have the same mod-
ule. Rearrange Equation (8.10) to solve for the module

 2

1 2
m

c
N N

=
+

For the first gear pair we have a center distance of 3 × 8 mm = 24 mm (remember to count
the spaces between holes, not the holes themselves!) so that

2 24 mm

8 40
1

mm
tooth

m
()

=
+

=

For the second case we have a center distance of 2 × 8 mm = 16 mm so that

2 16 mm

8 24
1

mm
tooth

m
()

=
+

=

And finally, for the third case we have

2 32 mm

24 40
1

mm
tooth

m
()

=
+

=

TABLE 8.1

A Selection of Standard Diametral Pitches and Modules

Pitch (teeth/in) 64 48 32 24 20 16 12 10 8 6 5 4
Module (mm/tooth) 0.4 0.5 0.75 1.0 1.25 1.5 2.0 2.5 3.0 4.0 5.0 6.0

556 Introduction to Mechanism Design

As expected, the module is identical for all three cases. Since all gears are compatible
with each other, they are all made with a module of 1 mm/tooth. The involute profile is
most clearly seen on the eight-tooth gear since it has the smallest base circle, while the
teeth on the 40 tooth gear are nearly straight.

40 tooth

40 tooth

8 tooth
24 tooth

24 tooth

8 tooth

FIGURE 8.28
The construction brick gearsets used in the example problem.2

557Gears and Gear Trains

8.3.1 Parts of the Gear Tooth

A typical involute gear tooth is shown in Figure 8.29. The portion above the tooth that
is outside the pitch circle is called the addendum, while the portion of the tooth inside
the pitch circle is called the dedendum. The American Gear Manufacturers Association
(AGMA) has defined the standard radii for the addendum and dedendum circles as [1]

 = + 1
r r

P
a p

 = − = −1.25
 or

1.35
r r

P
r r

P
d p d p

for US gears or

 = +r r ma p

 = − = −1.25 m or 1.35 mr r r rd p d p

for metric gears. In these equations, rp is the pitch radius. The tooth profile that exists
outside the base circle follows an involute curve, but the involute is undefined inside the
base circle. If the dedendum extends below the base circle, a radial line is commonly used
for this part of the tooth. At the root of the tooth is the root fillet, which decreases the
bending stress concentration created by the sharp corner there. According to the AGMA
standard [1], the radius of the root fillet is

 = 0.3
 or 0.3 mf

P
 (8.13)

In practice, the radius of this fillet will be determined by the geometry of the cutter used
to form the gear teeth.

Fillet
Dedendum

Addendum

rarprbrd

FIGURE 8.29
The main parts of the tooth profile are the addendum, dedendum, and base fillet.

558 Introduction to Mechanism Design

8.3.2 Pressure Angle

Another important parameter in choosing a set of gears is the pressure angle. Pressure
angles are also standardized, and gears with pressure angles of 14.5° and 20° are easy to
find. The other standard pressure angles, 22.5° and 25°, are more rare. Three 10 tooth gears
with differing pressure angles are shown in Figure 8.30. The difference is subtle, but the
25° pressure angle gears have thicker teeth at the base and are capable of transmitting
heavier loads. The tradeoff is a higher normal force – the component of the contact force
that does not transmit torque. Since

 α= tanN W

as found earlier, a higher pressure angle will result in higher forces on the bearings that
support the gear shaft. Thus, we have a tradeoff: higher pressure angles result in stronger
teeth but higher bearing forces, while low pressure angles give weaker teeth but lower
bearing forces. As we will see in the next section, low pressure angle gears have another
disadvantage that has led to 20° becoming the most common pressure angle in practice.
As with diametral pitch, two gears must have the same pressure angle in order to mesh
properly.

8.3.3 Interference

If a pinion with a very small number of teeth is used to drive a much larger gear then
the tips of the teeth on the gear may “undercut” the radial flanks of the pinion, as
shown in Figure 8.31. In the figure, an eight-tooth pinion is in mesh with a 24 tooth
gear, and both gears have 14.5° pressure angle. To avoid interference, the pinion must
have a certain minimum number of teeth. This minimum number (for full depth teeth)
is given by

ρ α

ρ ρ ρ α()() ()=
+

+ + +2
1 2 sin

1 2 sin2
2 2Np (8.14)

where ρ is the gear ratio.

20°14.5° 25°

FIGURE 8.30
A 10 tooth gear in three of the standard pressure angles. The 25° teeth are thicker at the base and therefore
stronger.

559Gears and Gear Trains

The formula in Equation (8.14) has been plotted for a variety of gear ratios and pressure
angles in Figure 8.32. Larger pressure angles allow a smaller number of teeth to be used in
the pinion, which may result in a smaller gear train overall.

Interference

FIGURE 8.31
Gears with low numbers of teeth may exhibit interference between the tip of the large gear’s tooth and the radial
line of the small gear.

35

30

25

20

15

10

5
5 10 15 20 25

Gear ratio

M
in

im
um

 n
um

be
r o

f t
ee

th
 o

n
Pi

ni
on

30 35 40 45 50

25°

22.5°

20°

14.5°

FIGURE 8.32
Minimum number of pinion teeth needed to avoid interference or undercutting.

560 Introduction to Mechanism Design

Example 8.2

Find the minimum allowable number of teeth in the small gear for the following
examples

 Figure 8.33 shows the somewhat fanciful situation of a 12 tooth pinion meshing with a
12,000 tooth gear. Since the pressure angle in this example is 25°, no interference occurs.
Observe that the teeth in the 12,000 tooth gear are nearly straight. This example is clearly
impractical, but serves to demonstrate another major benefit of high pressure angle
gears: a large reduction can be achieved without requiring a large pinion. This illustrates
why the 14.5° pressure angle has become largely obsolete: for a given speed reduction,
the number of teeth on the pinion (and therefore on the gear) can be excessively large.

FIGURE 8.33
A 12 tooth pinion meshing with a 12,000 tooth gear. The pressure angle is 25 and no interference
occurs.

1:1 reduction pressure angle = 20° Np = 12.3 = 13 teeth

3:1 reduction pressure angle = 14.5° Np = 27.7 = 28 teeth

5:1 reduction pressure angle = 25° Np = 10.4 = 11 teeth

1,000:1 reduction pressure angle = 14.5° Np = 31.9 = 32 teeth

1,000:1 reduction pressure angle = 20° Np = 17.1 = 18 teeth

1,000:1 reduction pressure angle = 22.5° Np = 13.7 = 14 teeth

561Gears and Gear Trains

8.4 Speed Reduction using Gear Trains

In Section 8.3, we learned to deduce the speed reduction in a pair of gears using the pitch
diameter of each gear. We will now discuss the more common method of using the num-
ber of teeth to calculate speed reduction and also the effect of using multiple stages to
form a compound speed reducer. Since the number of teeth on a gear is proportional to its
pitch diameter (through the diametral pitch or module) we can use the number of teeth as
a “stand-in” in our equations. Consider the single-stage gear reducer shown in Figure 8.34,
which has an eight-tooth pinion driving a 24 tooth gear. Because 24/8 = 3, the pinion must
make three revolutions for every one revolution of the gear. Thus, we can write

 = −2
1

2
1n

N
N

n (8.15)

where n1 and n2 are the speeds of gears 1 and 2 in revolutions per minute. In this equa-
tion, we have used n instead of ω for the angular velocity of each gear. It is more common
to specify gear speed in revolutions per minute (rpm) than radians per second so we will
use n to represent angular velocity in rpm, reserving ω for angular velocity in radians per
second. We can easily switch between the two representations using

 ω π π= =2
60

 rad
30 s

n n

Remember that the minus sign was needed to account for the fact that the gear rotates in
the opposite direction from the pinion. Earlier we defined the gear ratio as the ratio of the
diameters of the two gears

 ρ = 2

1

d
d

But since the number of teeth is proportional to diameter, we can redefine the gear ratio in
terms of tooth numbers

 ρ = 2

1

N
N

8 tooth

24 tooth

FIGURE 8.34
The eight-tooth pinion is driving the 24 tooth gear.2

562 Introduction to Mechanism Design

The speed of gear 2 can be written in terms of the gear ratio as

ρ

= −2
1n

n

Since most gear trains are designed to reduce speed, the gear ratio will ordinarily be
greater than one. For the example in Figure 8.34 the gear ratio is 24/8 = 3. Let us now try a
more complicated example:

Figure 8.35 shows a two-stage speed reducer. The first stage contains gears 1 and 2,
and the second stage includes gears 3 and 4. It is important to note that gears 2 and 3 are
mounted to the same shaft and spin at the same speed. In other words:

 =2 3n n (8.16)

Let us find the speed of gear 4 (the output of the speed reducer) if the speed of gear 1 is
1,000 rpm. First, the speed of gear 2 can be found using Equation (8.15)

 ()= − = − = −n
N
N

n
8
24

1,000 rpm 333.3 rpm2
1

2
1

Since gear 2 is attached to gear 3, we have

 = −333.3 rpm3n

Finally, the speed of gear 4 is

 ()= − = − − =8
40

333.3 rpm 66.7 rpm4
3

4
3n

N
N

n

Since there are two stages, the output rotates in the same direction as the input. By com-
bining Equations (8.15) and (8.16) we can find the overall reduction in one step

 = −

−

4

3

4

1

2
1n

N
N

N
N

n

Gear 2: 24 teeth

Gear 4: 40 teeth

Gear 1: 8 teeth Gear 3: 8 teeth

FIGURE 8.35
This speed reducer has two stages, with the first stage consisting of gears 1 and 2 and the second stage consist-
ing of gears 3 and 4. Gears 2 and 3 are mounted on the same shaft, so they spin at the same speed.2

563Gears and Gear Trains

In general, if ρ1 is the reduction in stage 1 and ρ2 is the reduction in stage 2, then the overall
reduction is

 ρ ρ ρ() ()= − × −1 2total

For this example we have

 ρ = −

× −

= −

 × −

 =24

8
40
8

152

1

4

3

N
N

N
N

total

Thus, this speed reducer has an overall gear ratio of 15, which means that the output speed
is a factor of 15 lower than the input speed:

 =1,000 rpm
15

66.7 rpm

In Section 8.2, we also learned that the output torque is increased by the same factor as the
speed is reduced, so that

 ρ= −2 1T T

Thus, if we reduce speed by 1/ρ, we increase torque by ρ. For the two-stage speed reducer
the torque would be increased in the same ratio as speed is reduced:

 ρ ρ ρ()()= − − =4 1 2 1 1T T Ttotal

Example 8.3: Design of a Gear Reducer

Design a gear reducer with an input speed of 1,764 rpm and an output speed of 7 rpm.
Use 20° pressure angle gears with a module of 1 mm/tooth. Find the reduction in each
stage, and specify the number of teeth and pitch diameter of each gear.

Solution

The overall speed reduction must be

 1764
7

252totalρ = =

The problem statement does not specify how many stages are to be used, so we will
need to use a trial and error approach. Let us try to achieve the reduction in one stage.
Looking at Figure 8.32 in Section 8.3 the minimum number of pinion teeth to avoid
interference is slightly over 17, so we choose 18 teeth. The gear would need to have

 252 18 4536 teethN Ng pρ= = ⋅ =

Aside from the fact that we are unlikely to find a gear with over 4,000 teeth, the diam-
eter of the gear would be

 4536 teeth
1 mm
tooth

4.536 mdg ()=

 =

564 Introduction to Mechanism Design

This design is clearly impractical, so we must achieve the reduction in multiple stages.
What about two stages? Since we know that the overall reduction is given by

 1 2totalρ ρ ρ=

we can get an initial estimate for the reduction in each stage using

 15.91 totalρ ρ≈ =

For the 20° pressure angle, the smallest number of teeth on the pinion is

 17 teethNp =

so that the number of gear teeth is (17·15.9) = 270 teeth. This gear still seems a little too
large to be practical, so let us try three stages.

 6.31
3

totalρ ρ≈ =

This is a more reasonable reduction to achieve in a single stage. Let us try a reduction
of 7 in the first stage. Then

 252
7

36
1

totalρ
ρ

= =

This is lucky! If we let the remaining two stages have reductions of 6 each, we will
achieve our goal exactly:

 7 6 6 252mtotal = ⋅ ⋅ =

The minimum number of pinion teeth to avoid interference is still 17 for the first stage

 17 teeth 17 mm1 1N d= =

while the minimum numbers in stages 2 and 3 are

 16 teeth 16 mm3 3N d= =

 16 teeth 16 mm5 5N d= =

Thus, we can calculate the numbers of teeth for the gear in each stage as

 119 teeth 119 mm2 2N d= =

 96 teeth 96 mm4 4N d= =

 96 teeth 96 mm6 6N d= =

Example 8.4: Speed Reduction for a Clock

Design the appropriate speed reduction between the minute and second hands of a clock
using a combination of gears that have 8, 12, 16, 20, 24, 36, 40, and 56 teeth. Determine
the number of stages, the reduction in each stage, and the numbers of teeth in each gear.

565Gears and Gear Trains

Solution

The speed ratio between the minute and second hand of a clock is 60, so this is our over-
all reduction. The largest single-stage reduction that is achievable using the prescribed
gears is

 56
8

7ρ = =

so we know that we need at least three stages, since 7 · 7 = 49, which is less than 60. The
cube root of 60 is 3.9, so our first guess might be to try a reduction of 4 in the first stage.
Oddly enough, there is no combination of prescribed gears that produces a reduction of
4! Instead, let us try a reduction of 5 in the first stage by combining an eight-tooth gear
with a 40 tooth gear. The remaining required reduction is

 60
5

12ρ = =

Since a reduction of 4 is impossible, we will use reductions of 3, 2, and 2 for the remain-
ing stages, which gives us a four stage gear reducer. A workable clock gear reducer is
shown in Table 8.2.

Of course, there are many valid ways to achieve a gear reduction of 2 from the set of
gears, so other solutions are possible.

8.5 Efficiency of Gear Trains

The topic of gear train efficiency has been much studied in the past 100 years, and no simple,
all-encompassing theory has emerged. One of the main reasons for this is the large number
of factors that influence the efficiency of a gear train, including lubrication and friction, the
precisions of the gears, the types (and quality) of bearings used, temperature, loading and
other factors. To obtain an absolute estimate of the efficiency of a given gear train would
expand this text beyond reasonable limits, so we will confine ourselves to estimating the
relative efficiency of a gear train. That is, we will attempt to solve the problem of which
of a pair of competing gear train designs is likely to be more efficient. Once a gear train
has been selected and manufactured, laboratory testing must be carried out if an estimate
of absolute efficiency is required. Thus, the methods presented here are approximate, and
should only be used for the purpose of comparing one design with another. The most com-
mon method for presenting the efficiency of a pair of gears is to calculate the power loss:

TABLE 8.2

Four-Stage Gear Reducer for Use in a Clock
Mechanism

Pinion Gear

Stage 1 8 40
Stage 2 8 24
Stage 3 8 16
Stage 4 8 16

566 Introduction to Mechanism Design

 = ⋅0P E Pout in (8.17)

where Pin is the power input into the gear pair, Pout is the power available to be transmitted
“downstream” and E0 is called the “basic efficiency,” which is always less than one. Most
of the power loss in a gear pair is through the rubbing (friction) of the gear teeth as the
motion is transmitted, although some power is also lost from friction in the bearings. The
efficiency of a pair of gears can be calculated as

 µ= −10E L (8.18)

where μ is the coefficient of friction and L is called the tooth loss factor. The full derivation
of the tooth loss factor is beyond the scope of this text, but an excellent explanation can
be found in [2]. For a pair of spur gears with pressure angle 20°, 22.5°, or 25° the tooth loss
factor can be calculated as

ρ

ρ
= +

+ + − −

1 1 2 2

L
d

Z Z
p

p Z Z
b

a r

b
b r a

where

 α= cosd db

is the base diameter of the pinion,

π α π α= =cos

cosp
P

mb
d

is the base pitch, ρ is the gear ratio and

α α

α α

() ()

() ()

= + − −

= + − −

1
2

2 cos sin

1
2

2 cos sin

2 2

2 2

Z
P

N N N

Z
P

N N N

a
d

g g g

r
d

p p p

are the approach and recess portions of the line of action, respectively. If internal gears are
used, then the ratio (ρ + 1)/ρ must be replaced with (ρ − 1)/ρ.

 Given the approximate nature of our calculations, it is much simpler to estimate the
tooth loss factor using the charts presented in Figures 8.36 and 8.37. Some additional rules
given by Molian [3] are as follows:

• For a pair of external spur gears, use the tooth loss factors shown in Figure 8.36 for
a 20° pressure angle and Figure 8.37 for a 25° pressure angle.

• For an external spur gear mating with an internal spur gear, multiply the tooth
loss factor found in Figure 8.36 or Figure 8.37 by (ρ − 1)/(ρ + 1).

• For helical gears the tooth loss factor must be multiplied by 0.8 cos ψ, where ψ is
the helix angle.

567Gears and Gear Trains

Looking at the second rule, we see that an internal gear pair will have lower losses than an
external pair if the gear ratio is small. This is one reason that planetary gearsets commonly
use internal gears in their design (the other being compactness).

The coefficient of friction between pairs of gear teeth depends upon several factors
including the gear materials, the lubrication used, temperature, accuracy of the tooth pro-
file, surface finish, and many others. Merritt [4] suggests a value of 0.08 for pairs of steel
gears while Tso [2] uses more recent data to propose.

µ

µ

=

=

0.04 for precision steel gears

0.05 for accurately cut steel gears.

1000

0.01

0.015

0.02

0.03

0.04

0.05

0.06

0.08

0.1

0.12

0.14

0.16
0.18

0.20 0.22 0.24 0.26

1000
600

600

400

400

300

300

200

200

150

150

100

100

Number of teeth on gear

N
um

be
r o

f t
ee

th
 o

n
pi

ni
on

50

50

40

40

70

70

30

30

24

24

20

20

17

17

15

15

12

12

FIGURE 8.36
Tooth loss factor for external gear pair with pressure angle 20°.

568 Introduction to Mechanism Design

If a gear train is composed of more than one pair, the efficiencies of each pair are multi-
plied to obtain the overall efficiency. Thus, for a compound gear train with two pairs, the
overall efficiency is

 =0 1 2E E E (8.19)

 µ µ()()= − −1 10 1 1 2 2E L L (8.20)

Example 8.5

Calculate the efficiency of an external spur gear pair where the pinion has 16 teeth and
the gear has 32 teeth. Repeat the calculation if the 32 tooth gear is internal. Assume a
pressure angle of 20° and a coefficient of friction of 0.05.

1000

0.01

0.015

0.02

0.03

0.04

0.05

0.06

0.08

0.1

0.12

0.14

0.16
0.18

0.20 0.22 0.24 0.26

1000
600

600

400

400

300

300

200

200

150

150

100

100

Number of teeth on gear

N
um

be
r o

f t
ee

th
 o

n
pi

ni
on

50

50

40

40

70

70

30

30

24

24

20

20

17

17

15

15

12

12

FIGURE 8.37
Tooth loss factor for external gear pair with pressure angle 25°.

569Gears and Gear Trains

Solution

Examining Figure 8.36 it appears that the tooth loss factor is approximately 0.2 so that
the efficiency is

 E ()= − ⋅ =1 0.05 0.2 0.990

or 99%. For the internal pair we have ρ = 2, so that

 L Lext
ρ
ρ

= −
+

1
1int

 L = −
+

⋅2 1
2 1

0.2int

 L = 0.0667int

and the efficiency is

 E ()= − ⋅ =1 0.05 0.0667 0.99670

or 99.67%. Clearly, the internal gearset is much more efficient than the external gearset,
although both are fairly efficient.

Example 8.6

Compare the efficiencies of the following two gearsets:

 1. One-stage reduction with Np = 12 and Ng = 48.
 2. Two-stage reduction with Np1 = Np2 = 12 and Ng1 = Ng2 = 24.

Assume both gearsets have pressure angle 25° and coefficient of friction 0.10.

Solution

Examining Figure 8.37 we have L = 0.19 so that

 E = − ⋅ =100 0.1 0.19 0.9810

for the single-stage reduction. For the two-stage reduction, each stage has L = 0.225 so
that

 E ()()= − ⋅ − ⋅ =1 0.1 0.225 1 0.1 0.225 0.9560

The two-stage reducer is much less efficient, although space constraints may prevent us
from using the single-stage reducer.

Example 8.7

Compare the efficiency of the following single-stage reducers. Assume a pressure angle
of 20° and a coefficient of friction of 0.05.

 1. Np = 12, Ng = 48
 2. Np = 100, Ng = 400

570 Introduction to Mechanism Design

For the first gearset we have L = 0.225 so that

 E = − ⋅ =1 0.05 0.225 0.9890

For the second, we have L = 0.035 so that

 E = − ⋅ =1 0.05 0.035 0.9980

Clearly, the second stage is more efficient. Examining Figures 8.36 and 8.37 we see that
gears with larger numbers of teeth tend to have lower tooth loss factors and are gener-
ally more efficient. The tradeoff, of course, is the size of the gears. If a large amount of
power is to be transmitted, we may require a set of gears with large teeth; that is, gears
with a large module or small diametral pitch. Since the gear diameter is proportional
to the number of teeth, size constraints may prevent us from using the gearset that is
“optimal” from an efficiency standpoint. In general, however, the designer should select
gears with the highest number of teeth within strength and packaging requirements.

Example 8.8

Figure 8.38 shows an example of the most common type of planetary gearset. We will
give planetary gearsets a thorough treatment in Chapter 9, but for now, we wish to find
the basic efficiency of the gearset. The basic efficiency gives the power loss assuming that

Arm or carrier

Ring—64 teeth
Planet—16 teeth

Sun—32 teeth

FIGURE 8.38
A common type of planetary gearset. For this example, the arm is fixed and the mechanism
behaves like an ordinary gearset.

571Gears and Gear Trains

the arm is fixed so that the planetary gearset behaves like ordinary gearset. Find the
basic efficiency of the gearset shown in Figure 8.38 assuming a pressure angle of 20°
and a coefficient of friction of 0.05.

Solution

Let us take the sun and planet as the first gear pair. From Figure 8.37 we have L1 = 0.205.
The second gear pair has a ratio of 4 so that we calculate the tooth loss factor as

 L = −
+

⋅ =4 1
4 1

0.18 0.1082

Thus, the overall basic efficiency of this gearset is

 E ()()= − ⋅ − ⋅ =1 0.05 0.205 1 0.05 0.108 0.9840

or 98.4%.

Example 8.9

Figure 8.39 shows another common type of planetary gearset with two suns and two
planets. The problem statement is the same as before: calculate the basic efficiency of
this gearset (the efficiency with the carrier fixed) assuming a pressure angle of 20° and
coefficient of friction 0.05.

Solution

Let us denote the first stage as the pair of 24 tooth gears. The tooth loss factor for the first
stage is 0.18 and for the second stage is 0.20. Thus, the basic efficiency of this gearset is

Carrier

Planet 1–24 teeth Planet 2–16 teeth

Sun 2–32 teethSun 1–24 teeth

FIGURE 8.39
Another common type of planetary gearset. Again, we assume that the carrier is fixed when cal-
culating the basic efficiency.

572 Introduction to Mechanism Design

 E ()()= − ⋅ − ⋅ =1 0.05 0.18 1 0.05 0.2 0.9810

or 98.1%. Thus, the planetary gearset in Example 8.8 is slightly more efficient if the car-
rier is fixed. As we will see in Chapter 9, however, calculating the efficiency of planetary
gearsets is quite a bit more complicated when the arm is allowed to rotate.

8.5.1 Summary

This section has presented a method for estimating the efficiency of a simple (non-
epicyclic) gearset. As we have seen, the efficiency of spur gears can be quite high, and we
can maximize efficiency by increasing tooth count to the maximum permitted by strength
and packaging considerations. It must be emphasized that the methods given in this sec-
tion provide very approximate estimates and should not be used to calculate the absolute
efficiency of a given gearset. Instead, they should be employed for comparing two or more
potential designs with each other. Once a design has been selected, laboratory testing is
usually necessary to obtain the absolute efficiency of the gearset.

8.6 Practice Problems

Problem 8.1

A 30 tooth gear spins clockwise at 10 rpm and drives a 90 tooth gear. Find the speed
and rotational direction of the driven gear.

Problem 8.2

Gear A has 80 teeth and gear B has 40 teeth. If gear B is being driven at 20 rpm clock-
wise, find the speed of gear A.

Problem 8.3

Gear A has 30 teeth and gear B has 60 teeth. Find the center distance between the two
gears if the module is 2 mm/tooth.

Problem 8.4

Find the number of teeth on a gear with module of 5 mm/tooth and a pitch diameter
of 100 mm.

Problem 8.5

A gear reducer is being designed for a reduction of 2.5. Determine the minimum
number of teeth to avoid interference for the pinion gear if its teeth have a pres-
sure angle of 20°.

Problem 8.6

As shown in Figure 8.40, a 20 tooth gear transmits 1,000 W to a 40 tooth gear. Both
gears have module 4 mm/tooth. What is the torque produced by gear 2 if gear 1
rotates at 1,000 rpm?

573Gears and Gear Trains

Problem 8.7

Using the results of Problem 8.6, what is the vertical and horizontal load on bearing
2 if the pressure angle of the gears is 14.5°?

Problem 8.8

Using the results of Problems 8.6 and 8.7, find the vertical and horizontal loads on
bearing 2 if the pressure angle of the gears is 25°.

Problem 8.9

In Figure 8.41, if gear 1 spins at 3,600 rpm clockwise, what is the speed of gear 4?

Bearing 1

Bearing 2

Gear 1
20 teeth

Gear 2
40 teeth

FIGURE 8.40
Problem 8.6.

Gear 1
20 teeth

Gear 2
40 teeth

Gear 3
12 teeth

Gear 4
20 teeth

FIGURE 8.41
Problem 8.9.

574 Introduction to Mechanism Design

Problem 8.10

Find the smallest pair of gears that will accomplish a 3:1 reduction in speed with a
20° pressure angle. What is the center distance between the gears if the module is
0.5 mm/tooth?

Problem 8.11

A rack and pinion mechanism, shown in Figure 8.42, is seen quite frequently in drill
presses and arbor presses. As shown in the figure above, the user applies a force,
Fh, at the end of a 50 cm handle. The handle is rigidly attached to an 18 tooth pin-
ion, which has pressure angle 20° and module 4 mm/tooth. What handle force is
required to create a 500 N force on the rack, Fd?

Problem 8.12

In the rack and pinion mechanism of Problem 8.11, to what angle must the handle be
rotated in order to move the rack a distance of 25 mm?

Problem 8.13

For the rack and pinion mechanism in Problem 8.11, what angular velocity must the
pinion have in order for the rack to move 10 mm/s? Give your answer in revolu-
tions per minute.

Problem 8.14

In the gearset of Problem 8.9, gear 1 spins at 3450 rpm and transmits 750 W. What
torque is present at gear 4, assuming 100% efficiency?

18 tooth gear

Fb

Fd

50

FIGURE 8.42
Problem 8.11.

575Gears and Gear Trains

Problem 8.15

In problem 8.9, the module of the first pair of gears is 1.5 mm/tooth and the second
pair of gears is 4 mm/tooth. Find the center distance between gears 1 and 4 if the
gears are aligned horizontally, as shown in the figure.

Problem 8.16

In the gearset of Problem 8.9, the speed of gear 1 is 3,600 rpm. Keeping all other tooth
numbers constant, how many teeth should gear 4 have in order for its speed to be
600 rpm?

Problem 8.17

Design a two-stage gear reducer of minimum size for an input speed of 3,600 rpm
and an output speed of 1,000 rpm. Both stages should have pressure angle 20° and
module 2 mm/tooth.

Problem 8.18

See Figure 8.43. You are given the task of designing a gearbox for a small lathe. Three
different output speeds are required: 100 rpm, 250 rpm, and 500 rpm. The motor
spins at a constant 3,600 rpm. Each reduction unit should have three stages, but
the first two stages are shared between all three speeds (i.e. only the third stage
in each unit will vary among the three speeds.) A clutch mechanism allows the
operator to choose which of the reductions in the third stage is active (gears 5–6,
gears 7–8 or gears 9–10). The center distance for all three-gear pairs in the third
stage must be identical, as seen in the figure. Find the numbers of teeth to accom-
plish the required reductions, assuming a pressure angle of 20°.

Problem 8.19

A battery-powered motor spins at 12,000 rpm. Design a five-stage gear reduction unit
that achieves an output speed of 60 rpm. Use gears with a pressure angle of 20°,
and try to minimize the tooth count of each gear.

Gear 9

Gear 7

Gear 5

Gear 3

Gear 2

Gear 4

Gear 6

Gear 8

Gear 10

Output

Gear 1

Motor

FIGURE 8.43
Problem 8.18.

576 Introduction to Mechanism Design

Problem 8.20

Estimate the overall efficiency of the gear train in Problem 8.9 if the pressure angle of
all gears is 20° and the coefficient of friction is 0.05. What is the torque at gear 4 if
gear 1 is driven by a 500 W motor that spins at 1,750 rpm?

Acknowledgments

Several images in this chapter were produced using SOLIDWORKS® software.
SOLIDWORKS is a registered trademark of Dassault Systèmes SolidWorks Corporation.

Notes

 1. Dr. Lunin has uploaded several models of gears with complex tooth profiles under the user
name dr.lunin-1 on www.grabcad.com, these may be downloaded with a free user account.
Dr. Lunin generated these models using his software available at www.spiralbevel.com.

 2. The construction brick images used in this text were made with the SOLIDWORKS® models
created by the user Yauhen on www.grabcad.com. Yauhen has uploaded hundreds of first-rate
models of construction bricks and gears that can be downloaded with a free user account.

Works Cited

 1. AGMA, Gear Nomenclature, Definitions of Terms with Symbols. ANSI/AGMA Standard 1012-F90,
1500 King St., Suite 201, Alexandria, VA: American Gear Manufacturers Association, 1990.

 2. L.-N. Tso, A study of friction loss for spur gear teeth (MS Thesis), Monterey, CA: United States
Naval Postgraduate School, 1961.

 3. S. Molian, Mechanism Design: An Introductory Text, Cambridge, UK: Cambridge University
Press, 1982.

 4. H.E. Merritt, Gear Trains, London: Pitman, 1947.

http://www.grabcad.com
http://www.spiralbevel.com
http://www.grabcad.com

577

9
Planetary Gear Trains

9.1 Introduction to Planetary Gearsets

The gearsets we have considered thus far have been relatively simple in having only
one input and one output, and thus only one overall gear ratio. In this section, we
 introduce the planetary gearset, which is much more versatile. As we will see, this
 versatility comes at a price: planetary gearsets are much more complicated to design
and analyze. They often behave in very counterintuitive ways, which makes their
use all the more difficult (but interesting!). As with ordinary gearsets, however, a few
 simple rules can be used to determine the performance and efficiency of any planetary
gearset.

The most common type of planetary gearset is shown in Figure 9.1. It consists of four
major components: the sun, one or more planets, a ring gear, and a carrier (often called the
arm or the spider). The major difference between planetary gearsets and ordinary gearsets
is that the planets “orbit” the sun; that is, their shafts are not fixed in space. It is this epicy-
clic motion that permits such interesting behavior.

Like all planetary gearsets, the gearset in Figure 9.1 has two inputs and one output. We
may freely choose which shafts are the inputs and which is the output, as shown in the
Table 9.1. It is this free choice that makes determining an overall ratio so interesting.

9.1.1 Types of Planetary Gearsets

Zoltan Levai [1] described a total of 34 different types of planetary gearsets that
can be constructed; of these, only a few are used in practice. A few of the more common
ones are described in the section that follows; the 12 shown by Norton [2] are given in
Table 9.2. For clarity, only one planet gear is shown for each type; more planets can be
added for balancing and to increase the torque capacity of the gearset as shown in
Figure 9.2.

9.1.2 Sun, Ring, and Planet

The most basic type of planetary gearset is shown in Figure 9.1. In this geartrain, inputs
and output can be taken from the carrier, ring, and sun gears, and only the planet experi-
ences epicyclic motion. This is the most common type of planetary gearset (with the excep-
tion of the differential) and it finds application in automatic transmissions, hybrid-electric
transmissions (e.g. the Toyota Prius) and even battery-powered drills.

578 Introduction to Mechanism Design

TABLE 9.1

Possible Inputs and Outputs from the Planetary Gearset in Figure 9.1

Option Inputs Output

1 Sun and carrier Ring
2 Ring and sun Carrier
3 Ring and carrier Sun

TABLE 9.2

Twelve of the 34 Possible Types of Planetary Gearset as Described by Levai [1] and Norton [2]

(a) (b) (c)

(d) (e) (f)

Ring
Planet

Sun

Arm or carrier

FIGURE 9.1
The most basic planetary gearset consists of a sun, arm (or carrier), ring, and planet.

(Continued)

579Planetary Gear Trains

As seen in Figure 9.3, the diameters of each gear are not entirely independent of one
another. In order for this gearset to fit together, the diameters must follow

 = +2d d dr p s (9.1)

Since all three must have the same diametral pitch (or module) in order to mesh together,
we can write a similar relationship for the numbers of teeth.

FIGURE 9.2
This planetary gearset has three planets instead
of just one. The additional planets are used to
balance the gearset and to provide additional
torque-transmitting capacity.

TABLE 9.2 (Continued)

Twelve of the 34 Possible Types of Planetary Gearset as Described by Levai [1] and Norton [2]

(g) (h) (i)

(j) (k) (l)

580 Introduction to Mechanism Design

 = +2N N Nr p s (9.2)

where Nr is the number of teeth on the ring, Np is the number of teeth on the planet and Ns
is the number of teeth on the sun.

9.1.3 Two Suns and Two Planets

The gearset shown in Figure 9.4 has two sun gears, and the two planet gears rotate as a
single unit. The sun gears can rotate independently of one another. The inputs and output
can be selected from both sun gears and the carrier. Very high-speed reductions can be
achieved with this unit, but it can suffer from low efficiency if not designed correctly.

As seen in Figure 9.5, the pitch diameters are not independent of one another, and must
follow the relationship

 + = +1 1 2 2d d d ds p s p (9.3)

FIGURE 9.4
This planetary gearset has two suns and two plan-
ets. It is not necessary to have a ring gear for epicyclic
motion.

Sun 2Sun 1

Carrier

Planet 2Planet 1

dp ds dp

dr

FIGURE 9.3
The dimensions (and number of teeth) of the gears are not entirely independent of each other.

581Planetary Gear Trains

Since the second sun/planet pair does not mesh with the first, the tooth numbers can be
independent. If all gears have the same diametral pitch (or module) then we must have

 + = +1 1 2 2N N N Ns p s p (9.4)

9.1.4 The Differential

The gearset shown in Figure 9.6 is different from the preceding gearsets in that it is
composed of miter gears rather than spur (or helical) gears. The “sun” gears are those
that do not undergo the epicyclic motion experienced by the planets. As we will see in
the next section, the differential can be used to measure the difference in speed between
two shafts for the purpose of synchronization. In addition, the differential is often used
in automotive drivetrains to overcome the difference in wheel speed when a car goes
around a corner.

9.2 Analysis of Planetary Gearsets—The Table Method

Planetary gearsets can behave in counterintuitive ways, which makes their analysis quite
interesting. However, we can develop a few simple methods that we can apply to any gear-
set, no matter how complicated. We will first discuss two methods that employ tables for

ds1 dp1

dp2ds2

FIGURE 9.5
The gear diameters are not independent of one another.

Miter gear (planet)

Miter gear (sun 1)

Miter gear (sun 2)

Carrier

FIGURE 9.6
The differential is often used to allow the drive wheels of a car to rotate independently.

582 Introduction to Mechanism Design

conducting the analysis, since these methods are easiest to grasp intellectually. Once our
intuition has been developed using the tabular methods we will proceed to a more ana-
lytical method in Section 9.3. The tabular methods are often used when a quick analysis
of a particular gearset is needed, but the analytical methods are more suited for use with
modeling software such as MATLAB®.

9.2.1 Table Method with One Fixed Input

We start with the simplest case: the basic planetary gearset (shown in Figure 9.7) with one
input fixed. To make things really simple, let us first assume that the arm is fixed. If the
sun spins at 100 rpm cw, let us find the speed of the ring. Since the arm is fixed, no gear
experiences epicyclic motion, and we have an ordinary gearset that we can analyze using
the methods of Chapter 8. The planet spins at

 = − = − = −32
16

100 200 rpmn
N
N

np
s

p
s

or 200 rpm ccw. The ring spins in the same direction as the planet since it is an internal
gear

 = = − = −16
64

200 50 rpmn
N
N

nr
p

r
p

or 50 rpm ccw. This example is fairly straightforward, since none of the gears experience
epicyclic motion. We will now develop a more general procedure that will account for
epicyclic motion.

Ring—64 teeth
Planet—16 teeth

Sun—32 teeth

FIGURE 9.7
A basic planetary gearset with a sun, planet, and ring gear.

583Planetary Gear Trains

Example 9.1

In the gearset of the preceding example let the ring be fixed and the arm free to move.
Find the speed of the arm if the sun moves at 100 rpm cw.

Solution

We will introduce a simple tabular method to conduct the analysis*. On a piece of engi-
neering paper (or graph paper) construct a table similar to Table 9.3. The table should
have six rows (including the labels at the top) and four columns, one for the speed of
each of the gears in the set.

To begin, pretend that the arm is fixed and release the ring. Now, turn the ring one
revolution. If the ring moves one revolution cw, then the planet moves

 = = =64
16

1 4 revn
N
N

np
r

p
r

and the sun moves

 = − = − = −16
32

4 2 revn
N
N

ns
p

s
p

Enter these “speeds” in the first row of the table, as shown in Table 9.4. We are using
revolutions per unit time as a unit for the entries, since this method will work for any
speed unit.

Next, imagine gluing the entire assembly together into a single, rigid body. If we
rotate the rigid body, the kinematic relationships between the gears and the carrier are
unchanged. Rotate the entire rigid body one revolution counterclockwise, and enter this
operation in rows 2 and 3 of the table, as seen in Table 9.5. Row 2 consists of four entries

* This method was introduced to us by Tirupathi R. Chandrupatla in private communication.

TABLE 9.3

Table for Analysis of Simple Planetary Gearset

nr np ns na

TABLE 9.4

Enter the Speeds of the Gears with the Arm Fixed in Row 1

nr np ns na

1 4 −2 0

584 Introduction to Mechanism Design

of −1 – this symbolizes the counterclockwise rotation of the entire assembly. Row 3 is
the sum of Rows 1 and 2.

In Row 3, we can see that the ring has moved 0 revolutions; that is, it is fixed as was
given in the problem statement. The sun has moved 3 revolutions ccw, but we can
scale this to 100 rpm cw by multiplying by (−100/3). In Row 4 of the table enter a row
of (× −100/3). The products of Rows 3 and 4 are entered in Row 5. Your completed table
should be the same as Table 9.6.

As seen in Row 5, the arm moves 33.3 rpm cw when the sun moves 100 rpm cw. The
ring is still fixed, as required by the problem statement.

The following steps summarize the procedure we have followed for Example 9.1.

 1. Hold the arm fixed. Rotate the fixed gear (sun or ring) by one revolution.
Calculate the resulting rotations of the other gears. This completes Row 1 of
the table.

 2. Glue the gearset together as a rigid body, and rotate the assembly backwards
by one revolution. Enter the results in Row 3 of the table.

 3. Scale the results in Row 3 so that the input gear matches the problem state-
ment. Enter the results in Row 5.

Example 9.2

Let us now examine the same gearset in Example 9.1, but with the sun fixed and the ring
allowed to move. If the ring rotates at 100 rpm cw, what is the speed of the arm?

Solution

As before, we start by pretending that the arm is fixed and rotating the (fixed) sun gear
one revolution. The planet rotates

 = − = − = −32
16

1 2 revn
N
N

np
s

p
s

TABLE 9.6

The Completed Speed Analysis Table for the Simple Planetary Gearset

nr np ns na

1 4 −2 0

−1 −1 −1 −1
0 3 −3 −1
×(−100/3) ×(−100/3) ×(−100/3) ×(−100/3)
0 rpm −100 rpm 100 rpm 33.3 rpm

TABLE 9.5

Rotate the Entire Assembly Backwards by One Revolution

nr np ns na

1 4 −2 0

−1 −1 −1 −1
0 3 −3 −1

585Planetary Gear Trains

and the ring rotates

 ()= = − = −16
64

2
1
2

revn
N
N

nr
p

r
p

The results are entered in the first row of the table, as shown in Table 9.7.
Glue the entire assembly together and rotate backwards one revolution, as shown in

Table 9.8. The problem statement gives the ring speed as 100 rpm cw, so we must multi-
ply the entire table by −200/3 to achieve this, as shown in Table 9.9.

Thus, the arm moves at 66.6 rpm cw when the ring rotates 100 rpm cw. Or, alterna-
tively, the arm rotates 2/3 of a revolution when the ring moves a full revolution, and
both ring and arm rotate in the same direction. This is not always the case, as will be
seen in the next example.

Example 9.3: A Construction Brick Planetary Gearset

Our next example, planetary gearset is made from construction bricks, as shown in
Figure 9.8. The model is simple to build, requiring only a few beams and a set of gears

TABLE 9.7

Hold the Arm Fixed and Rotate the Sun One Revolution

nr np ns na

−1/2 −2 1 0

TABLE 9.8

The Result of Rotating the Entire Assembly Backward by One Revolution

nr np ns na

−1/2 −2 1 0

−1 −1 −1 −1
−3/2 −3 0 −1

TABLE 9.9

Final Results for Example 9.2

nr np ns na

−1/2 −2 1 0

−1 −1 −1 −1
−3/2 −3 0 −1
×(−200/3) ×(−200/3) ×(−200/3) ×(−200/3)
100 rpm 200 rpm 0 rpm 66.6 rpm

586 Introduction to Mechanism Design

(8 tooth, 24 tooth, and 40 tooth) and axles. Building the model is a worthwhile exercise
if the construction bricks are available, since it serves as a valuable aid to intuition and
physical understanding. It is worth noting that the numbers of teeth follow Equation
(9.4), since

 + = +40 8 24 24

The gearset has two suns (gears 1 and 4) and two planets (gears 2 and 3), but we can still
use the tabular method to analyze it. For each case, we will hold one of the suns fixed
and rotate the other sun one revolution clockwise. The goal is to determine the number
of revolutions made by the carrier. To begin, let us assume that sun gear 1 is fixed, and
gear 4 rotates one revolution. First, pretend that the carrier is fixed, and rotate gear 1
(the fixed gear) one revolution. Then gear 2 rotates

 = − = − = −40
8

1 5 rev 2
1

2
1n

N
N

n

Gears 2 and 3 are fixed to the same shaft, so they rotate in the same direction and at the
same speed

 ()= − = − − =24
24

5 5 rev4
3

4
3n

N
N

n

This completes Row 1 of the table. Next, rotate everything backwards by one revolu-
tion, and enter the result in Row 3. Since the resulting number of revolutions for gear
4 is four, we multiply everything in Row 3 by ¼ to obtain the final result, as shown
in Table 9.10. Thus, the carrier rotates backwards by ¼ revolution when gear 4 rotates 1
revolution forward.

Now, let us use gear 1 as the input and hold gear 4 fixed. Following the same proce-
dure as before, we obtain the results in Table 9.11. As seen in the final row of the table
the carrier now rotates forward by 5/4 revolutions when gear 1 makes one revolution.
This is an example of the sometimes counterintuitive behavior of planetary gearsets – it
is often impossible to predict the rotational direction of the carrier by inspection alone.
Try building the model to see for yourself.

Carrier

Gear 2—8 teeth

Gear 1—40 teeth

Gear 4—24 teeth

Gear 3—24 teeth

FIGURE 9.8
This construction brick planetary gearset has two suns and two planets, like the type (g) seen in
Table 9.2.1

587Planetary Gear Trains

Example 9.4: The Differential

In the differential shown in Figure 9.9 all three gears have 32 teeth. For this example
the input is through the carrier and the outputs are the shafts attached to gears 1
and 3. As a first example, let us determine the number of rotations of gear 3 if gear 1
is fixed.

Proceed in the usual manner by pretending first that the carrier is fixed and rotating
gear 1 by one revolution. Since gear 2 has the same number of teeth, it also rotates one
revolution, but since it is oriented perpendicular to gear 1, the choice of sign is some-
what arbitrary. This has been indicated in Table 9.12 by enclosing the 1 in parentheses.
Gear 3, on the other hand, rotates backward one revolution. Completing the table as
usual results in Table 9.12 where it is seen that gear 3 makes two revolutions for every
one revolution of the carrier. Thus, if one of the outputs is fixed, the other output moves
at twice the speed of the carrier (input). We can repeat the analysis by fixing the other
input as shown in Table 9.13.

TABLE 9.10

Solution for Construction Brick Planetary Gearset When Gear 1 Is Fixed and Gear 4
Rotates One Revolution

n1 n2 n3 n4 nc

1 −5 −5 5 0

−1 −1 −1 −1 −1
0 6− −6 4 −1
×(1/4) ×(1/4) ×(1/4) ×(1/4) ×(1/4)
0 −3/2 rev −3/2 rev 1 rev −1/4 rev

TABLE 9.11

Gear 4 Is Fixed and Gear 1 Is the Input. The carrier now rotates forward 5/4 revolutions.

n1 n2 n3 n4 na

1/5 −1 −1 1 0

−1 −1 −1 −1 −1
−4/5 −2 −2 0 −1
×(−5/4) ×(− 5/4) ×(−5/4) ×(−5/4) ×(−5/4)
1 5/2 rev 5/2 rev 0 5/4 rev

Gear 2—32 teeth

Gear 1—32 teeth

Gear 3—32 teeth

Carrier

FIGURE 9.9
This differential has two suns and one planet.

588 Introduction to Mechanism Design

In both cases, the input (the carrier) is the average of the two outputs (gears 1 and 3).
This is what makes it useful as a differential. If a car is cornering, the outside wheels
must move faster than the inside wheels, but the average of the two wheel speeds should
be the same as the output of the transmission.

The name differential arises from another, very different application. If two pieces of
machinery are rotating in opposite directions and attached to gears 1 and 3, the car-
rier will spin at the difference in their speeds. Thus, the carrier speed can be used as a
 feedback mechanism in synchronizing the speeds of the machines.

Example 9.5: Design of a Drill/Driver Transmission

For this example, we will use the tabular method to design a planetary speed reducer.
Battery-powered drills are a common household tool, and planetary gearboxes are
often used to reduce the speed and increase the torque produced by the DC motor.
The drill under consideration here will be used for drilling (high speed/low torque)
and driving screws (low speed/high torque). The speed of the motor can be controlled
by varying pressure on the trigger in the range of 4,000–24,000 rpm. Driving screws
requires a speed range of approximately 60–350 rpm and drilling requires a range of
250–1,500 rpm. Thus, we need a reduction of 64 for driving and 16 for drilling. We also
need a convenient mechanism for shifting between driving and drilling speeds.

A reduction of 64 requires multiple stages, and each stage of the transmission will be
the simple sun-ring-planet configuration as shown in Figure 9.10. There are five planets
in the gearset which helps to distribute the load around the ring. The input to each stage
will be the sun gear, the carrier is the output and the ring is fixed. Since 64 = 43 and
16 = 42, we can accomplish the driving reduction in three stages, and the drill reduction
in two stages. Shifting from driving to drilling will require a means of “locking out”
one of the stages.

Figure 9.11 shows a side view of the entire transmission. The motor drives the sun
gear of stage A and the carrier of stage A drives the sun of stage B, and so on. Since we

TABLE 9.12

Gear 1 Is Fixed and the Carrier Makes One Revolution

n1 n2 n3 nc

1 (1) −1 0

−1 −1 −1 −1
0 (−1) −2 −1
×(−1) ×(−1) ×(−1) ×(−1)
0 (1) 2 1

Gear 3 moves at twice the speed of the carrier.

TABLE 9.13

Gear 3 Is Fixed and the Carrier Makes One Revolution

n1 n2 n3 nc

−1 — 1 0

−1 — −1 −1
−2 — 0 −1
×(−1) ×(−1) ×(−1) ×(−1)
2 — 0 1

Gear 1 moves at twice the speed of the carrier.

589Planetary Gear Trains

require a reduction of 4 in each stage, we can use three identical sun gears, three identi-
cal rings and five identical sets of planets.

We will take advantage of the versatile nature of planetary gearsets to achieve the
shifting from driving to drilling speeds. As shown in Figure 9.12 a shift collar is used
as the ring for stage B. In driving mode, the collar serves as the (fixed) ring for stage B.
To switch to drilling speed, the collar is shifted to the left until it locks the planets of
stage B to a locking ring on the carrier of stage A. Since the carrier of stage A is attached
to the sun of stage B the shift collar has the effect of locking all of stage B into a single,
rigid body. In this way, the speed reduction in stage B has been eliminated, as required.

We will now determine the number of teeth required in each stage to achieve the
reduction of 4. In each stage, the sun is the input and the ring is fixed, so begin by giving

Ring (fixed)
Planet

Sun (input)

Carrier (output)

FIGURE 9.10
The simple sun-ring-planet configuration will be used for each stage of the drill transmission.

Ring

Carrier

Output

Planet

Sun

A B C
Locking ring

Motor

Shift collar

FIGURE 9.11
A side view of the drill/driver transmission. The ring gears are fixed to the body of the drill, the
input to each stage is the sun gear, and the carrier serves as the output for each stage.

Shift collar (ring) is grounded

Output

A B C

Motor

FIGURE 9.12
Shifting from drilling to driving is achieved through a shift collar. In driving mode, the collar acts
as a simple ring gear fixed to ground. In drilling mode, the collar locks the planets (and carrier) of
stage B to the carrier of stage A, which eliminates the reduction of stage B.

590 Introduction to Mechanism Design

the ring one revolution with the arm held fixed, as shown in Table 9.14. If the ring makes
one revolution then the planet makes

 = =n
N
N

n
N
N

p
r

p
r

r

p

revolutions. Similarly, the sun makes

 = − = −

= −n

N
N

n
N
N

N
N

n
N
N

s
p

s
p

p

s

r

p
r

r

s

revolutions. Enter these values into the table, as shown below.
Rotate the entire assembly backwards by one revolution and enter the results as

shown in Table 9.15. To find the reduction in the stage, we should normalize the rotation
of the sun gear to a value of: 1. Multiply each entry in the table by

 1

1− −N
N

r

s

as shown in Table 9.16. The final row of the table shows that if the sun makes one revolu-
tion, the carrier makes

 =
+

n
N

N N
a

s

r s
 (9.5)

TABLE 9.14

Step 1 in Calculating the Speed Reduction in One Stage of the Drill/
Driver Transmission

nr np ns na

1 N
N

r

p
− N

N
r

s

0

−1 −1 −1 −1

TABLE 9.15

The Results of Rotating the Entire Gearset Backwards by One Revolution

nr np ns na

1 N
N

r

p
− N

N
r

s

0

−1 −1 −1 −1
0

1−N
N

r

p
1− −N

N
r

s

−1

591Planetary Gear Trains

revolutions. To achieve a reduction of 4, we require that na = 1/4. Here we have one equa-
tion and two unknowns, Ns and Nr. We may freely choose the number of teeth on the
sun, and then use Equation (9.5) to find the number of teeth on the ring. Let us choose
Ns = 18 teeth in order to avoid the possibility of interference or tooth undercut by choos-
ing too few teeth. Solving for the number of teeth on the ring gives Nr = 54 teeth. Finally,
using Equation (9.2) to solve for the number of teeth on the planet we have Np = 18 teeth.
This is fortunate, since it means that we can use the same tooling to make the planet
and sun gears, which will reduce tooling costs in manufacturing the gearbox. Thus, our
final design for each stage has Ns = 18 teeth, Np = 18 teeth and Nr = 54 teeth.

As a final step, we should choose the module of the gears so that the final size of
the transmission can be calculated. A commonly used module for gears of this size is
0.5 mm/tooth. Thus, the sun and planet gears will have a pitch diameter of 9 mm and the
ring has pitch diameter of 27 mm. This is a reasonable diameter to fit inside the body of
a handheld drill, so we conclude that our design is feasible. Of course, a thorough stress
analysis of the gear train must be conducted, but that is beyond the scope of this text.

It is interesting to calculate the overall size of a set of spur gears that achieve the same
reduction of 4 that was achieved with the planetary gearset. If we choose a pinion with
18 teeth, as was done for the sun in the planetary, then the gear needs 72 teeth, with a
pitch diameter of 36 mm. As shown in Figure 9.13, the overall packaging size for the
pinion and gear is

 9 36 45 mm= + =w

TABLE 9.16

The Last Row of the Table Shows the Overall Speed Reduction Between
Sun Gear and Carrier

nr np ns na

1 N
N

r

p
− N

N
r

s

0

−1 −1 −1 −1
0

1−N
N

r

p
1− −N

N
r

s

−1

1

1
×

− −N
N

r

s

1

1
×

− −N
N

r

s

1

1
×

− −N
N

r

s

1

1
×

− −N
N

r

s

0 −
+

N
N

N N
N N

s

p

p r

r s

1
+

N
N N

s

r s

This is a single stage in the drill/driver transmission.

w

dp

dg

FIGURE 9.13
Overall packaging size for spur gears.

592 Introduction to Mechanism Design

which is much larger than the ring size of 27 mm found earlier. While it is much easier
and cheaper to manufacture the simple spur gear arrangement shown in Figure 9.13,
the compact size and versatility of the planetary set has led to its adoption in many
 battery-powered drills.

9.3 Analysis of Planetary Gearsets—The Generalized Table Method

In all of the preceding examples, one of the inputs to the planetary gearset was fixed while
the other input and the output were allowed to rotate. But one of the chief virtues of the
planetary gearset is its ability to combine inputs from two sources of rotational power.
The second tabular method will provide a means of analyzing planetary gearsets with
two inputs, and we will also demonstrate the use of this method in design. Of course, we
can always take one of the inputs to be zero and obtain the same results as the first tabular
method. We will take as an example the planetary gearset shown in Figure 9.14. In our
example, we will let the speed of the sun be 1,000 rpm, the speed of the ring be −500 rpm
and our goal is to find the resulting speed of the carrier.

The new tabular method begins the same way as before, by assuming the arm to be
fixed. We first rotate the sun gear through one revolution and determine the speed of the
other gears. To keep the units consistent throughout the table we will work in number of
revolutions, rather than speed (rpm).

 ()= − = − = −24
24

1 rev 1 rev1
1

n
N
N

np
s

p
s

The second planet rotates on the same shaft as the first, so that

 = = −1 rev2 1n np p

The number of rotations made by the third planet is

Planet 1—24 teeth
Planet 3—24 teeth

Planet 2—16 teeth

Sun—24 teeth Ring—112 teeth

FIGURE 9.14
This planetary gearset has a sun, a ring, and three planets.

593Planetary Gear Trains

 ()= − = − − =16
24

1 rev
2
3

rev3
2

3
2n

N
N

np
p

p
p

Finally, the ring rotates

 = =

 =24

112
2
3

rev
1
7

rev3
3n

N
N

nr
p

r
p

The results are shown in Row 1 in Table 9.17.
Now multiply each row by a constant factor α. This is equivalent to increasing (or

decreasing) the number of rotations of each gear by a scaling factor α. The result of this
operation is shown in Row 2 in Table 9.18.

Finally, glue the entire assembly together (temporarily) and rotate it as a unit through β
revolutions.

The final result is shown in Row 3 of Table 9.19. This row gives the kinematic relation-
ship between all the gears and the carrier and can be used to determine the output speed
of the planetary gearset. Note that there are two arbitrary constants, α and β, in the table.

TABLE 9.17

Turn the Sun Gear One Revolution, and Determine the Number of Revolutions of Each Other Gear

nr np3 np2 np1 ns na

1/7 2/3 −1 −1 1 0

×α

+β

All entries in the table are given in number of revolutions.

TABLE 9.18

Multiply Each Entry in Row 1 by the Constant Scaling Factor α

nr np3 np2 np1 ns na

1/7 2/3 −1 −1 1 0

×α 1
7

α 2
3

α −α −α α 0

+β

This is equivalent to scaling the number of rotations of each gear by a constant amount, and does not affect any
of the kinematic relationships between gears.

TABLE 9.19

Glue the Assembly Together and Rotate it β Revolutions

nr np3 np2 np1 ns na

1/7 2/3 −1 −1 1 0

×α 1
7
α 2

3
α −α −α α 0

+β 1
7
α β+ 2

3
α β+ β−α β−α β+α β

The final result is shown in row 3.

594 Introduction to Mechanism Design

These correspond neatly with the speeds of the two inputs to the gearset. In the problem
statement, we have

 500 rpm 1000 rpm= − =n nr s

But in Row 3 of the table we have

1
7

α β α β= + = +n nr s

Thus, we have two equations and two unknowns. Subtracting the second equation from
the first gives

α α− = −1
7

1500

or

 α = 1750

Recall that this was used as a constant scaling factor and has no units. Next, substitute the
value for α into the second equation to give

 β = −750 rev

This is also the speed of the arm, as shown in the final entry in Table 9.19. Thus, we have
found a method for analyzing a planetary gearset with two inputs, instead of just one. To
confirm that the method is producing accurate results, let us complete Example 9.2 of the
previous section with the new tabular method.

Example 9.6: Planetary Gearset with One Fixed Input
(Repeated from Example 9.2 of Previous Section)

In this example, the ring rotates at 100 rpm clockwise and the sun is fixed. Rotate the
sun once and enter the results in Row 1 (see Table 9.20). Multiply each entry by α (Row 2)
and add β (Row 3).

Since the sun is fixed, we have

 0α β+ =

or

 β α= −

TABLE 9.20

The New Tabular Method Used in Example 9.2 from the Previous Section

nr np ns na

−1/2 −2 1 0

×α
2
α− 2α− α 0

+β
2
α β− + 2α β− + α + β β

595Planetary Gear Trains

The ring rotates at 100 rpm, so that

2

100
α β− + =

Solving for α and β gives

 200
3

200
3

66.6α β= − = =

This is also the speed of the arm and is the same result as was found in Example 9.2.
As you can see, the new tabular method is more general than the old one since it
allows for two inputs, but we pay for this flexibility with some additional algebra at
the end.

Example 9.7: Design Example

As a design example, let us reconsider the planetary gearset in Figure 9.15. We will
leave the numbers of teeth on the gears unspecified for now, and try to solve for them
using the required speeds of the inputs and output. In this example, we wish to com-
bine the inputs from an electric motor (2,600 rpm) and an internal combustion engine
(−1,000 rpm) so that the output speed is 200 rpm. It is not obvious which part of the plan-
etary gearset we should connect each input and output so we must begin by guessing.
Let us try attaching the electric motor (2,600 rpm) to the ring, the IC engine (−1,000 rpm)
to the sun and the output (200 rpm) to the carrier. Since the modules of all three gears
are the same, we have (from Equation 9.2)

 2+ =N N Ns p r (9.6)

Thus, we can solve for two of the tooth numbers (say, Ns and Nr) and use Equation (9.6)
to solve for the third. To begin, rotate the sun by one revolution. This will cause the
planet to rotate by

Ring—64 teeth
Planet—16 teeth

Sun—32 teeth

FIGURE 9.15
The planetary gearset from Example 9.2 in the previous section.

596 Introduction to Mechanism Design

 1 rev()= − = − = −n
N
N

n
N
N

N
N

p
s

p
s

s

p

s

p

rotations. The ring rotates by

 = =

−

= −n

N
N

n
N
N

N
N

N
N

r
p

r
p

p

r

s

p

s

r

Enter these values into Row 1 and then multiply by α to obtain Row 2 and add β to
obtain Row 3. The results are shown in Table 9.21.

The speed of the carrier is specified in the problem statement as 200 rpm so that

 200β =

Similarly, the sun is specified in the problem statement as −1,000 rpm, so that

 1000α β+ = −

or α = −1,200. Finally, the speed of the ring is 2,600 rpm so that

 2600α β− + =N
N

s

r

Solving for Ns/Nr gives

 2=N
N

s

r

This means that the sun must have twice as many teeth as the ring! Clearly, this cannot
be true, and something has gone wrong – most likely, we have attached the inputs and
output to the wrong parts of the planetary gearset.

As a second guess, let us attach the electric motor (2,600 rpm) to the sun, the IC engine
(−1,000 rpm) to the ring and leave the output (200 rpm) on the arm. The design table
remains the same, and β is still 200. But now

 2600α β+ =

so that α = 2,400. In addition

 1000α β− + = −N
N

s

r

TABLE 9.21

Design Table Used for Example 9.3

ns np nr na

1 − N
N

s

p
− N

N
s

r

0

×α α α− N
N

s

p
α− N

N
s

r

0

+β α + β α β− +N
N

s

p
α β− +N

N
s

r

Β

597Planetary Gear Trains

Solving for Ns/Nr gives

 1
2

=N
N

s

r

which is more realistic. This gives the ratio of the numbers of teeth on the sun and ring,
but does not give the tooth numbers themselves. If we choose Ns = 18 to avoid interfer-
ence, then Nr = 36. Using Equation (9.6) gives the number of teeth on the planet as Np = 9.
This is likely to cause interference because of the low number of teeth. If we try again
with Ns = 30 we arrive at Nr = 60 and Np = 15. If we use high pressure angle gears we will
avoid interference.

As you have seen, designing planetary gearsets usually involves quite a bit of trial and
error. In fact, this iterative approach is a normal part of the design process. Do not consider
it a failure if your first (or second or third) designs are not optimal, or even feasible. The
learning that accompanies this “guessing and checking” will make you a better designer.

As a final note, let us consider the entries in the bottom row of Table 9.21, leaving the
input and output speeds as variables

 β=na

 α β= +ns

 α β= +n br

where we have replaced −Ns/Nr with the variable b. This variable gives the ratio of the
speed of the ring to that of the sun, and can be thought of as the most basic ratio for this
particular type of planetary gearset. The observant reader will have noted that all tables
made using the method described here are identical, with the exception of the speeds of
intermediate gears (e.g. the planet) and the value of b. We can solve the equations above
for α, β, and b as

 α = −n ns a (9.7)

 β = na (9.8)

 = −
−

b
n n
n n

r a

s a
 (9.9)

The final equation will be very important to us in the next section. Armed with this new
knowledge, let us consider one final design example.

Example 9.8: Design Example of Planetary Gearset
with Two Rings and Two Planets

Consider the gearset shown in Figure 9.16 with two rings and two planets. As shown
in Figure 9.17 the diameters (and tooth numbers) of the gears are not independent. The
diameters are related through

 1 1 2 2− = −d d d dr p r p (9.10)

In order to mesh, the modules of ring 1 and planet 1 must be the same, as must the mod-
ules of ring 2 and planet 2, although the module of the first gearset need not be identical
to the module of the second gearset. If the modules of all four gears are the same then
we have

598 Introduction to Mechanism Design

 1 1 2 2− = −N N N Nr p r p (9.11)

As in Example 9.7, we wish to combine the inputs from an electric motor (2,600 rpm)
and an internal combustion engine (−1,000 rpm) so that the output speed is 200 rpm.
Let us try attaching the 2,600 rpm input to ring 1 and the −1,000 rpm input to ring 2,
with the 200 rpm output attached to the carrier. Construct a design table with one
column for each of the gears and the carrier. If we give ring 1 one rotation then planet
1 spins by

 1 rev1
1

1

1

1
()= =n

N
N

N
N

p
r

p

r

p

Planet 2 is mounted on the same shaft as planet 1, so that its rotation is identical.

 2 1=n np p

Finally, ring 2 spins by

 2
2

2
2

1

1

2

2
= =n

N
N

n
N
N

N
N

r
p

r
p

r

p

p

r

Input 1–Ring 1

Input 2–Ring 2

Planet 2

Planet 1

FIGURE 9.16
The planetary gearset in Example 9.4 has two rings and two planets.

Planet 1
Planet 2

Ring 1

rr1
rr2dp1dp2

Ring 2

FIGURE 9.17
The diameters of the gears are not independent of one another, if all gears have the same module.

599Planetary Gear Trains

Note that all signs are positive since both gearsets have internal gears. Scale by the fac-
tor α in the second row and then add β rotations in the third row, as seen in Table 9.22.
Using the definition of b discussed earlier, we have

 1

1

2

2
=b

N
N

N
N

r

p

p

r
 (9.12)

This must be a positive number since the numbers of teeth are all positive and both gear
pairs are internal. We can modify Equation (9.9) to account for the fact that the sun has
been replaced by ring 1 and the ring has been replaced by ring 2.

 2

1
= −

−
b

n n
n n

r a

r a
 (9.13)

If we substitute the speed values into this equation, we find that

 1000 200
2600 200

1200
2400

= − −
−

= −b

Since this is a negative number, we cannot achieve these speeds with this type of
 planetary gearset. Instead, let us reverse the direction of the IC engine; this can be
achieved by placing an idler gear between the engine and ring 2. An idler gear is a
gear used to change the direction of rotation in a gear train without changing speed, as
shown in Figure 9.18. The reverse gear in an automobile uses an idler gear to change the
direction that the wheels rotate. If we change the rotational direction of the IC engine,
we obtain

 1000 200
2600 200

800
2400

1
3

= −
−

= =b

TABLE 9.22

Design Table for Example 9.4

nr1 np1 nr2 np2 na

1 1

1

N
N

r

p

1

1

2

2

N
N

N
N

r

p

p

r

1

1

N
N

r

p

0

×α α 1

1
αN

N
r

p

1

1

2

2
αN

N
N
N

r

p

p

r

1

1
αN

N
r

p

0

+β α + β 1

1
α β+N

N
r

p

1

1

2

2
α β+N

N
N
N

r

p

p

r

1

1
α β+N

N
r

p

β

Input Idler Output

FIGURE 9.18
An idler gear is used to reverse the direction of rotation in a gear train without changing speed.

600 Introduction to Mechanism Design

which is now a positive number. The basic ratio of the planetary gearset must be 1/3,
so that

 1
3

1

1

2

2
=N

N
N
N

r

p

p

r

 (9.14)

We now have two equations (Equations (9. 12) and (9. 13)) and four unknowns, Nr1, Np1,
Nr2, Np2. This means that we can choose two of the values somewhat arbitrarily and
solve for the remaining two. Equation (9.14) states that the product of one gear ratio with
the reciprocal of the other must give 1/3. Let us try

 1
2

1

1
=

N
N

p

r

 1
6

2

2
=

N
N

p

r

Then

 2
1

1
6

1
3

⋅ =

as required. Let us choose Nr2 = 120 teeth, since it is divisible by 6. Then Np2 = 20 teeth.
Also,

 1
21 1=N Np r

Substituting this into Equation (9.11) gives

1
21 1 2 2− = −N N N Nr r r p

which results in Nr1 = 200 teeth and Np1 = 100 teeth.
Thus, we have found a viable solution to the problem in Example 9.8. A scaled draw-

ing of the solution can be seen in Figure 9.19. As before, we required some amount of
trial and error to find a valid solution, but our experience gained in finding the for-
mula (and interpretation) of the basic ratio, b, shortened the solution time considerably.
Practice makes perfect!

Planet 1—100 teeth
Planet 2—20 teeth

Ring 2—120 teeth

Ring 1—200 teeth

FIGURE 9.19
Scaled drawing of the solution to Example 9.4.

601Planetary Gear Trains

9.4 Analysis of Planetary Gearsets—An Algebraic Method

As we saw in the preceding section, planetary gearsets can behave in counterintuitive
ways, which makes their analysis quite interesting. However, we can develop a few simple
formulas, which we can apply to any gearset, no matter how complicated. We will do this
by treating the planetary gearset as a “black box” with three shafts coming out of it. To
begin the analysis, imagine for the moment that we hold the arm fixed. Define the basic
ratio, b, as

 ()= speed of high speed input shaft
speed of low speed input shaft

 with the arm held fixedb

As an example, consider the gearset shown in Figure 9.20. Let us assume that the sun gear
has Ns = 32, the planet has Np = 16, and the ring has Nr = 64. As an initial guess, let us sup-
pose that the sun gear spins faster than the ring gear, since it has fewer teeth. Hold the arm
fixed and give the ring one revolution. The planet turns

 ()= = =64
16

1 rev 4 revn
N
N

np
r

p
r

or 4 revolutions. The sign preceding the gear ratio is positive because the ring gear is
 internal (the ring and planet revolve in the same direction). If the planet gear makes
4 revolutions, the sun gear makes

 ()= − = − = −16
32

4 rev 2 revn
N
N

ns
p

s
p

Ring—64 teeth
Planet—16 teeth

Carrier

Sun—32 teeth

FIGURE 9.20
A typical planetary gearset with sun, planet, ring, and carrier.

602 Introduction to Mechanism Design

Thus, for every 1 revolution of the ring, the sun makes −2 revolutions. The basic ratio is
then

 = −2b

While it is possible for the basic ratio to be positive or negative, its magnitude must always
be greater than or equal to 1, since we have defined it as the ratio of the faster speed to the
slower. Thus

 ≥ 1b

by definition. The efficiency formulas in the following section will not work if b is less than 1.

9.4.1 Overall Ratio of the Planetary Gearset

In the preceding analysis, we held the arm fixed, but the behavior of the input and output
gears relative to the arm must hold no matter what the arm does. That is, rotation of the arm
(and revolution of the planets) does not affect the ratio between sun and ring, since this
ratio is determined by the numbers of teeth in each gear. Let us now repeat the preceding
analysis, but this time allow the arm to rotate. Define βh as the number of rotations that the
faster (or high speed) gear rotates relative to the arm. That is

 β = −n nh h a (9.15)

where the nh and na give the amount of rotation relative to ground of the faster gear and
arm, respectively. Also, define the βl as the number of rotations that the slower (or low
speed) gear makes relative to the arm

 β = −n nl l a (9.16)

Since the relationship of the two gears must remain even if the arm rotates, we can write

β
β

= = −
−

b
n n
n n

h

l

h a

l a
 (9.17)

The reader will note that this equation is remarkably similar to Equation (9.9) in the pre-
ceding section. If we rearrange the equation above, we can obtain

 ()− − − = 0n n b n nh a l a (9.18)

This is the general kinematic equation for a planetary gearset. We can use it to find the
speed ratios for any planetary gearset, provided we have obtained the basic ratio in
advance. If we know the speeds of the two input shafts, we can use the equation to solve
for the output speed.

 ()= − − 1n bn b nh l a (9.19)

 ()= + −
1

1n
b

n n bl h a (9.20)

 = −
− 1

n
bn n

b
a

l h (9.21)

603Planetary Gear Trains

Example 9.9

In the gear train for the preceding example, let the ring be fixed, and the arm free to
move. Find the speed of the arm if the sun moves at 100 rpm cw.

Solution

For this example, the ring has speed 0 rpm and the basic ratio is still −2. The slow gear is
the ring and the fast gear is the sun. Thus

1

= −
−

n
bn n

b
a

l h

 0 100
2 1

100
3

33.33 rpm= −
− −

= =na

or 33.33 rpm cw.

Example 9.10: Construction Brick Planetary Geartrain

For the gearset in Figure 9.21, we hold gear 1 fixed. How fast does the arm rotate if gear
4 spins at 100 rpm cw?

Solution

To solve this problem, we must first find the basic ratio. As a guess, let us assume that
gear 4 is the fast gear and gear 1 is the slow gear. Pretend the arm is fixed and rotate
gear 1 one revolution cw.

 40
8

1 5 rev 1

2
1n

N
N

nB = − = − = −

Gears 2 and 3 rotate at the same speed, so that

 24
24

5 5 rev3

4
3n

N
N

nD ()= − = − − =

Gear 3—24 teeth

Gear 4—24 teeth

Gear 1—40 teeth

Gear 2—8 teeth

Carrier

FIGURE 9.21
The construction brick planetary gearset of Example 9.2.1

604 Introduction to Mechanism Design

Thus, the basic ratio is

 54

1
= =b

n
n

Now solve for the speed of the arm

1

= −
−

n
bn n

b
a

l h

 5 0 100
5 1

100
4

25 rpm
()=

−
−

= − = −na

The arm rotates at 25 rpm ccw. Now, let us use gear 1 as the input and hold gear 4 fixed.
Since we defined the basic ratio assuming that gear 1 is the slow gear and gear 4 is the
fast, nh still applies to gear 4 and nl applies to gear 1, despite the fact that gear 4 is fixed
in this example.

1

=
−
−

ϕn
bn n

b
a

l h

 5 100 0
5 1

500
4

125 rpm
()=

−
−

= =na

or 125 rpm cw. This is the same result as was obtained in Example 9.3.

9.5 Efficiency of Planetary Gearsets

Now that we have learned to design planetary gearsets to achieve the desired speed ratios
between input and output shafts, we turn our attention to calculating the overall efficiency
of a planetary gearset. In some cases, the efficiency of the planetary gearset as a whole
might be higher than the basic efficiency of the gears comprising the set, while in other
cases, the efficiency is so low as to render the gearset useless from a practical point of view.
It is very important, therefore, to estimate the efficiency of a proposed planetary gearset
before the final design and manufacturing can begin.

The topic of efficiency in planetary gearsets has received much attention in recent years,
with newer and more accurate models being proposed all the time – see [1–4] for some
recent examples. Most of these models require detailed knowledge of the lubricating oil,
surface finish of the gears, bearing types and many other factors that are often unavail-
able to the engineer when creating an initial design. For our purposes we will present
the method proposed by Merritt [5] and expounded upon by Molian [6]. This method can
be used for the purpose of comparing two competing designs or for analyzing general
trends, but laboratory testing must be carried out to obtain precise efficiency values for a
particular gearset.

9.5.1 A Generic Planetary Gearset

Before embarking on the rather difficult topic of planetary gearset efficiency, we will first
create a “generic” planetary gearset that we will use for our analysis. Consider the tradi-
tional sun-planet-ring gearset shown in Figure 9.22. Assume that the sun has 32 teeth, the

605Planetary Gear Trains

planet has 16 teeth, and the ring has 64 teeth. If we hold the arm fixed, then the sun will
spin twice as fast as the ring, but in the opposite direction. Now consider the two suns/
two planets gearset shown in Figure 9.23, and assume that the sun in front has 24 teeth,
the front planet has 24 teeth, the rear planet has 16 teeth, and the rear sun has 32 teeth. If
we hold the arm fixed then the front sun will spin twice as fast as the rear sun, in the same
direction. Recall that the basic ratio was defined as the ratio of the speed of the high-speed
gear to that of the low-speed gear with the arm held fixed.

 = (with arm fixed)b
n
n

h

l

where nh is the speed of the high-speed gear and nl is the speed of the low-speed gear. For
the traditional planetary gearset in Figure 9.22 the basic ratio will be −2, since the sun spins
twice as fast as the ring in the opposite direction. For the gearset in Figure 9.23, the basic
ratio will be +2, since both high-speed and low-speed gears spin in the same direction with
the arm fixed. Since the basic ratio is defined as the ratio of high speed to low speed, it will
always have a magnitude greater than or equal to 1.

 ≥ 1b

FIGURE 9.22
A planetary gearset with a sun, planet and ring.
If we hold the arm fixed, then the sun spins
faster than the ring.

Arm

Slow gear

Fast gear

FIGURE 9.23
A planetary gearset with two suns and two plan-
ets. If we hold the arm fixed, then the sun gear in
front spins faster than the sun gear in the rear.

Arm

Fast gear
Slow gear

606 Introduction to Mechanism Design

Now let us construct a speed table for the generic planetary gearset using the methods
outlined in Section 9.2. For this case, we assume that the low-speed gear is fixed and the
high-speed gear is the input. The output is taken at the arm. In Row 1 of the table we give
the fixed gear (the low-speed gear) one revolution. The high-speed gear spins b times as
fast, so it rotates b revolutions. Rotate the entire gearset backwards as a single entity and
compute the resulting speeds in Row 3. Since we wish to find the number of rotations of
the arm for a single revolution of the high-speed gear, we divide Row 3 by (b − 1) to obtain
Row 4. Observe that we have not made any qualifications as to the particular type of plan-
etary gearset, and Table 9.23 is valid for the gearset shown in Figure 9.22 or Figure 9.23, or
any other type of planetary gearset, as long as we take care to preserve the sign of b in our
calculations. Thus, we can now think of any planetary gearset as a “black box” with two
inputs and one output.

The same procedure may be used to find the speed ratios where the high-speed gear
is fixed and the low-speed gear is the input. Table 9.24 gives a speed table for a generic
planetary gearset with all possible combinations of input, output, and fixed shafts,
neglecting those combinations where the arm is fixed (if the arm is fixed we no longer
have a planetary gear train). We will make frequent use of this table in the sections
that follow.

9.5.2 The Basic Efficiency

In the same manner as we defined the basic ratio, b, we now define the basic efficiency E0 as
the efficiency of the gearset with the arm fixed. We use the methods outlined in Section 8.5
to calculate this efficiency.

TABLE 9.23

Speed Table for a Planetary Gearset with the Low-Speed Gear Fixed and the
High-Speed Gear as Input

nl nh na

1 1 b 0
2 −1 −1 −1
3 0 b − 1 −1
4 0 1 1

1 − b

TABLE 9.24

Speed Table for Generic Planetary Gearset with Various Inputs, Outputs,
and Fixed Shafts

Input Output Fixed nl nh na

hi arm lo 0 nh

1 −
n

b
f

arm hi lo 0 1()−n ba na

lo arm hi nl 0
1−

bn
b

l

arm lo hi 1()−n b
b

a 0 na

607Planetary Gear Trains

Example 9.11: Traditional Planetary Gearset

For the traditional planetary gearset in Figure 9.22, we have N1 = 32 teeth, N2 = 16 teeth
and N3 = 64 teeth (internal). If we assume a pressure angle of 20° and a coefficient of
friction of 0.1, we may consult Figure 9.36 in Section 8.5 to find that

 11 1µ= −E L (9.22)

 1 0.1 0.20 0.981 = − ⋅ =E

Since the second gear pair has an internal gear we must multiply the tooth loss factor
by (ρ2 − 1)/(ρ2 + 1) as follows, where ρ2 is the gear ratio for this stage of the gearset, or
ρ2 = 64/16.

 1
1
12

2

2
2

ρ
ρ

µ()
= −

−
+

E L (9.23)

 1
4 1
4 1

0.1 0.18 0.98922 = − −
+

⋅ ⋅ =E

Thus, the basic efficiency of the traditional planetary gearset in Figure 9.22 is

 0.96940 1 2= =E E E

or 96.9% efficient. Note that this is not the overall efficiency of the planetary gearset, it is
the efficiency of the gears within the gearset when the arm is fixed.

Example 9.12: Two Suns, Two Planets

Assume a pressure angle of 20° and a coefficient of friction of 0.1 and calculate the basic
efficiency of the planetary gearset shown in Figure 9.23.

The first gear pair has an efficiency of

 1 0.1 0.18 0.9821 = − ⋅ =E

and the second gear pair has

 1 0.1 0.2 0.982 = − ⋅ =E

so that the basic efficiency is

 0.96240 1 2= ⋅ =E E E

or 96.2% efficient. At first glance, it appears as though the traditional planetary gearset
might be slightly more efficient, but we must calculate the efficiency of the planetary
gearset as a whole to determine if this is the case. We will use the basic efficiency as one
input to our efficiency model of the planetary gearset, as will be seen below.

9.5.3 Torque Balance on the Gearset

Let us assume that the planetary gearset is operating at a steady speed, and with constant
torques on the input and output shafts. If this is the case then the sum of the torques on all
shafts must add to zero:

 + + = 0T T Tl h a (9.24)

608 Introduction to Mechanism Design

where Tl is the torque on the low-speed shaft, Th is the torque on the high-speed shaft and
Ta is the torque on the arm. For this equation to be true, one or two of the torques must
be negative. We will assume that the input torque is positive, whether it occurs on the low
speed, high speed, or arm shafts.

9.5.4 Power Balance of the Gearset

The power that is present at a shaft is the product of the torque on the shaft with the angu-
lar velocity of the shaft. Thus, for a given shaft we have

 = ×P T n (9.25)

where T is the torque present on the shaft and n is the rotational speed of the shaft. Since
we have been using rpm as the unit for shaft speed, the unit for power will be (N-m)·(rev/
min). We can convert this to the more standard unit of Watts by using

 ω= ⋅P T (9.26)

where ω is the angular velocity in radians per second, but for now we will stick with the
first equation, keeping in mind that we must multiply by a factor of 2π/60 if we want the
power in Watts. We will adopt the convention that a positive power represents power
supplied to the gearset (as from a motor) and a negative power represents power taken from
the gearset (as with a load that is being driven). A positive power can occur if torque and
angular velocity are both positive or are both negative, and a negative power occurs when
the torque and angular velocity have opposite signs. Thus, if the output shaft has a positive
angular velocity, the load torque must be negative, and vice versa. This convention will be
very important when we consider power flow within the gearset in the following sections.

Assume for the moment that the gear pairs are operating with 100% efficiency. If this is
the case then the total power entering and leaving the gearbox must also add up to zero

 + + = 0T n T n T nl l h h a a (9.27)

In our simple efficiency model, the only way that power can be lost is through the gear
teeth rubbing against one another. If the entire gearset were to rotate together as a rigid
unit, there would be zero power loss since the gears would not be meshing relative to one
another. Thus, we must determine a method of calculating the speed of the gears relative
to one another.

Imagine for a moment that you are sitting on the arm as it rotates inside the planetary
gearset. From your viewpoint you would see the sun and planet gears meshing against
each other, and you would be able to easily measure the speed at which this meshing
occurs. Since the power loss is determined solely by the meshing of the gears relative to
each other inside the gearset, we conclude that we should measure the gear speeds relative
to the arm when computing power loss. Let us define

 β = −n nl l a (9.28)

 β = −n nh h a (9.29)

as the relative speeds of the low-speed and high-speed gears, respectively. If the planetary
gearset is rotating as a rigid unit, then both of these relative speeds are zero, and there is

609Planetary Gear Trains

zero power loss. We may tabulate the formulas for βl and βh for the configurations in Table
9.24 and these are shown in Table 9.25.

Note that the speeds (nl, nh, na) and relative speeds (βl and βh) do not depend upon the
efficiency of the gearset – they are dictated solely by the numbers of teeth in the gears and
the arrangement of the gears. The power loss from friction between the gears affects the
torque output of the gearset, and not the speed output.

To demonstrate the method of calculating the torques on the shafts of the gearset we will
first assume that there is no power loss in the gearset; that is, the basic efficiency is 100%.
In this case, we have (as in Equation 9.27)

 + + = 0T n T n T nl l h h a a

Substitute the relative velocities from Equations (9.28) and (9.29)

 β β() ()+ + + + = 0T n T n T nl l a h h a a a (9.30)

collect all of the na terms

 β β ()+ + + + = 0T T T T T nl l h h l h a a (9.31)

But the sum of torques is zero, as per Equation (9.24), so that

 β β+ = 0T Tl l h h (9.32)

This is the situation when the efficiency of the gearset is 100%. We will shortly modify
this equation to account for friction losses from the rubbing of gear teeth. Let us take as an
example the situation where the input to the gearset is the low-speed gear, the output is
the arm, and the high-speed gear is fixed. Since the load torque is on the arm, we assume
that Ta is known and we wish to solve for the other two torques Tl and Th. Again assuming
100% efficiency, we can substitute the values for βl and βh from Table 9.25 into Equation
(9.32) to obtain

−

+
−

=
1 1

0
T n

b
T bn

b
l l h s (9.33)

or

 = −T bTl h (9.34)

TABLE 9.25

Relative Velocities for Various Configurations of the Planetary Gearset

Input Output Fixed βl βh

hi arm lo
1−

n
b

h

1−
n b

b
h

arm hi lo −na −bna

lo arm hi
1 −

n
b

l

1 −
bn

b
l

arm lo hi − n
b

a −na

610 Introduction to Mechanism Design

Substituting this into Equation (9.24) we obtain

 =
− 1

T
T

b
h

a (9.35)

 = −
− 1

T
T b

b
l

a (9.36)

We can use a similar procedure to find the torques for the other configurations, and the
results are shown in Table 9.26.

9.5.5 Efficiency of the Overall Gearset

We are now ready to begin computing the efficiency of the overall gearset. Let us define
the efficiency of a planetary gearset as

 η = P
P

out

in
 (9.37)

where Pout is the power of the gearset taken at the output and Pin is the power provided
to the gearset, usually by a motor. Calculating power losses in the planetary gearset is a
little tricky, since many of the gears are rotating about their own axes as well as revolving
about the sun gear or gears. We must remember that the only mechanism for power loss is
through the frictional rubbing of the gear teeth against one another, so that only the rela-
tive velocities are important for computing power loss.

To make the concepts a little bit more concrete we will return to the example gearsets
in Figures 9.22 and 9.23. Recall that the traditional planetary gearset had a basic ratio of
b = −2 and the two-suns planetary gearset had a basic ratio of b = 2. For both examples, let
us assume that the input to the gearset is the low-speed gear and the output is the arm. The
high-speed gear is fixed in both cases.

Example 9.13: Traditional Planetary Gearset

First, allow the low-speed gear to make one revolution. Then, with b = −2, the relative
speeds of the low-speed and high-speed gears are (from Table 9.25)

1

1
3

β =
−

=n
b

l
l

TABLE 9.26

Shaft Torques on Planetary Gearsets with 100% Efficiency

Input Output Fixed Tl Th Ta

hi arm lo
1

−
−
b

b
Ta

1
1−b

Ta
Ta

arm hi lo −bTh Th (b−1)Th

lo arm hi
1

−
−
b

b
Ta

1
1−b

Ta
Ta

arm lo hi Tl 1−
b

Tl
1− −b

b
Tl

611Planetary Gear Trains

1

2
3

β =
−

= −bn
b

f
s

The balance of power relation in Equation (9.32) tells us that, with 100% efficiency

 0β β+ =T Tl l h h

Since power is entering through the low-speed shaft, its torque is positive, and the prod-
uct Tlβl is also positive. The product Thβh must then be negative, and power flows from
the low-speed shaft to the high-speed shaft. In order to account for frictional losses we
must reduce the input power by the basic efficiency, E0. Therefore, we can write

 00 β β+ =E T Tl l h h (9.38)

Using Equations (9.24) and (9.38) to solve for the torques again, we have

0

= −
−

T
b

b E
Tl a (9.39)

 0

0
=

−
T

E T
b E

h
a (9.40)

And the efficiency is

1

0η = = = −
−

P
P

T n
T n

b E
b

out

in

a a

l l

 (9.41)

If we use the value of E0 = 0.9694 found in Example 9.11, we obtain

 2 0.9694
2 1

0.9898η = − −
− −

=

or 98.98% efficient. The planetary gearset is more efficient than the internal gearset itself!

Example 9.14: Two Suns, Two Planets

We will now repeat the analysis for the planetary gearset with two suns and two plan-
ets. This time the basic ratio is positive, since b = 2.

1

1β =
−

= −n
b

l
l

1

2β =
−

= −bn
b

h
l

This is where the analysis becomes tricky! The torque input to the gearset, Tl, is positive,
since we assume that the speed of the input gear, nl is positive and the product Tlnl must
be positive for power to enter the gearbox. However, the product Tlβl is negative, which
would seem to indicate that frictional power is being consumed by the low-speed gear.

Now consider the power used in driving the load. The speed of the arm is (from
Table 9.24)

1

2=
−

=n
bn

b
a

l

612 Introduction to Mechanism Design

which is positive. Thus, the load torque, Ta, must be negative, since the load consumes
power, rather than producing it. From Table 9.26, we see that the torque on the high-
speed gear (with 100% efficiency) is

 1
1

=
−

=T
b

T Th a a (9.42)

which is negative, since Ta is negative. This means that the product Thβh is positive; that
is, the high-speed gear produces frictional power. Thus, the frictional power flow within
the planetary gearset is from the high-speed gear to the low-speed gear, in spite of the
fact that the overall power enters through the low-speed gear. This is quite a lengthy
chain of reasoning, and it may take a few readings before it becomes clear. The end
result is this: we must revise the frictional power balance equation such that the source
of the power is the high-speed gear, instead of the low-speed gear as it was with the
traditional planetary gearset.

 00β β+ =T E Tl l h h (9.43)

Using Equations (9.24) and (9.43), we can solve for the torques on the high-speed and
low-speed shafts as

1

0

0
= −

−
T

E b
E b

Tl a (9.44)

 1
10

=
−

T
E b

Th a (9.45)

and the efficiency is

 1
1

0

0
η ()= = = −

−
P
P

T n
T n

E b
E b

out

in

a a

l l

 (9.46)

Using the value of E0 = 0.9624 found in Example 2, we have

 0.9624 2 1
0.9624 2 1

0.9609η ()= ⋅ −
−

=

or 96.09% efficient. This planetary gearset is less efficient than the gears themselves, and
is probably not a very good design.

A similar procedure can be conducted for the remaining planetary configurations
and the resulting torques and efficiencies are shown in Table 9.27 for positive basic

TABLE 9.27

Shaft Torques and Efficiency for Planetary Gearsets with Positive Basic Ratio

Input Output Fixed Tl Th Ta η

hi arm lo
1

0

0
−

−
bE

bE
Ta

1
10 −bE

Ta
Ta 1

1
0 −
−

bE
b

arm hi lo

0
− b

E
Th

Th 0

0

−b E
E

Th
1 0

0

()−
−

b E
b E

lo arm hi
1

0

0
−

−
bE

bE
Ta

1
10 −bE

Ta
Ta 1

1
0

0 ()
−
−

bE
E b

arm lo hi Tl 0− E
b

Tl
0− −b E

b
Tl

1

0

−
−

b
b E

613Planetary Gear Trains

ratios and Table 9.28 for negative basic ratios. It must be emphasized that these effi-
ciencies are valid for comparing between competing designs, but not for calculating
absolute efficiency values. Laboratory testing must be conducted if absolute efficiency
values are needed.

9.6 Design Examples for Planetary Gearsets

We will now present four design examples using planetary gearsets. In each example, we
wish to achieve a specific gear reduction with the highest possible efficiency. A design
is considered complete if we have determined the numbers of teeth in each gear and the
overall efficiency of the gearset.

Example 9.15: Speed Reducer in a Hand Drill

The goal for the first example is to design a planetary speed reducer for a hand drill
using the traditional planetary configuration shown in Figure 9.24. The load torque on

Arm

Gear 3

Gear 2

Gear 1

FIGURE 9.24
A traditional sun-ring-planet gearset is used to create speed reduction in a handheld drill.

TABLE 9.28

Shaft Torques and Efficiency for Planetary Gearsets with Negative Basic Ratio

Input Output Fixed Tl Th Ta η

hi arm lo
1

0

0
−

−
bE

bE
Ta

1
10 −bE

Ta
Ta 1

1
0 −
−

bE
b

arm hi lo

0
− b

E
Th

Th 0

0

−b E
E

Th
1 0

0

()−
−

b E
b E

lo arm hi

0
−

−
b

b E
Ta

0

0−
E

b E
Ta

Ta

1
0−

−
b E
b

arm lo hi Tl 1

0
−

bE
Tl

10

0
− −bE

bE
Tl

1
1

0

0

()−
−

b E
bE

614 Introduction to Mechanism Design

the output is 5 Nm and the output speed is 1,000 rpm. The motor spins at 10,000 rpm.
Find the gear tooth numbers to achieve the desired reduction and calculate the efficiency
of the gearbox. Assume 20° pressure angle gears and a coefficient of friction of 0.05.

Solution

Let us use the sun as the input gear, the arm as the output gear, and leave the ring fixed.
The sun is the high-speed gear and the ring is the low-speed gear, so that from Table 9.1
in Section 9.5 we find that the speed of the arm is

1

=
−

n
n

b
a

h

The desired speed reduction is 1/10, so that

 1
10

1
1

= =
−

n
n b

a

h

Solving for b gives

 9= −b

To calculate the basic ratio we must determine the speed of each gear with the arm held
fixed. The speed of the planet is

 2
1

2
1= −n

N
N

n

and the speed of the ring is

 3
2

3
2

1

3
1= = −n

N
N

n
N
N

n

or

 1

3

3

1
= = − =n

n
n
n

N
N

bf

s

If we choose a sun gear with 16 teeth, the ring gear must have 144 teeth.
The size of the planet gear is dictated by geometry (see Figure 9.25) and can be found as

2

64 teeth2
3 1= − =N

N N

r3

r2

r2

r1

FIGURE 9.25
The number of teeth in the planet is fixed by the size of the ring and sun gears.

615Planetary Gear Trains

Consulting Figure 9.36 in Section 8.5, we see that the efficiency of the first gear pair is

 1 1 0.05 0.18 0.9911 1µ= − = − ⋅ =E L

and the second pair is

 1
1
1

1 0.05
2.25 1
2.25 1

0.06 0.99882
2

2
2µ ρ

ρ
= − −

+

= − −
+

 =E L

Thus, the basic efficiency is

 0.98990 1 2= =E E E

Using the first row of Table 9.6, we see that the efficiency of the gearset is

 1
1

0.99090η = −
−

=bE
b

or 99.1% efficient. The required motor torque is

 1
1

1
9 0.9899 1

5 Nm 0.50 Nm
0

()=
−

=
− ⋅ −

− =T
bE

Th a

where we have used a negative load torque because the arm spins in the positive
direction.

Example 9.16: A Modified Speed Reducer

Let us repeat the problem given in Example 9.15, using the configuration shown in
Figure 9.26. Again, the load torque is 5 Nm at 1,000 rpm and the sun gear spins at
10,000 rpm.

Solution

There are two major differences between this gearset and Example 9.15: the numbers of
teeth in the gears will be different as will the basic efficiency. We can still use the basic

Arm

Gear 3

Gear 2

Gear 4

Gear 1

FIGURE 9.26
The planetary configuration used in Example 9.2. Here there are two planets, instead of just one.

616 Introduction to Mechanism Design

ratio b = −9, since the input and output requirements are the same. If we rotate gear 1
(the sun) then the first planet spins at

 2
1

2
1= −n

N
N

n

and the second planet spins at the same speed. The ring, gear 4, spins at

 4
3

4
3

1

2

3

4
1= = − ⋅n

N
N

n
N
N

N
N

n

or

 91

4

2

1

4

3
= = − ⋅ = −n

n
n
n

N
N

N
N

h

l

To achieve this reduction, it is simplest to let each stage have a reduction of 3. If we again
let the sun gear have 16 teeth, then the first planet will have 48 teeth.

The dimensions of the planetary gearset in Example 9.16 are shown in Figure 9.27. If
we assume that all gears have the same diametral pitch (or module) then we have

 4 1 2 3= + +N N N N

But the ratio of the ring gear to the second planet must be N4/N3 = 3, so that we have

 32 teeth3 =N

 96 teeth4 =N

Thus, the ring gear is more compact in this example than for the configuration in
Example 9.15. The basic efficiency of the first gear pair is

 1 1 0.05 0.2 0.991 1µ= − = − ⋅ =E L

and the second pair is

 1
1
1

1 0.05
3 1
3 1

0.115 0.99712
2

2
2µ ρ

ρ
= − −

+

= − −
+

 =E L

r4

r3

r2

r1

FIGURE 9.27
Dimensions of planetary gearset in Example 9.2.

617Planetary Gear Trains

so that the basic efficiency is

 0.98720 1 2= =E E E

The overall efficiency of the gearset is then

 1
1

0.98850η = −
−

=bE
b

or 98.85% efficient. This is slightly less efficient than the gearset in Example 9.15, but is
smaller in size. There is always a tradeoff!

Example 9.17: Two Suns, Two Planets

For this example, we wish to design a planetary gearset with a very large reduction –
49:1 – in a compact space. As a first attempt, we will try the configuration shown in
Figure 9.28, which has two suns and two planets. This gearset has a positive basic ratio
since gear 4 rotates in the same direction as gear 1 when the arm is fixed. Let the input to
the gearset be the arm and the output be the low-speed gear, with the high-speed gear
fixed. From the fourth row of Table 9.1, we see that

 1
49

1= = −n
n

b
b

s

a

Solving for b gives

 49
48

=b

which is only slightly greater than unity. We must achieve this reduction in two stages,
with the first stage comprised of gears 1 and 2, and the second stage comprised of gears
3 and 4. Holding the arm fixed allows us to calculate the basic ratio as

 49
48

2

1

4

3
= ⋅ =b

N
N

N
N

Gear 2

Gear 1

Gear 3

Gear 4

FIGURE 9.28
The two suns, two planets configuration for Example 9.3.

618 Introduction to Mechanism Design

The basic ratio has a convenient factorization

 7
8

7
6

49
48

b = ⋅ =

so that we will use a ratio of 7/8 in the first stage and 7/6 in the second stage. Let the num-
ber of teeth in gears 2 and 4 be 28. Then N1 = 32 and N3 = 24. In consulting Figure 9.36, in
Section 8.5, the basic efficiency of each gear pair is

 1 1 0.05 0.15 0.99251 1µ= − = − ⋅ =E L

 1 1 0.05 0.17 0.99152 2µ= − = − ⋅ =E L

so that the basic efficiency is

 0.98410 1 2= =E E E

The overall efficiency of the gearset is

 1
0.5672

0
η = −

−
=b

b E

or 56.7% efficient. Almost half of the power in this gearset is lost to friction, so it is an
unfeasible design.

Example 9.18: An Alternative Design

As an alternative design to Example 9.17, consider the gearset shown in Figure 9.29,
also shown in cross-section in Figure 9.30. There are two planets and two ring gears.
As in the previous example the input is the arm, the output is gear 4 and gear 2 (the
high-speed gear) is fixed. Since we desire the same reduction as before, the basic ratio
remains b = 49/48. We will most likely need larger numbers of teeth, since two of the
gears are internal. The ratios at each stage can remain the same, however, let us try
N1 = 80, N2 = N4 = 70, N3 = 60 teeth.

Gear 1

Gear 2

Gear 3

Gear 4

FIGURE 9.29
An alternative design based upon two ring gears and two planets. The input is the arm, the output
is gear 4, and gear 2 (the high-speed gear) is fixed.

619Planetary Gear Trains

Then the basic efficiency at each stage is

 1
1
1

1 0.05
8/7 1
8/7 1

0.07 0.99981
1

1
1µ ρ

ρ
= − −

+

= − −
+

=E L

 1
1
1

1 0.05
7 /6 1
7 /6 1

0.08 0.99972
2

2
2µ ρ

ρ
= − −

+

= − −
+

=E L

The basic efficiency is

 0.99950 1 2= =E E E

which is much higher than in Example 9.17 because we have employed internal gears.
The overall efficiency is

 1
0.9747

0
η = −

−
=b

b E

or 97.5% efficient. This is a much more feasible design than Example 9.17, and this exam-
ple demonstrates the importance of performing the efficiency calculations when design-
ing a planetary gearset. The overall efficiency of the gearset appears to be extremely
sensitive to the basic efficiency in this design since the basic ratio, b, is so close to one.
A very slight decrease in basic efficiency – as might be caused by a change in tempera-
ture, wear of the gears, or breakdown in the lubricant – will have a very dramatic and
deleterious effect on the overall efficiency of the gearset. In practice, therefore, the high
reduction should probably be achieved using multiple stages.

9.7 Practice Problems

Problem 9.1

The planetary gearset in Figure 9.31 has two suns and four planets. If all gears have
module 2 mm/tooth, how many teeth are on the second sun? What are the dis-
tances from the central shaft to the first and second planetary shafts?

Arm (input)

Gear 2—70 teeth Gear 3—60 teeth

Gear 4—70 teeth

Output shaft

Gear 1—80 teeth (fixed)

FIGURE 9.30
Cross-section of the gearset in Example 9.4. The first ring gear is fixed and the output is taken from
the second ring gear. The input is the arm.

620 Introduction to Mechanism Design

Problem 9.2

The planetary gearset in Figure 9.32 has a sun, ring, and four planets. Find the num-
ber of teeth in the ring if all gears have module 5 mm/tooth. What are the dis-
tances from the central shaft to the first and second planetary shafts?

Problem 9.3

The first sun in the planetary gearset in Problem 9.1 rotates at 1,000 rpm clockwise
while the second sun is fixed. What is the speed and direction of the arm? Use the
first tabular method presented in Section 9.2.

Problem 9.4

The arm in the planetary gearset of Problem 9.2 rotates at 100 rpm clockwise while
the sun gear is fixed. What is the speed and direction of the ring? Use the first
tabular method presented in Section 9.2.

Planet 1
24 teeth

Sun 1
16 teeth

Sun 2

Planet 2
16 teeth

Planet 3
16 teeth Planet 4

24 teeth

FIGURE 9.31
Problem 9.1.

Planet 1
24 teeth

Sun
32 teeth

Ring

Planet 2
16 teeth

Planet 3
16 teeth

Planet 4
24 teeth

FIGURE 9.32
Problem 9.2.

621Planetary Gear Trains

Problem 9.5

In Figure 9.33, the second sun gear rotates at 500 rpm ccw while the first sun is
fixed. What is the speed of the arm? Use the first tabular method presented in
Section 9.2.

Problem 9.6

In Figure 9.34, the sun gear rotates at 500 rpm cw and the ring rotates at 500 rpm
ccw. What is the speed of the arm? Use the second tabular method presented in
Section 9.3.

Sun 1
16 teeth

Sun 2

Planet 2
16 teeth

Planet 3
32 teeth

Planet 1
24 teeth

FIGURE 9.33
Problem 9.5.

Planet 1
16 teeth

Planet 2
24 teeth

Sun
32 teeth

Ring

FIGURE 9.34
Problem 9.6.

622 Introduction to Mechanism Design

Problem 9.7

In Figure 9.35, the first ring gear rotates at 200 rpm cw and the arm rotates at 100 rpm
ccw. What is the speed of the second ring? Use the second tabular method pre-
sented in Section 9.3.

Problem 9.8

In Figure 9.36, the sun gear rotates at 1,000 rpm cw and the ring rotates at 1,000 rpm
ccw. What is the speed of the arm? Use the second tabular method presented in
Section 9.3.

Problem 9.9

Repeat the analysis of Problem 9.8 using the algebraic method discussed in Section 9.4.

Sun
24 teeth Ring

Planet 2
16 teeth

Planet 1
24 teeth

Planet 3
24 teeth

FIGURE 9.36
Problem 9.8.

Ring 1
48 teeth

Ring 2

Planet 1
16 teeth

Planet 3
24 teeth

Planet 4
32 teeth

Planet 2
24 teeth

FIGURE 9.35
Problem 9.7.

623Planetary Gear Trains

Problem 9.10

Repeat the analysis of Problem 9.7 using the algebraic method discussed in Section 9.4.

Problem 9.11

The traditional planetary gearset shown in Figure 9.37 has a sun, ring, and single
planet. The sun and planet both have 20 teeth. The input to the gearset is a ser-
vomotor, which can be attached to either the ring or sun, and the output is the
arm. The design requires that the output rotate 135° when the servo rotates 180°.
Determine which gear should be fixed and where to attach the servomotor in
order to accomplish this reduction.

Problem 9.12

The planetary gearset shown in Figure 9.38 has a sun, ring, and two planets. It is
desired that the arm move at 80 rpm clockwise when the sun moves at 1,680 rpm
clockwise. The ring is fixed. Find the numbers of teeth on each gear to accomplish
this motion using the tabular method presented in Section 9.2. Assume that the
minimum allowable number of teeth on a gear is 16.

Problem 9.13

The planetary gearset shown in Figure 9.39 has a sun, ring, and two planets. The ring
is attached to a shaft that spins at 500 rpm clockwise and the sun is attached to a
motor spinning 2,000 rpm clockwise. The arm must spin at 1,000 rpm clockwise.

Sun

Planet

Ring

FIGURE 9.37
Problem 9.11.

Sun
Ring

Planet 1

Planet 2

FIGURE 9.38
Problem 9.12.

624 Introduction to Mechanism Design

Find the numbers of teeth on each gear to accomplish this motion using the tabu-
lar method presented in Section 9.2. Assume that the minimum allowable number
of teeth on a gear is 16.

Problem 9.14

The planetary gearset shown in Figure 9.40 has two rings and three planets. The first
ring spins at 1,000 rpm and the second ring is fixed. The arm drives a load torque
of 20 Nm. Find the speed of the arm and input torque required to drive the load,
assuming 100% efficiency in the gearset.

Problem 9.15

The planetary gearset shown in Figure 9.41 has two suns and three planets. The
input to the gearset is provided by the arm and the first sun is fixed. If a 1,000
W motor is attached to the arm, how much torque is available at the second sun,
which spins at 50 rpm? Assume 100% efficiency in the gearset.

Sun
Ring

Planet 1

Planet 2

FIGURE 9.39
Problem 9.13.

Planet 3
24 teeth

Planet 1
24 teeth

Planet 2
16 teeth

Ring 2

Ring 1
72 teeth

FIGURE 9.40
Problem 9.14.

625Planetary Gear Trains

Problem 9.16

Two designs are under consideration for a speed reducer, as shown in Figure 9.42.
Both designs have a sun, ring, and three planets. In each case, the sun is the input
and the output is taken at the arm. The desired overall speed reduction is 19, and
the sun and arm move in opposite directions. Determine the number of teeth in
each gear in both designs. Estimate the efficiency of each design assuming a coef-
ficient of friction of 0.05 and a pressure angle of 20°.

Planet 2

Planet 1Planet 1
72 teeth

Planet 2
72 teeth

Sun
20 teeth

Sun
20 teeth

Ring
200 teeth

Ring
200 teeth

Design 1 Design 2

Planet 3 Planet 3

FIGURE 9.42
Problem 9.16.

Planet 2
16 teeth

Planet 3
32 teeth

Planet 1
24 teeth

Sun 2Sun 1
16 teeth

FIGURE 9.41
Problem 9.15.

626 Introduction to Mechanism Design

Acknowledgments

Several images in this chapter were produced using SOLIDWORKS® software.
SOLIDWORKS® is a registered trademark of Dassault Systèmes SolidWorks Corporation.

Several images in this chapter were produced using MATLAB® software.

Notes

 1. The construction brick images used in this text were made with the SOLIDWORKS® models
created by the user Yauhen on www.grabcad.com. Yauhen has uploaded hundreds of first-rate
models of construction bricks and gears that can be downloaded with a free user account.

Works Cited

 1. D. C. Talbot, An experimental and theoretical investigation of the efficiency of planetary gear sets, Ohio
State University, 2012.

 2. J. M. del Castillo, “The analytical expression of the efficiency of planetary gear trains,”
Mechanism and Machine Theory, vol. 37, pp. 197–214, 2002.

 3. L.-C. Hsieh and H.-C. Tang, “On the meshing efficiency of 2K-2H type planetary gear reducer,”
Advances in Mechanical Engineering, vol. 2013, 2013.

 4. E. Pennestri and F. Freudenstein, “The mechanical efficiency of epicyclic gear trains,” Journal
of Mechanical Design, vol. 115, pp. 645–650, 1993.

 5. H. E. Merritt, Gear Trains, London: Pitman, 1947.
 6. S. Molian, Mechanism Design: An Introductory Text, Cambridge, UK: Cambridge University

Press, 1982.

http://www.grabcad.com

627

10
Cams and Followers

10.1 Introduction to Cams

Cams are used in a very wide variety of mechanisms ranging from the valve mechanism
in an automotive engine to sash locks in traditional double-hung windows. Cams are
 ordinarily used to convert rotary motion to linear (or almost linear) motion. The most com-
mon type of cam is the rotary cam shown in Figure 10.1. As the cam rotates, the follower
is constrained to rise up and down, “following” the surface of the cam. It is much more
expensive and time-consuming to manufacture a precision cam than it is to fabricate ordi-
nary links, so their use is mostly restricted to situations where linkages cannot achieve
the required motion (e.g. the valve-lifting mechanism in an automotive engine). To put
this in concrete terms, you can manufacture a halfway decent linkage using a bandsaw
and milling machine (or drill press, in desperation). By contrast, manufacturing a modern
cam requires a CNC (computer controlled) milling machine or lathe, a CNC grinder for
smoothing the profile, and heat-treating for hardening the surface. In other words, the
versatility of the cam comes at a significant price.

10.1.1 Types of Cams

The most common type of cam is the radial cam, or plate cam, shown in Figure 10.1. A radial
cam is a two-dimensional body and the follower moves along its outer periphery. Another
common type of cam is the cylindrical cam shown in Figure 10.2. As the cylinder rotates,
the follower moves in a direction parallel to the axis of the cylinder. This type of cam is
common in motorcycle transmissions and lathe gearboxes. If you open up the housing
of a lathe in your school’s shop (with permission of the lab supervisor!) you will find a
collection of cylindrical cams that serve to slide individual gears in and out of mesh for
regulating the feed rate of the lathe. Another type of cam found on most lathes is the
face cam, shown in Figure 10.3. This cam is a variant on the radial cam, but the follower
moves along grooves (or teeth) cut into the face of the cam. Most lathe chucks use this type
of cam to hold the workpiece securely. The chuck key serves to rotate the spiral, which
causes the jaws of the chuck to move inward or outward. From the diagram it is easy to
understand why the jaws of the chuck are numbered. As one moves around the spiral
the distance to the center changes, so each jaw must be made slightly different in order to
accommodate this.

Because radial cams are the most common they will be the subject of our discussion
for the remainder of the chapter. Since they are often used in high-speed machinery (e.g.
automotive engines) dynamic analysis of radial cams is much more important than for
cylindrical or face cams, which are more often used in low-speed applications.

628 Introduction to Mechanism Design

10.1.2 Follower Motion

In general, there are two types of motion available to the follower. As shown in Figure 10.4,
the follower can be configured as a rocker (left) or a slider (right). The rocker type permits
mechanical advantage to be achieved through judicious design of the rocker.

Figures 10.5–10.7 show three of the more common valve-actuating mechanisms used in
automobile and motorcycle engines. As shown in Figure 10.5, the direct-acting mechanism
has the cam in direct contact with the valve. While this is the simplest mechanism, it limits
placement of the camshaft to directly over the cylinder. This arrangement is used mainly
in motorcycle engines owing to its simplicity and light weight. Observe the spring that is

ω

x

FIGURE 10.2
With the cylindrical cam the follower moves along an axis parallel to the axis of the cam.

Face cam

Jaw

FIGURE 10.3
With a face cam the follower moves in the same plane as that of the cam, as shown in this spiral chuck.

Cam

ω

Follower

FIGURE 10.1
A basic cam-follower mechanism. As the cam rotates the follower “follows” the surface of the cam by moving
up and down.

629Cams and Followers

used to keep the valve in contact with the cam. Some motorcycles (e.g. Ducati) replace this
spring with a second cam that pushes the valve back up when it is being closed. The two-
cam system is called “desmodromic,” which denotes the positive connection that the valve
has with the camshaft.

Figure 10.6 shows the rocker mechanism that is used in most modern cars because it
allows the placement of more than one valve per cylinder, which permits easier air-flow
into and out of the cylinder. The dual overhead cam arrangement has two camshafts, one
on each side of the cylinder, and each camshaft actuates a bank of rockers and valves.

Many older engines used the pushrod mechanism for actuating the valves, as shown in
Figure 10.7. The pushrod permits the camshaft to be located below the cylinders, which
simplifies the placement of the timing belt or chain. Since it also lowers the overall center

ω ω

Rocker follower Slider follower

FIGURE 10.4
The follower can take the form of a rocker or a slider, depending upon the application.

Spring

Valve

Cam

FIGURE 10.5
In a direct-acting mechanism the cam contacts the valve stem directly. The spring is used to keep the valve stem
in contact with the face of the cam.

630 Introduction to Mechanism Design

of mass of the engine, it is still employed in some modern high-performance vehicles like
the Z06 Corvette.

10.1.3 Types of Followers

There are three common ways for a follower to interact with a cam, as shown in Figure 10.8.
The mushroom and flat-faced follower slide directly against the cam; these require con-
tinual lubrication to reduce friction and heat buildup. The roller follower avoids friction

Cam

Rocker

Valve

FIGURE 10.6
Most overhead valve mechanisms employ a rocker to actuate the valve. This allows more flexibility in locating
the camshaft.

Rocker

Pushrod

Cam

Valve

FIGURE 10.7
Many older engines (and the Corvette Z06) use pushrods to actuate the rocker. This allows the camshaft to
reside below the cylinders, which may help to reduce the overall size of the engine.

631Cams and Followers

by rolling against the cam. Ball bearings and needle bearings are commonly used in this
application. Most newer automotive engines use roller followers to reduce friction and
wear on the valve stem.

10.2 Eccentric Cams

The simplest type of cam is an eccentric cam, as shown in Figure 10.9. An eccentric cam
is simply a circle that is pinned to ground at a point not at its center. The distance from
the center of the circle to the ground pivot is the eccentricity, shown as b in the diagram.
If the eccentric cam is mated to a flat-faced sliding follower, the location of the face of the
follower is given by

 θ= + cosx r b (10.1)

where θ is the angle of rotation of the cam. If we assume that the cam is rotating at a
 constant angular velocity, ω, then

 θ ω= t (10.2)

and

 ω= + cosx r b t (10.3)

We can calculate the velocity and acceleration of the follower by taking the time
 derivatives of the displacement

 ω ω= − sinv b t (10.4)

 ω ω= − cos2a b t (10.5)

Mushroom follower

Flat-faced
follower

Roller
follower

FIGURE 10.8
The three-most common types of follower. The mushroom and flat-faced followers experience sliding friction
and must be well lubricated.

632 Introduction to Mechanism Design

The follower experiences a smooth, continuous back and forth motion with minimum
displacement r − b and maximum displacement r + b. The motion analysis for this type of
cam is obviously very simple, and a force analysis would also be quite easy. Unfortunately,
this type of cam has only limited application since it is constrained to purely sinusoidal
motion. In many applications, we require that the follower “dwell” at a position for a given
portion of the cam rotation. The follower of an eccentric cam is in constant motion except
for the instants in time where it is at the top and bottom of its stroke. For this reason, we
will not further discuss the eccentric cam, and force analysis on the eccentric is left as a
homework exercise.

10.3 Cams in an Automotive Engine

One of the most widespread applications of cams is in automotive engines where they
are used as part of the valve-lifting mechanism. A simple schematic of a pushrod-type
valve lifting mechanism is shown in Figure 10.10. The cam is used to raise and lower the
 pushrod, which actuates the rocker. The rocker is used to open and close the valve. Two
valves are shown in the cylinder. One valve, called the intake valve, allows the fuel-air
mixture to enter the cylinder. The exhaust valve lets the products of combustion escape the
cylinder after combustion is complete. The valve springs have been omitted for clarity.
The timing of the opening and closing of the valves is critical to proper operation of the
engine; this type of timing would be difficult to achieve with a conventional linkage. The
cam is attached to the camshaft, which has the cams for the other cylinders mounted to it
(on a multicylinder engine). Similarly, the crank is mounted to the crankshaft along with the
cranks for the other pistons.

All modern automotive engines use a variant of the four-stroke cycle shown in
Figure 10.11. The first stage in the cycle is intake, where the fuel-air mixture is drawn into
the cylinder by the partial vacuum created when the piston moves downward. The intake
valve must be open during this part of the cycle to allow the mixture to flow in.

The next stage is compression, when the fuel-air mixture is compressed in the cylinder
by the piston moving upward. Both valves are closed during this part of the cycle. The

Follower

x

rb

Cam

θ

FIGURE 10.9
An eccentric cam is simply a circle that rotates about a point not at its center.

633Cams and Followers

Rocker

Pushrod

Cam

Valve

Cylinder

Piston

Conneding rod

Crank

FIGURE 10.10
A very rough schematic of a pushrod-type automotive engine. Two valves (intake and exhaust) are shown,
along with the valve-lifting mechanism and the slider-crank linkage.

Intake Compression Combustion Exhaust

Intake
valve

Exhaust valve

FIGURE 10.11
The four parts of the four-stroke cycle. This is the cycle used in automotive engines, most motorcycle engines
and some lawnmower engines.

634 Introduction to Mechanism Design

compressed fuel-air mixture burns more completely than would be the case if the mixture
were not compressed, but too much compression leads to autoignition (when the heat
 created by compression ignites the mixture prematurely) and knocking.

Next comes combustion, when the fuel-air mixture is ignited by the spark plug (in Otto
cycle engines) or by the heat of compression (Diesel cycle engines). Both valves remain
closed during this part of the cycle. The combustion causes the gases in the cylinder to
expand rapidly, forcing the piston downward. This is the only power-producing part of
the cycle, and the remainder of the cycle relies upon the inertia of the moving parts of the
engine to remain in motion.

Finally, the exhaust phase occurs when the products of combustion are forced out of the
cylinder by the upward motion of the piston. The exhaust valve is open during this part
of the cycle.

The preceding description is a simplified version of what happens during one cycle of
an automotive engine. Several important features have been omitted; for example, the
intake valve begins to open during the last phase of the exhaust cycle, especially when the
engine is running at high speed. However, this simplified cycle will serve our purposes for
 introducing cam design and analysis.

The observant reader will have noticed that the intake and exhaust valves are only open
during one quarter of the cycle. In other words, the piston moves up and down twice for
every single opening of a valve, and both valves remain completely closed during the com-
pression and combustion phases. For this reason the camshaft rotates at half the speed of
the crankshaft. Most camshafts are linked to the crankshaft with a timing belt or chain,
and the sprocket on the crankshaft is half the diameter of the sprocket on the camshaft.
Because the valve is required to dwell in the closed position for three-quarters of the cycle,
an eccentric cam is not suitable.

Since the intake valve is only open during one-quarter of the cycle, we require that
the cam lift the pushrod during the first 90° of its rotation, and lower the pushrod
for the remaining 270°. The desired displacement of the pushrod is shown in Figure 10.12.
The resulting cam is known as a single dwell cam since it rises and falls in one continuous
motion, then “dwells” at one displacement for the remainder of the cycle.

The more general case of a multiple-dwell displacement is shown in Figure 10.13. For
this cam the follower remains stationary at different locations at multiple points during
the cycle. The transitions between dwell states are achieved through rise and fall sections.
Making a smooth transition between dwells is the most challenging aspect of cam design,
and we will spend most of our time learning to do this effectively. Automotive cams are
generally single-dwell designs, but we will begin our study with the double-dwell design,

0

s

smax

90° 360°

FIGURE 10.12
The valve is opened during the first 90° of the cycle and closed for the remaining 270°.

635Cams and Followers

since the transition sections for these are easier to design and model. Once we have mas-
tered the simple rise (or fall) section we will move on to the single dwell design, in which
the rise and fall are achieved in a single process.

10.4 Introduction to Cam Design

Before we learn to design a cam, we must consider the interaction of the follower with the
cam. As shown in Figure 10.14, we will use the angle λ to define the angular position of a
point of interest, B, on the cam surface. The angle θ is used to define the rotation of the cam
itself. We will define a baseline on the cam from which we will measure the angles to the
points of interest on the surface of the cam. The baseline is normally located where the cam
has minimum radius, as shown in Figure 10.14. The angle λ is measured clockwise from the
baseline of the cam, since the follower engages with the profile of the cam in the opposite
direction from the rotation of the cam. The angle λ is the angle you would measure if you
were rotating with the cam and wanted to find the angle to a point of interest on the cam
(e.g. the point of contact with the follower). The angle θ, in contrast, gives the rotation of the
baseline of the cam in the global coordinate system.

Rise

0

s

smax

360°

Fall

First dwell

Second dwell

FIGURE 10.13
A double-dwell cam remains stationary at two different locations during the cycle. There is a rise section and a
fall section to make the transition between dwells.

Cam Baseline
Baseline

Cam in starting position Cam rotated by angle θ

θ
B

B

λ

λ

FIGURE 10.14
The angle λ is used to define a location on the cam profile and the angle θ gives the total rotation of the cam
itself. Note that λ is defined as being positive clockwise, since this is the order in which the follower engages
with the cam.

636 Introduction to Mechanism Design

One reason for making the distinction between θ and λ is that the type of follower
has a strong influence on the point of contact between cam and follower. As shown in
Figure 10.15, the knife-edged follower always maintains contact at the same point, which
is aligned with the x axis. The flat-faced follower, on the other hand, makes contact at the
right-most point on the cam, which may or may not be aligned with the x axis. One of the
most difficult parts of cam design is determining where the point of contact is for a given
type of follower, since this will ultimately determine the displacement of the follower. The
knife-edge follower is unique in that it follows the profile of the cam exactly. In this sec-
tion, we will assume a knife-edge follower, so that the follower displacement mirrors the
cam displacement.

Our goal in this section is to design the cam such that the displacement of the follower,
s, is the required function of the cam profile angle, λ. Let us take an extremely simple case
where the desired displacement of the follower is

 λ< ≤ ° =for 0 90 s h

 λ° < ≤ ° =for 90 360 0s

where h, a constant, is the maximum displacement of the follower.
Let r be the radius of any point on the surface of the cam. The smallest radius of the cam

is called the base circle, as shown in Figure 10.16. We will take the base circle as our refer-
ence point on the cam such that s = 0 when r = rb. For the rest of the cam we have

 = −s r rb (10.6)

Now imagine “unrolling” the profile of the cam so that it can be plotted along a horizontal
axis. Such a plot is shown in Figure 10.17, where we have arbitrarily chosen a rise height
of 0.1 units for the cam. We have taken a literal interpretation of the design requirements

r

rb

Base circle

FIGURE 10.16
The smallest radius of the cam is called the base circle.

Point of contact
Flat-faced follower

Knife-edged follower

θ, λ θs s

λ

FIGURE 10.15
The type of follower has a large effect on the point of contact between cam and follower.

637Cams and Followers

(rise to h during the first 90°, then dwell at 0 for the remainder) but the sudden changes in
height make it seem as though this might have been a bad idea.

If we roll up the plot in Figure 10.17 to plot the shape of the cam we obtain the monster
shown in Figure 10.18. The sudden transitions from 0 to h and back again will destroy
the follower very quickly. Thus, we conclude that following the design requirements too

30 60 90 120 150 180
Angle (°)

s

210 240 270 300 330 360
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0

FIGURE 10.17
The displacement diagram for our initial cam design. We have arbitrarily chosen h = 0.1 units as the rise height
for the cam.

Fall

Dwell at 0

Dwell at h

Rise

FIGURE 10.18
The cam that results from following the design requirements too literally.

638 Introduction to Mechanism Design

literally will result in a nonfunctional cam. We need some kind of smooth transition from
0 to h to allow the follower to change positions gradually, rather than suddenly.

As a first guess, let us try using a linear function to make the transition from the lower
dwell to the upper dwell and back down again. As shown in Figure 10.19, the profile of the
cam rises from the base circle to a height h during the angular increment β. It falls back
to the base circle over the same angular increment β. The slope of the line is therefore h/β
during the rise and −h/β during the fall. We can write the rise as a function of the rotation
angle of the cam profile, λ, as

β

λ=s
h

 (10.7)

where s is the height above the base circle. You might suspect that the sharp corners where
the profile changes from dwell to rise could cause difficulties. To find out, let us take the
time derivative of the displacement function, s, to find the velocity. We must employ the
chain rule to take the derivative, since λ is a function of time.

λ

λ
β

λ= = =v
ds
dt

ds
d

d
dt

h d
dt

Since we are assuming a knife-edged follower, the point of contact is always aligned
with the positive x axis so that λ = θ. If the cam has a constant angular velocity, dθ/dt = ω,
then

β

ω=v
h

 (10.8)

This is the velocity of the follower during the transitions between dwells. During a dwell
the velocity of the follower is (by definition) zero.

A plot of the velocity of the follower versus cam angle is shown in Figure 10.20. Because
the rise is linear the velocity is constant (and finite) between dwells. But when the cam
changes from dwell to rise there is a sudden change in velocity; that is, the velocity is
 discontinuous over the profile of the cam.

If we were to take the derivative of velocity to find acceleration we would find that it is
undefined (or infinite) where the velocity makes the sudden change from 0 to h/β. This is

h

β 90°–β 90°

FIGURE 10.19
A linear function has been used to make the transition between dwells.

639Cams and Followers

seen in Figure 10.21, where there are spikes of infinite acceleration at each transition point.
Since acceleration is proportional to force, the follower would experience “infinite” spikes
of force from the cam at each transition from dwell to rise (or fall). Clearly, this is also an
unacceptable design.

This discussion has led us to the Fundamental Law of Cam Design, which states that

A cam must be continuous through the first and second derivatives of displacement
across its entire profile.

In other words, the position, velocity, and acceleration of the follower must consist of con-
tinuous functions – no discontinuities are allowed. A corollary to the Fundamental Law
of Cam Design is that

The jerk function must be finite for the entire profile of the cam.

The jerk is the time derivative of acceleration. Since acceleration is proportional to force,
the jerk gives a measure of how quickly the force on the follower changes. If the accelera-
tion is a continuous function, then the jerk will necessarily be finite – spikes to infinity
occur when we take the derivative of a discontinuous function. The problem is now to find
a displacement function that is continuous through its first and second derivatives. As we
will see, there are several functions that meet this criterion, and we will examine a few of
the more common ones.

90°90°–β
β

h/β

FIGURE 10.20
Velocity plot of the cam with linear rise (and fall) between dwells.

90°–ββ

+∞ +∞

–∞ –∞

90°

FIGURE 10.21
Acceleration of the follower with linear rise and fall. The abrupt changes in velocity create spikes of infinite
acceleration.

640 Introduction to Mechanism Design

10.5 Polynomial Cam Profiles

The overall problem statement is shown graphically in Figure 10.22. We wish to find a
rise function for the cam profile that is continuous in its first and second derivatives. We
assume that the cam starts at a displacement of zero and rises to a height h by the time the
cam has rotated by an angle β. That is,

 β()() = =0 0s s h

Since the velocity and acceleration are both zero during the dwell the first and second
derivatives of the rise function must be zero at λ = 0 and λ = β. Thus

 β()() = =0 0 0v v

 β()() = =0 0 0a a

We will not specify any conditions on the jerk at this point, noting only that it must be
finite since the acceleration is continuous. As a first, simple function for the pushrod rise,
let us try a polynomial function:

 λ λ
β

λ
β

λ
β

λ
β

() = +

+

+

+ +

0 1 2

2

3

3

s C C C C Cn

n

 (10.9)

β

β

β

a(0) = 0 a(β) = 0

v(0) = 0 v(β) = 0

s(0) = 0 s(β) = h

0

0

0

h

s

v

a

FIGURE 10.22
s-v-a diagram for the generic rise function.

641Cams and Followers

We will find it much simpler to work with a dimensionless parameter x, defined as

λ
β

=x (10.10)

such that

 () = + + + + +0 1 2
2

3
3s x C C x C x C x C xn

n
 (10.11)

Note that x = 0 when λ = 0 and x = 1 when λ = β. The revised boundary conditions are then

 () ()= =0 0 1s s h

 () ()= =0 0 1 0v v

 () ()= =0 0 1 0a a

We can employ as many terms in the polynomial as we wish, but for the moment, let us
restrict ourselves to a fifth order polynomial. There are six boundary conditions, so we can
only find definite values for six coefficients in the polynomial. We will use a higher-order
polynomial in a later section when we create additional boundary conditions. Thus,

 () = + + + + +0 1 2
2

3
3

4
4

5
5s x C C x C x C x C x C x (10.12)

There are six unknown coefficients in this polynomial, and we have the six boundary con-
ditions shown in the s-v-a diagram of Figure 10.22. If we substitute in the first boundary
condition, s(0) = 0, we find that C0 = 0, and we have eliminated one of the coefficients. To
find the velocity, take the time derivative of the displacement function using the chain rule

λ

λ= = × ×v
ds
dt

ds
dx

dx
d

d
dt

but dx/dλ = 1/β, dλ/dt = omega for the knife-edged follower, so that

ω
β()= + + + +2 3 4 51 2 3

2
4

3
5

4v C C x C x C x C x (10.13)

By enforcing the boundary condition v(0) = 0 we find that C1 is also zero and we are left
with four unknown coefficients. Differentiate once again to find the acceleration.

ω
β()= + + +

2 6 12 202 3 4
2

5
3

2

a C C x C x C x (10.14)

Enforcing the boundary condition a(0) = 0 eliminates C2 from our polynomial, and we are
left with

 = + +3
3

4
4

5
5s C x C x C x

ω
β()= + +3 4 53

2
4

3
5

4v C x C x C x

ω
β()= + +

6 12 203 4
2

5
3

2

a C x C x C x

642 Introduction to Mechanism Design

We must now enforce the remaining three boundary conditions that occur at x = 1.

 () = + + =1 3 4 5s C C C h

ω
β

() ()= + + =1 3 4 5 03 4 5v C C C

ω
β

() ()= + +

=1 6 12 20 03 4 5

2

a C C C

These are three linear equations with three unknowns, so it is easy to put them into matrix
form for MATLAB® to solve. Note that the factors of (ω/β) cancel out in the velocity and
acceleration equations since we have zero on the right-hand side. The matrix equation is
then

=

1 1 1
3 4 5
6 12 20

1
0
0

3

4

5

C
C
C

where we have normalized the maximum displacement h to unity for the purpose of
 solving for the coefficients. We will multiply the resulting functions by h after we have
solved for C3, C4, and C5. At the MATLAB command prompt type

>> A=[1 1 1; 3 4 5; 6 12 20]

A =

 1 1 1
 3 4 5
 6 12 20

For the A matrix and

>> b = [1; 0; 0]

b =

 1
 0
 0

for the b vector. Don’t forget the semicolons between entries in the b vector since b is a
column vector. Solve the matrix equation by typing

>> x=A\b

x =

 10.0000
 -15.0000
 6.0000

643Cams and Followers

Thus, we conclude that

 = = − =10 15 63 4 5C h C h C h

Substituting these back into the s-v-a functions results in

 ()= − +10 15 63 4 5s h x x x (10.15)

ω

β ()= − +30
22 3 4v

h
x x x (10.16)

ω
β ()=

− +60 3 2
2

2 3a h x x x (10.17)

Because of the orders of the variable x this rise function is known as the 3-4-5 polynomial.
An s-v-a diagram of the 3-4-5 polynomial is shown Figure 10.23. As advertised, the function
is continuous through its second derivative, and would seem to be a good choice. One dif-
ficulty with this function is that we have not required that the jerk be continuous. Taking
the derivative of the acceleration function gives

ω
β ()=

− +60 1 6 6
3

2j h x x (10.18)

0
–0.1

–0.05

0

0

0

0.05

0.005

0.005

0.015

0.01

0.01

0.02

0.1

10 20 30
Cam angle (°)

a
(m

/s
2)

v (
m

/s
)

s (
m

)

40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

FIGURE 10.23
s-v-a diagram for 3-4-5 polynomial. The rise is 0.01 m and the angular velocity of the cam is 1 rad/s. The rise
angle, β, is 60°.

644 Introduction to Mechanism Design

The jerk during the dwell is, of course, zero, but the jerk function in Equation (10.18) does
not take on the value of zero at either x = 0 or x = 1. A plot of the jerk function for the
3-4-5 polynomial is shown in Figure 10.24. The discontinuities in jerk at x = 0 and x = 1
would create sudden changes in the force experienced by the follower, which might cause
unwanted vibrations in the surrounding structure.

We can solve this problem by requiring that the jerk also be a continuous function, which
will result in two additional boundary conditions.

 () ()= =0 0 1 0j j

Since this is a total of eight boundary conditions, a seventh order polynomial will be
 sufficient (a seventh order polynomial has eight coefficients: C0, C1 … C7). The requirement
that the displacement, velocity, acceleration, and jerk all be zero at x = 0 eliminates the
 coefficients C0, C1, C2, and C3 and we are left with

 = + + +4
4

5
5

6
6

7
7s C x C x C x C x

ω
β()= + + +4 5 6 74

3
5

4
6

5
7

6v C x C x C x C x

ω
β()= + + +

12 20 30 424
2

5
3

6
4

7
5

2

a C x C x C x C x

ω
β()= + + +

24 60 120 2104 5
2

6
3

7
4

3

j C x C x C x C x

Cam angle (°)

j (
m

/s
3)

a
(m

/s
2)

0
–0.4

–0.2

0

0.2

0.4

0.6

–0.04

–0.06

–0.02

0

0.02

0.04

0.06

10 20 30 40 50 60 70

0 10 20 30 40 50 60 70

FIGURE 10.24
Plot of the acceleration and jerk function for the 3-4-5 polynomial. Note the discontinuities at 0 and β.

645Cams and Followers

The remaining four boundary conditions give the set of equations

 () = + + + =1 4 5 6 7s C C C C h

 () = + + + =1 4 5 6 7 04 5 6 7v C C C C

 () = + + + =1 12 20 30 42 04 5 6 7a C C C C

 () = + + + =1 24 60 120 210 04 5 6 7j C C C C

We are left with four equations and the four unknown coefficients, which again seems like
a good job for MATLAB. Type

A= [1 1 1 1; 4 5 6 7; 12 20 30 42; 24 60 120 210]

at the command prompt. The vector of knowns is

b = [1;0;0;0]

To solve the equations, type

x=A\b

and the result is

x =

 35.0000
 -84.0000
 70.0000
 -20.0000

Thus, the 4-5-6-7 polynomial functions are

 = −

 + −

35
12
5

2
4
7

4 5 6 7s h x x x x (10.19)

ω
β ()= − + −140 3 33 4 5 6v h x x x x (10.20)

ω
β ()=

− + −420 4 5 2
2

2 3 4 5a h x x x x (10.21)

ω
β ()=

− + −840 6 10 5
3

2 3 4j h x x x x (10.22)

A quick check of the boundary conditions reveals that the v-a-j functions vanish at x = 1
and all functions vanish at x = 0.

As seen in the s-v-a-j diagram of Figure 10.25, the jerk is now a continuous function,
and we appear to have solved the problem. As you can see, polynomial functions are
quite versatile and easy to model mathematically. They are among the most widely
used rise and fall functions in cam design, and should be the first choice for most
designers. We will examine a few other commonly used rise functions in the next
sections.

646 Introduction to Mechanism Design

10.6 Sinusoidal Cam Profiles

Now that we have mastered the polynomial rise function, we will look into another
 common rise function, the sinusoid. Sinusoidal functions seem like a logical choice for
cam profiles, since the sine and cosine functions are smooth and allow a gradual transition
from dwell to rise and back again. For the polynomial rise function we started by postu-
lating a displacement function and worked our way through the velocity and acceleration
functions by taking derivatives. But since the Fundamental Law of Cam Design states that
the cam profile must be continuous through the first and second derivatives, let us try
starting with the acceleration function and work our way “backwards” to displacement by
integration. Since the sine function begins and ends at zero, this would seem like a good
candidate for the acceleration function. As shown in Figure 10.26, our proposed accelera-
tion function is then

 ω π()= sin 22a C x (10.23)

where

λ
β

=x (10.24)

0
–0.5

0.5

0

–0.1

0.1

0

0

0.005

0.01

0

0.01

0.02

0.03

10 20 30
Cam angle (°)

j (
m

/s
3)

a
(m

/s
2)

v (
m

/s
)

s (
m

)

40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

FIGURE 10.25
s-v-a-j diagram for the 4-5-6-7 polynomial with 0.01 m rise over 60° and angular velocity 1 rad/s. The jerk is now
a continuous function.

647Cams and Followers

and ranges from 0 to 1 as before. The reader can verify that the acceleration function starts
at zero when x = 0 and ends at zero when x = 1. To find velocity, we simply integrate the
acceleration function with respect to time.

ω
π

π()= − +
2

cos 2 1v
C

x k (10.25)

where k1 is an unknown constant of integration.
As shown in Figure 10.27, we must have v(0) = 0 and v(1) = 0. Substituting this into

Equation (10.25) above gives

ω
π

=
21k
C

 (10.26)

and so

ω
π

π()= − 2
1 cos 2v

C
x (10.27)

We integrate once more to find the position function

π π

π()= −

+
2

1
2

sin 2 2s
C

x x k (10.28)

but s(0) = 0 so that k2 = 0. The other boundary condition states that s(1) = h, and solving for
C gives

 π= 2C h (10.29)

–C

C

β

Ac
ce

le
ra

tio
n

(m
/s

2)

FIGURE 10.26
The acceleration function of the proposed sinusoidal cam is a sine function with amplitude C.

648 Introduction to Mechanism Design

Thus, the s-v-a-j functions for our proposed cam profile are

π

π()= −

1
2

sin 2s h x x (10.30)

 ω π()= − 1 cos 2v h x (10.31)

 π ω π()= 2 sin 22a h x (10.32)

 π ω π()= 4 cos 22 3j h x (10.33)

The displacement function is known as a cycloidal function.
The s-v-a-j diagram for the cycloidal rise function is shown in Figure 10.28. It is very

 difficult to distinguish these functions from the polynomial rise function by eye, and the
differences vanish almost entirely when we couple the cam with a non-knife-edged follower.
The jerk function is discontinuous for this rise function, so we could, if necessary, start with
the jerk function (instead of acceleration) when deriving the cycloidal rise function.

The name “cycloid” is something of a misnomer. As shown in Figure 10.29, a true cycloid
is the path followed by the wheel of a bicycle or car as it rolls without slipping over a flat
surface. The coordinates of a true cycloid function are given by

 ()= − sinx r t t (10.34)

 ()= −1 cosy r t (10.35)

where r is the radius of the wheel and t is the angle of the wheel as it rolls along. As you
can see, the rise function uses only the x component of the cycloid.

There are additional rise functions for cams including the modified sinusoid, modified
trapezoidal acceleration, and many others. The interested reader can refer to [1] for more
information.

β

Ve
lo

ci
ty

 (m
/s

)

FIGURE 10.27
The velocity function must begin and end at zero to satisfy the Fundamental Law of Cam Design.

649Cams and Followers

10.7 Single-Dwell Cams

Thus far we have examined the simple rise and fall functions of multiple-dwell cams,
but in many cases (such as automotive cams) we desire that the rise and fall segments be
composed of a single rise-fall function. This type of cam is known as a single-dwell cam
since it dwells at its resting state for most of the cycle, then rises and falls in a continuous
motion. The displacement function for a typical single-dwell cam is shown in Figure 10.30.
For convenience we have chosen a symmetric rise-fall function; that is, the displacement
reaches its peak at β/2, and settles back down to zero at β. The simplest set of boundary
conditions that satisfy the fundamental law of cam design are

 () ()=

 = =0 0

1
2

1 0s s h s

120

j
a

v
s

Cam angle (°)
150

120 150

120 150

120 150

FIGURE 10.28
The s-v-a-j diagram for the cycloidal rise function.

0
–1

0

1

2

3

2 4 6 8 10 12 14

FIGURE 10.29
A cycloid is the path followed by a point on the wheel of a bicycle as it rolls without slipping.

650 Introduction to Mechanism Design

 () ()= =0 0 1 0v v

 () ()= =0 0 1 0a a

where we have again employed the dimensionless variable x = λ/β. These are seven bound-
ary conditions, so we employ a sixth-order polynomial for the displacement function.

 () = + + + + + +0 1 2
2

3
3

4
4

5 5 6
6s x C C x C x C x C x C x C x

Taking the time derivatives and substituting the boundary conditions at x = 0 results in the
elimination of C0, C1, and C2, and we are left with the 3-4-5-6 polynomial

 () = + + +3
3

4
4

5 5 6
6s x C x C x C x C x

Entering the boundary conditions at x = 1 results in the following s-v-a equations

 + + + = 03 4 5 6C C C C

 + + + =3 4 5 6 03 4 5 6C C C C

 + + + =6 12 20 30 03 4 5 6C C C C

and the displacement boundary condition at x = ½ gives

 +

 +

 +

 =1

8
1

16
1

32
1

643 4 5 6C C C C h

But this can be simplified to

 + + + =8 4 2 643 4 5 6C C C C h

We now have four equations and four unknowns, which we can solve using MATLAB. In
matrix form the equation is

=

1 1 1 1
3 4 5 6
6 12 20 30
8 4 2 1

0
0
0

64

3

4

5

6

C
C
C
C h

0

s

smax

360°
λ

β/2 β

FIGURE 10.30
The single-dwell cam rises and falls in a continuous motion.

651Cams and Followers

Enter the following commands at the MATLAB command prompt

>> A=[1 1 1 1; 3 4 5 6; 6 12 20 30; 8 4 2 1]

A =

 1 1 1 1
 3 4 5 6
 6 12 20 30
 8 4 2 1

>> b = [0; 0; 0; 64]

b =

 0
 0
 0
 64

>> A\b

ans =

 64.0000
 -192.0000
 192.0000
 -64.0000

Thus, the s-v-a-j functions are

 ()() = − + −64 3 33 4 5 6s x h x x x x (10.36)

 ()() = − + −192 4 5 22 3 4 5v x h x x x x z (10.37)

 ()() = − + −384 6 10 52 3 4 2a x h x x x x z (10.38)

 ()() = − + −384 1 12 30 202 3 3j x h x x x z (10.39)

where

ω
β

=z (10.40)

An s-v-a-j diagram of the single-dwell cam is shown in Figure 10.31, with cam angular
velocity 10 rpm and rise 0.01 m. This cam rises over 30° and falls over the next 30°. This cam
fulfills all of the boundary conditions required by the fundamental law of cam design, but
has a discontinuous jerk function at the beginning and end of the rise.

We can impose the boundary condition of zero jerk at the beginning and end of the rise/
fall function. Since this adds two additional boundary conditions (for a total of nine) we
must use an eight-order polynomial. Following the same procedure as above, we have

 ()() = − + − +256 4 6 44 5 6 7 8s x h x x x x x (10.41)

652 Introduction to Mechanism Design

 ()() = − + − +1024 5 9 7 23 4 5 6 7v x h x x x x x z (10.42)

 ()() = − + − +1024 3 20 45 42 142 3 4 5 6 2a x h x x x x x z (10.43)

 ()() = − + − +6144 10 30 35 142 3 4 5 3j x h x x x x x z (10.44)

A plot comparing the 3-4-5-6 and the 4-5-6-7-8 polynomials is shown in Figure 10.32.
Note that the jerk returns to zero at each end for the 4-5-6-7-8 polynomial, but is discon-
tinuous for the 3-4-5-6 polynomial. The 4-5-6-7-8 polynomial has higher peak velocity
and slightly higher peak acceleration, which may weigh against its use in high-speed
applications.

You might be wondering why we did not simply use a double-dwell cam profile with a
dwell period of zero at the top of the rise, instead of specifying a completely new rise/fall
 function. As shown in Figure 10.33, the double-dwell cam must have zero acceleration at
the top and bottom of the rise function, which results in a higher peak acceleration in the
middle of the rise. While the double-dwell function would function as required, it is not
an optimal design since its acceleration (and therefore the forces transmitted to the rest of
the linkage) is higher than necessary to accomplish the required motion. Thus, you should
employ the single-dwell function whenever the second dwell is not absolutely required.

0.01

0.005

0.05

–0.05

0.2

0

–0.2

–0.4

5

0

–5

0

0

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60
Cam angle (°)

s
v

a
j

FIGURE 10.31
s-v-a-j diagram for the single-dwell cam with ω = 10 rpm and rise 0.01 m. This cam fulfills all of the boundary
conditions but the jerk is discontinuous.

653Cams and Followers

0.01

0.005

0.05

0.5

5

–0.05

–0.5

–5

0

0

0

0

s (
m

)
v (

m
/s

)
a

(m
/s

2)
j (

m
/s

3)
s-v-a-j Diagram for 3-4-5-6 and 4-5-6-7-8 single-dwell cam

3-4-5-6
4-5-6-7-8

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60
Cam angle (°)

FIGURE 10.32
s-v-a-j diagram for the 4-5-6-7-8 polynomial compared with the 3-4-5-6 polynomial from before. Note the jerk
returns to zero for the 4-5-6-7-8 polynomial, but is discontinuous for the 3-4-5-6 polynomial.

0.01

0.005

0

0.04

0.02

0

–0.02

–0.04

0.4

0.2

0

–0.2

–0.4

s (
m

)
v (

m
/s

)
a

(m
/s

2)

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60
Cam angle (°)

FIGURE 10.33
A comparison of the single-dwell function with a double-dwell 3-4-5 profile with zero dwell at the top of the
rise. The single-dwell function is shown in the solid line and the double-dwell function (one-dwell set to zero)
is shown with dashed lines.

654 Introduction to Mechanism Design

10.8 Cam Design Using MATLAB®

Like everything in mechanical design, cam design is an iterative process. For this reason it is
helpful to have a set of design tools to speed up the process and make the designs easier to
visualize. In this section, we will begin developing a suite of MATLAB scripts for analyzing a
given cam design. In particular, we want our set of scripts to answer the following questions:

 1. Does the profile of the cam meet the design goals? That is, does it rise and fall by
the required amounts, and does it dwell for the correct angular increment?

 2. Does the motion of the follower meet the design goals? In general, the motion of
the follower does not mimic the cam profile exactly, so we must conduct a separate
analysis of follower motion. This analysis will be strongly dependent upon the
type of follower used (flat, translating roller, and rocker).

 3. What torque is required to drive the cam? What is the contact force between cam
and follower? If the contact force falls below zero, the follower may lose contact
with the cam; that is, the follower may “float.” A floating follower is never a good
thing since it results in unpredictable motion.

The questions above are helpful in developing the structure for the cam analysis software
that we will write. A flowchart showing the program structure is shown in Figure 10.34.

Enter cam data

Cam kinematics

Cam profile, radius of
curvature, unit normal

Point of contact

Follower kinematics

Pressure angle

Force analysis

M
ot

io
n

ca
m

M
ot

io
n

fo
llo

w
er

Fo
rc

e f
ol

lo
w

er

s, v, a, j

c, ρ, u

xB

sf , vf , af

Tc, Fn

FIGURE 10.34
Flowchart of the structure of the cam analysis suite of programs. The first box is the main program and all of
the computations below take place in separate functions, shown as light gray boxes. The darker gray boxes are
the results of the calculations in each function, and will be plotted. The dashed box shows the computations that
depend upon the type of follower (flat, roller, or rocker).

655Cams and Followers

The blue box at the top symbolizes the main program where the user will enter the
data for the cam, including the base radius, dwell heights, the type of rise function, the
 angular increments of each dwell and rise, and information about the follower. Each sub-
sequent light gray box represents a separate function that we will write. For example, the
MotionCam.m function will calculate the s-v-a-j functions for the given cam data, and will
also return a vector of points around the cam profile, c. It will also calculate the radius of
curvature and unit normal around the cam profile. We haven’t discussed these yet, but
they will be important for ensuring smooth motion of the follower and for conducting
force analysis.

The darker gray boxes on the right represent the quantities that are returned from each
of our functions. Each of these quantities may be plotted during a given point in the design
cycle, but we will include commands that can turn off individual plots so that we don’t end
up with a screen filled with 10 plots.

The dashed blue box encloses the functions that are dependent upon the type of
follower used. The functions above this box are common to all types of follower, but
the flat-faced follower requires a different force analysis function than the translating
roller-follower, and so on. However, the overall structure of the main program will be
the same. We will write the software for designing multiple-dwell cams. Modifying
the software for single-dwell cams is relatively easy and is left as an exercise for the
reader.

10.8.1 The Main Program

Without further ado, let us begin writing the main program. Open a new MATLAB script
and type the following header:

% CamDesigner.m
% Plots the profile of a cam and its s-v-a-j diagram, along with
% the pitch curve, radius of curvature, pressure angle and follower
% motion. A force/torque analysis is completed at the end.
% By Eric Constans, August 15, 2017
%
% The user must enter the number of dwells, the height of each dwell,
% and the angular increment of each dwell and its rise (or fall).
% The angular increments of the dwells and rises must add to 360 degrees
% or less.

clear variables; close all; clc;

At the beginning of the program the user should enter the required data for the cam. The
most important piece of information is the number of dwell segments. Figure 10.35 shows
a displacement (s) diagram for a cam with three dwell segments. Each dwell segment is
associated with a rise or fall segment, so that the number of rises and falls equals the
number of dwells. Note that we have started the cam profile on a dwell segment so the
sequence runs (dwell-rise-dwell-fall-dwell-fall). After entering the number of dwells,
the user should enter the height of each dwell. In Figure 10.35 the first dwell has a height
of zero, but this need not be the case. The number of heights entered by the user should be
the same as the number of dwells, obviously. After this, the user must enter the angular
increment of each dwell segment, followed by the angular increment of each rise (or fall).
Type in the following set of data for a triple-dwell cam.

656 Introduction to Mechanism Design

% ***** Parameters for cam profile (user-defined) *****
cam.Nd = 3; % number of dwells
cam.h = [0 0.005 0.010]; % height of each dwell above base circle (m)
cam.betad = [100 40 30]; % angular increment of each dwell (degrees)
cam.betar = [60 50 80]; % angular increment of each rise (degrees)

What is the meaning of all the “cam.” statements? Here, we have introduced a very important
concept in programming: the structure. A structure is used to keep a collection of different
kinds of data in one object, in this case, cam. The quantities after the periods are called fields,
and each field contains a separate kind of data (dwell heights, dwell angles, etc.). The really
handy feature of structures is that we can pass all of the data associated with the cam to
one of our functions by simply passing the cam structure, instead of passing each argument
separately. That is, if we send cam to the CamMotion function, we automatically give it Nd,
h, betad and betar. As we progress through our set of cam functions, we will add other
important quantities (s, v, a, j, etc.) to the cam structure. We will later create a structure called
follower that will contain all of the important parameters associated with the follower.

You might be wondering why we didn’t create a structure called link in our earlier
programs that contains the parameters associated with a given link (length, mass, moment
of inertia, etc.) Good question! Creating a link structure would have been good program-
ming practice, but we elected not to introduce too many abstract concepts all at once.
Rewriting our suite of linkage analysis programs to include structures would be a simple,
exercise.

Now back to our CamDesigner program. The variable betad is a vector containing the
angular increments of each dwell. It must have as many members as the number of dwell
segments, as must the vector betar. Here we have chosen a profile that dwells at zero for
100°, rises to 5 mm over 60°, dwells at 5 mm for 40°, rises to 10 mm over 50°, dwells at 10 mm
for 30°, and finally falls back down to zero over 80°. Note that the angular increments are
entered in degrees; this is for user convenience. We will convert these angles to radians
later in the program. The next important pieces of data for the user to enter are the base
radius and angular velocity of the cam, for calculating velocities and accelerations.

cam.rb = 0.025; % radius of base circle (m)
cam.omega = 1000*2*pi/60; % angular velocity of cam (rad/sec)

Here, we have chosen a cam base diameter of 50 mm and an angular velocity of 1000 rpm.
We will use the data for this triple-dwell cam in all of our subsequent calculations so that

h2

h2

h1

0°

Dwell 1 Rise 1 Dwell 2 Fall 2 Dwell 3 Fall 3

360°

s

FIGURE 10.35
The s diagram for a three-dwell cam. Each dwell has a rise or fall attached to it. The profile after the final fall
must have the same height as the initial dwell.

657Cams and Followers

you can easily check your progress as we move along. The final important piece of informa-
tion for the user to enter is the rise function used in the cam profile. In the previous section,
we learned several useful rise functions including the 3-4-5 polynomial, 4-5-6-7 polynomial
and cycloid. We will write a separate MATLAB function for each type of rise, and let the
user specify the rise type by calling the appropriate function. The syntax for doing this is

cam.camfunc = @svaj345; % function handle for rise profile

The term “function handle” is a little cryptic. If you think of a handle as something used
to grab onto an object, then a function handle is a way of grabbing a function in order to
use it. Basically, the statement above defines a variable called camfunc that can be used
to “grab” a function called svaj345. The “@” syntax indicates that svaj345 is a function,
and not simply a variable. Any time later in the program that we want to use the svaj345
function we can type cam.camfunc instead, and obtain the same results. This makes the
program much easier to use for design – if the user wishes to use a 4-5-6-7 polynomial, for
example, she would enter

cam.camfunc = @svaj4567; % function handle for rise profile

and the program would perform all calculations using the 4-5-6-7 profile instead.
Best programming practices provide error checking of user-entered parameters to ensure

the program will run properly. If any errors are found, the user should be informed what
corrections they should make. Open a new script for our error checking function and start
with the following header, function name, and initialize a variable stating no errors found:

% The function ErrorCheckCam checks for errors in user input variables.
%
% ***** Inputs *****
% cam = cam parameters
%
% ***** Output *****
% errorFound = boolean value indicating if error was detected

function errorFound = ErrorCheckCam(cam)
 errorFound = false;
end

The most common source of error for this program is the set of cam profile variables. The
sum of all angular increments must add to 360°, so this will be the first check we make.
MATLAB makes this truly simple with the sum function:

anglesum = sum(cam.betad) + sum(cam.betar);

The sum function adds up all of the quantities in a vector. It will be helpful to the user to
display the result of this calculation in the command window. This can be accomplished
with the disp command.

disp(['Angular segments add up to: ' num2str(anglesum) ' degrees'])

The disp command displays a string of text to the command window. Anything inside the
parentheses in the disp command must be a string (a set of characters, rather than num-
bers), so we have used num2str to convert the numerical value of anglesum into a string.

658 Introduction to Mechanism Design

The three strings: “Angular segments add up to:”, anglesum, and “degrees” are
sandwiched together into a single vector, since the disp command can only display one
vector of characters at a time.

Finally, let us check to make sure that anglesum is indeed 360°.

if (anglesum ~= 360)
 disp('ERROR: Angular segments do not add up to 360 degrees.')

 errorFound = true;
end

The “~=” syntax means the same as “is not equal to.” If the user has entered values that do
not add up to 360° then a message is displayed in the command window and we update
our errorFound variable to true.

The next check we will make ensures the vectors defining the cam profile have the
 correct number of entries. For each dwell we require its height, dwell start angle, and a
corresponding rise angle to the next dwell.

if (cam.Nd ~= length(cam.h) || cam.Nd ~= length(cam.betad)||...
 cam.Nd ~= length(cam.betar))
 disp(['Error: Cam profile parameters not of equal lengths. ',...
 'Cam parameters h, betad and betar must contain Nd ',...
 'number of entries.'])
 errorFound = true;
end

In writing our condition for the if statement, we use MATLAB’s length command to
 determine the number of entries in a vector. We compare the length of each vector to the
number of dwells, Nd, and connect each condition with “||” syntax, which is a logical OR.
The OR statement causes the code with in the if statement to run if any of the conditions are
true, meaning the length of one of the vectors does not match the number specified in Nd.

Our completed error checking function should look like:

function errorFound = ErrorCheckCam(cam)
 errorFound = false;

 % check if cam profile angles sum to 360 degrees
 anglesum = sum(cam.betad) + sum(cam.betar);
 disp(['Angular segments add up to: ' num2str(anglesum) ' degrees'])
 if (anglesum ~= 360)
 disp('Error: Angular segments do not add up to 360 degrees.')
 errorFound = true;
 end

 % check if h, betad and betar have proper number of entries
 if (cam.Nd ~= length(cam.h) || cam.Nd ~= length(cam.betad)||...
 cam.Nd ~= length(cam.betar))
 disp(['Error: Cam profile parameters not of equal lengths. ',...
 'Cam parameters h, betad and betar must contain Nd ',...
 'number of entries.'])
 errorFound = true;
 end
end

659Cams and Followers

With our error checking function complete, the final remaining step is to return to our
CamDesigner program and insert the error check function after the user parameters to
stop the program if an error is found.

% ***** Error checking - validate user input *****
if ErrorCheckCam(cam);
 return;
end;

This completes the first part of the main program. The following sections will describe
each of the many cam analysis procedures in detail, and we will keep adding function-
ality to our program as we move along. The full (short) text of the main program should
read:

% CamDesigner.m
% Plots the profile of a cam and its s-v-a-j diagram, along with
% the pitch curve, radius of curvature, pressure angle and follower
% motion. A force/torque analysis is completed at the end.
% By Eric Constans, August 15, 2017
%
% The user must enter the number of dwells, the height of each dwell,
% and the angular increment of each dwell and its rise (or fall).
% The angular increments of the dwells and rises must add to 360 degrees
% or less.

clear variables; close all; clc;

% ***** Parameters for cam profile (user-defined) *****
cam.Nd = 3; % number of dwells
cam.h = [0 0.005 0.010]; % height of each dwell above base circle (m)
cam.betad = [100 40 30]; % angular increment of each dwell (degrees)
cam.betar = [60 50 80]; % angular increment of each rise (degrees)
cam.rb = 0.025; % radius of base circle (m)
cam.omega = 1000*2*pi/60; % angular velocity of cam (rad/sec)
cam.camfunc = @svaj345; % function handle for rise profile

% ***** Error checking - validate user input *****
if ErrorCheckCam(cam);
 return;
end;

10.8.2 The Cam Motion Function

The first of our suite of cam analysis functions will calculate and plot the cam profile, as
well as its s-v-a-j diagram. The coordinates of the cam can be exported to a CAD program
such as SOLIDWORKS® for subsequent manufacturing, although we will not discuss this
process here. This script will be one of the more complicated functions we’ve written so
far, so we’ll proceed carefully.

First, note that the cam profile can be divided into its individual rise, fall, and dwell
 segments, as shown in Figure 10.36. Dwell segments have constant radius, which means

660 Introduction to Mechanism Design

that they are circular arcs with radius rb + h, where h is the dwell height. Rise (or fall)
 segments follow the rise functions described in earlier sections and have radius rb + s(λ),
where s is the rise function. This division of the cam into its individual segments provides
a hint as to how to structure the CamMotion function. At the end of the CamDesigner
main program, call the CamMotion function.

% ***** Calculate cam profile and plot motion *****
cam = CamMotion(cam,showPlot);

Next, open up a new script, and save it as CamMotion.m. Then type the header for the
function as shown below.

% The function CamMotion calculates and plots the coordinates of a
% multiple-dwell cam profile. It also calculates and plots cams the
% s-v-a-j functions.
%
% ***** Inputs *****
% cam = parameters of cam profile
% showPlot = plotting options
%
% ***** Outputs *****
% cam = cam profile with kinematic functions

function cam = CamMotion(cam,showPlot)

As you can see, the cam structure allows the list of input and output arguments to be quite
small. Before we execute the CamMotion function the cam structure contains only the

βr1

βd2

βr2
βd3

βr3

βd1

FIGURE 10.36
The angular segments of the three-dwell cam. Each dwell segment is a circular arc and each rise segment
 follows the specified rise function.

661Cams and Followers

dwell heights and dwell/rise/fall angles. After the function is complete the cam structure
will also contain the kinematic variables (s, v, a, j, etc.)

We next enter the important parameters for calculating each segment of the cam profile.
First is the variable N, which tells how many increments to divide each dwell or rise seg-
ment. The finer the increments, the smoother the curves will appear and the slower the
program will execute. Since there are N points in each segment and 2Nd segments overall
(each dwell has an associated rise segment) the total number of points to calculate will be

 = ⋅ +2 1M N Nd (10.45)

Since the cam has been divided into 2Nd · N divisions, we will calculate a total of 2Nd · N + 1
points on the cam, as shown in Figure 10.37. The last point on the cam will be identical to
the first point, meaning that we will have one redundant point. This will not cause a prob-
lem when plotting in MATLAB, but the redundant point may need to be eliminated if the
profile is to be exported to CAD software. This is entered in the code below.

% calculation parameters
N = 100; % no. of points to calculate on each dwell/rise/fall
M = 2*cam.Nd*N + 1; % total number of points to calculate

We have arbitrarily chosen to calculate 100 points per segment, but you can try different
values if you wish. We next allocate space in memory for the variables we are about to
calculate

% allocate space for motion variables
[lambda,s,v,a,j,rho] = deal(zeros(1,M));
[c,u] = deal(zeros(2,M));

The variable lambda stores the value of each angle around the cam, and c stores the x and
y coordinates of each point on the cam profile – it corresponds to the c vector discussed
earlier. We will calculate the value of s, v, a, and j for each point around the cam, along
with the radius of curvature, rho. In the main program, we initialized the values for the
angular increments in degrees, so we shouldn’t forget to convert them to radians for our
calculations.

% convert angular segments to radians
cam.betad = pi*cam.betad/180;
cam.betar = pi*cam.betar/180;

We are now ready to begin calculating the cam profile and the associated s, v, a, and j
functions.

We first initialize the variable k, which will store the index of the set of values we are
currently calculating and will range from 1 to M. This is necessary because the loops for

11 points

10 increments

FIGURE 10.37
If we divide a segment into N increments, then we must plot N + 1 points.

662 Introduction to Mechanism Design

calculating dwell and rise segments each range from 1 to N, and we need to keep track of
where we are on the overall cam profile. Similarly, we will initialize the variable lambda0
that will store the starting angle of each segment.

% ***** calculate cam profile *****
k = 1; % start index counter at 1
lambda0 = 0; % starting angle for each segment

After this, begin the main loop, which ranges from 1 to the number of dwells, Nd. Be sure
to enter the end statement now, so that you do not forget it later on.

% main loop
for nd = 1:cam.Nd % loop through each dwell

end

The looping variable nd tells us which dwell (or rise) segment we are currently work-
ing on. We will perform the calculations for the dwell segment first, and its associated
rise (or fall) next. The dwell segment is easy to calculate since everything is constant. The
 displacement, s, is simply equal to the height of the current dwell

 λ() =s hnd

and the velocity, acceleration, and jerk are all zero during the dwell.

 λ λ λ() () ()= = =0 0 0v a j

Since these were initialized to zero during the memory allocation, we can leave them as
they are.

Now consider the set of vectors shown in Figure 10.38. The vector c starts at the center of
the cam (point A) and ends at a point B on the surface. The unit vector e points in the same
direction as c, and is found using the familiar formula

 e cos
sin

λ
λ

=

 (10.46)

We learned how to find the radius of the cam at a given angle λ in the previous section:

 λ λ() ()= +r r sb (10.47)

where rb is the base radius (a constant) and s(λ) is the value of the displacement function at
the angle λ. The pair (r, λ) gives the polar coordinates of point B, but we can convert this to
Cartesian coordinates using the unit vector e

 c e= r (10.48)

The dwell segment of the code is then

% ***** dwell segment *****
 beta = cam.betad(nd); % angle of dwell

663Cams and Followers

 for i = 1:N % loop through dwell segment
 x = (i-1)/N; % x ranges from 0 to 1
 lambda(k) = x*beta + lambda0; % current angle within dwell
 s(k) = cam.h(nd); % current displacement
 [e,~] = UnitVector(lambda(k)); % unit vector in radial dir.
 r = cam.rb + s(k); % radius to point B
 c(:,k) = r*e; % coordinates of cam profile

 k = k + 1; % increment index counter
 end
 lambda0 = lambda0 + cam.betad(nd); % move angle to end of current dwell

There are a few important things going on in this loop. First, we define the variable beta,
which is the angle over which the current dwell occurs. The loop runs from 1 to N, since
the angular segment was divided into N parts. Within the loop, we make use of the vari-
able x, which was defined in Section 10.6 as

λ
β

=x (10.49)

and takes on the value of 0 at the beginning of the dwell and 1 at the end. This makes it
easy to calculate the current angle on the cam, since

 λ β λ= + 0x (10.50)

The reader can verify that this starts at λ0 when x = 0 and ends at β + λ0 when x = 1. Of
course, x does not quite reach 1, but it comes very close (99/100 when N = 100).

The displacement function, s, is simply the height of the current dwell and we add this
to the base circle radius to find the total radius of the cam at this angle. We next calculate
the unit vector, e, associated with lambda and use this (along with the current radius) to

B

n
e

c

A

α

FIGURE 10.38
The vector c is directed from the center of the cam to a point B on the surface.

664 Introduction to Mechanism Design

find the coordinates of c, the cam profile. Finally, we increment the index counter k to be
ready for the next calculation. The end of the loop has been reached, and we go back to the
beginning to perform the next set of calculations. After the dwell loop is complete, we add
the dwell angle to lambda0 so that lambda0 starts out at the angle of the beginning of the
next rise segment. We are now ready to begin the much trickier computations within the
rise segment.

The change in height between dwells is found by subtracting the height of the next dwell
from the height of the current dwell

 ∆ = −+1h h hnd nd (10.51)

but if we happen to be at the final dwell, we subtract the height of the first dwell

 ∆ = −1h h hnd (10.52)

This logic will require an if-else statement in the code, as shown.

% calculate the change in height from this dwell to the next
 if (nd == cam.Nd) % if we are at final dwell, then height
 dh = cam.h(1) - cam.h(nd); % changes back to initial dwell,
 else % otherwise height changes to next
 dh = cam.h(nd+1) - cam.h(nd); % dwell.
 end

The variable dh stores the change in height between one dwell and the next. Its value will
be negative for a fall segment and positive for a rise segment. The next step is to calculate
the values of s-v-a-j for the rise segment. Since it is likely that we will wish to try more than
one type of function for the rise segments of our cam, it is appropriate to define a separate
function for each type of rise. Open a new MATLAB script and enter the following simple
function.

% The function svaj345 computes the current values of s-v-a-j for the
% 345 polynomial rise function
%
% ***** Inputs *****
% x = angle parameter ranging from 0 to 1
% dh = height change from preceding dwell to next dwell
% h = height of the preceding dwell
% z = omega/beta for calculating v, a, j
%
% ***** Outputs *****
% s = displacement
% v = velocity
% a = acceleration
% j = jerk

function [s,v,a,j] = svaj345(x,dh,h,z)

s = dh*(10*x^3 - 15*x^4 + 6*x^5) + h; % displacement
v = 30*dh*(x^2 - 2*x^3 + x^4)*z; % velocity
a = 60*dh*(x - 3*x^2 + 2*x^3)*z^2; % acceleration
j = 60*dh*(1 - 6*x + 6*x^2)*z^3; % jerk

665Cams and Followers

Save the function as svaj345.m in the same folder as the main program. Make sure that
you use the same name as the variable camfunc in the main program or MATLAB won’t
be able to find the correct function. This function has been written with enough flexibility
to change the s-v-a-j formulas, for example, the 4-5-6-7 polynomial or other functions. Go
back to the main program and enter the loop for the rise segment.

% ***** rise (or fall) segment *****
 beta = cam.betar(nd); % angle of rise or fall
 h = cam.h(nd); % starting height of rise or fall
 z = cam.omega/beta; % omega/beta
 for i = 1:N
 x = (i-1)/N; % x ranges from 0 to 1
 lambda(k) = x*beta + lambda0; % current angle within rise
 [s(k),v(k),a(k),j(k)] = cam.camfunc(x,dh,h,z);
 [e,~] = UnitVector(lambda(k)); % unit vector in radial dir.
 r = cam.rb + s(k); % radius to point B
 c(:,k) = r*e; % coordinates of cam profile

 k = k + 1; % increment index counter
 end
 lambda0 = lambda0 + cam.betar(nd); % move angle to end of current rise

Everything in the rise loop is similar to the dwell loop that we have already entered except
for the rise function. This completes the main loop of our script. Right after the main loop
we must enter the cam profile parameters for λ = 360°, which are the same as those for λ = 0°.

% parameters at 360deg are the same as at 0deg
lambda(M) = 2*pi; % final angle is 360 degrees
c(:,M) = c(:,1); % profile ends where it started
s(M) = s(1); % final displacement is same as initial

10.8.3 Interpolating the Cam Profile Using the Spline Function

The calculations above were relatively straightforward, but now things will become a little
trickier. You may have noticed that the angular increment between each point on the pro-
file is different depending upon which segment of the profile we are currently evaluating.
For example, in the dwell segment i the angular increment is

 λ β∆ =
N

di (10.53)

but in the rise segment j the angular increment is

 λ
β

∆ =
N

rj (10.54)

This unevenness will make plotting more complicated than it needs to be, and will also
create unnecessary challenges when conducting force analysis since the time intervals for
each calculation will also be different. It would be much simpler if we had a set of values
for s, v, a, j, and c at evenly spaced angles around the cam; say every 1°. It is probably no
surprise by now to learn that MATLAB has a convenient function for accomplishing this:
the spline function.

666 Introduction to Mechanism Design

A typical scenario for a spline interpolation is shown in Figure 10.39. Assume that y is
a function of x, and that we know the values of y at x = (x1, x2, x3, x4, x5). With sufficient
cleverness, we can construct a set of cubic polynomial functions that pass through each
of the known points exactly. Because the polynomials are cubic, their slope and curvature
are continuous at each of the points, which make them nice and smooth. We call the set of
cubic polynomial functions a cubic spline and we can use the spline to estimate the value of
y at an arbitrary point x = X. For the best accuracy the point X should be within the range
defined by x1 … x5, in which case it is known as an interpolation. If X lies outside the range
x1 … x5, then it is an extrapolation and its accuracy may be doubtful.

In MATLAB a cubic spline is constructed using the spline function, and the syntax is

Y = spline(x, y, X)

where x is a vector of data points where we know the values of the function y. The vector
X is the set of x coordinates where we wish to estimate the function y, and the vector Y is
the set of these estimates. Let us now try using the spline function with a simple example.
Pretend for the moment that the function y is a sine function (of course, we don’t know the
actual form of the function y, we only know its value at a few data points). At the MATLAB
command line type

>> x = 2*pi*(0:4)/4
x =
 0 1.5708 3.1416 4.7124 6.2832

>> y = sin(x)
y =
 0 1.0000 0.0000 -1.0000 -0.0000

Here we have defined x to be a five element vector spanning between 0 and 2π. Remember
that the statement 0:4 returns the vector [0 1 2 3 4]. Now type

>> X = 2*pi*(0:100)/100;
>> Y = spline(x,y,X);

We have used the semicolon to suppress the output, but you can leave it off if you want to
see the calculated values. The pairs (x, y) are the known data points, and the pairs (X, Y)

y

x1 x2 x3 x4 x5
x

X

FIGURE 10.39
The value of the function y is known at (x1, x2, x3, x4, and x5) and we wish to estimate its value at X.

667Cams and Followers

are the estimates using the spline function. Enter the following plot commands to see the
result of the calculations

>> plot(x,y,'o')
>> hold on
>> plot(X,Y)
>> plot(X,sin(X))

The result of estimating the sine function with only four data points is shown in Figure 10.40.
It’s not too bad, considering how few data points we used. If you increase the number of
known (x,y) pairs to 10, the result should resemble Figure 10.41, which is an almost exact
match. Since we have calculated 100 points for each segment on the cam profile, we con-
clude that the cubic spline should do a reasonable job of estimating the rise, fall and dwell
functions between these points. Before we use the spline function, we need to define a
few important plotting parameters for the cam profile. Enter the following parameters at
the end of the CamMotion function.

% ***** plotting parameters for the cam profile *****
cam.Nc = 361; % number of points around cam profile
dLambda = 2*pi/(cam.Nc-1); % angular increment
cam.lambda = dLambda*(0:cam.Nc-1); % angles on cam to calculate profile
cam.dt = dLambda/cam.omega; % time increment

The variable cam.Nc gives the number of points to plot around the cam profile, which
is one point for every degree. The angular spacing between plotted points is calculated
as dLambda, and cam.lambda gives the angle for each plotted point on the cam pro-
file. Finally, the variable cam.dt is the time increment between points on the cam profile,

1.5

1

0.5

0

–0.5

–1

–1.5
0 1 2 3 4 5 6 7

Data points
Interpolation
Actual function

FIGURE 10.40
Interpolated values for the function y using only four known data points.

668 Introduction to Mechanism Design

assuming a constant angular velocity. Note that if we had decided to stick with 100 points
per segment, we would need to calculate a different dt for each segment. Carrying the
different dt’s through all of the subsequent kinematic and force calculations would be
cumbersome, to say the least. We are now ready to use the spline function to estimate the
profile parameters every 1° around the cam.

% use cubic spline to interpolate parameters on Nc points around cam
cam.s = spline(lambda, s,cam.lambda);
cam.v = spline(lambda, v,cam.lambda);
cam.a = spline(lambda, a,cam.lambda);
cam.j = spline(lambda, j,cam.lambda);
cam.c = spline(lambda, c,cam.lambda);

Remember that lambda was the set of angles that we performed an exact calculation for
each parameter, and cam.lambda is the set of evenly spaced angles where spline will gen-
erate the estimates. We have now converted our M values for s, v, a, j, etc. into 361 estimates
for these values, evenly spaced around the cam. Before we begin plotting, there are two
more useful parameters of the cam profile that we should calculate: the unit normal and
the radius of curvature.

10.8.4 The Unit Tangent and Normal Vectors

Consider the set of vectors shown in Figure 10.42. The radial vector c stretches from the
center of the cam at point A to a point B on the surface. The vector t is tangent to the surface
of the cam at B, and the vector u is normal to the surface (i.e. perpendicular to t) pointing
inward.

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1 0 1 2 3 4 5 6 7

Data points
Interpolation
Actual function

FIGURE 10.41
Interpolated values for the function y using 10 known data points.

669Cams and Followers

The tangent vector t can be thought of as the “slope” of the cam at a particular point. The
formula for this vector can be found in any textbook on vector calculus; it is simply the
derivative of the vector c with respect to the angular coordinate λ.

 λ

λ

=

d
d
d
d

t

c

c
 (10.55)

where we have divided by the magnitude in order to convert t to a unit vector. We must
use the product rule to find the derivative dc/dλ

c

e
e

λ λ λ
() ()= + + +d

d
d

d
r s r s

d
d

b b (10.56)

The derivative de/dλ is simply equal to n, the unit normal. Since rb is a constant, it vanishes
from the first term, and we are left with

 e
λ λ

()= + +c
n

d
d

ds
d

r sb (10.57)

If the point B happens to be in a dwell section then the displacement function, s, is constant
and ds/dλ = 0. If, instead, B is on a rise or fall section we must employ the chain rule to find
ds/dλ

λ λ

=ds
d

ds
dx

dx
d

where x is the dimensionless parameter that we used to define the rise and fall sections.
Now, recall the definition of velocity that we found in Section 10.4.

B

A

t

u
e

n

c

θ

FIGURE 10.42
The unit vector t is tangent to the cam at point C, and the unit vector u is normal to the surface, pointing inward.

670 Introduction to Mechanism Design

λ

λ= =v
ds
dt

ds
dx

dx
d

d
dt

Since dλ/dt = ω, the angular velocity of the cam, we can write

λ ω

=ds
d

v

Thus, the derivative dc/dλ is

c

e n
λ ω

= +d
d

v
r (10.58)

Dividing this vector by its magnitude will give the tangent vector. Let us define

ω

=V
v

 (10.59)

as the normalized velocity. The normalized velocity gives the rate of rise (or fall) of the
cam profile independent of the angular velocity of the cam. Then the unit tangent vector is

 = +
+

t
e n
e n

V r
V r

 (10.60)

The unit normal vector u is perpendicular to the tangent vector and is found in the usual
manner.

 u = =
−

⊥t

t

t
y

x

 (10.61)

We are now able to find the unit tangent vector and unit normal vector on any point on the
profile of the cam. These vectors are crucial in finding the resulting motion of the follower.
We will now modify the dwell and rise segments of our code to find the unit tangent and
normal vectors.

First, as shown in Figure 10.43, the unit normal on a dwell section is directed toward the
center of the cam, since a dwell section is a circular arc centered at A. Thus, in the dwell
section of the CamMotion function, add the following line of code.

Dwell

B A
t

u
e

n

c

FIGURE 10.43
The unit normal on a dwell section is directed toward the center of the cam.

671Cams and Followers

 u(:,k) = -e; % unit normal points to center

The unit normal in the rise section is a little trickier, but not too terrible. Add the following
lines to the rise segment of CamMotion.

% calculate unit normal to cam profile
 V = v(k)/cam.omega; % normalized velocity
 A = a(k)/(cam.omega^2); % normalized acceleration
 t = V*e + r*n; % tangent to cam profile
 t = t/norm(t); % convert to unit vector
 u(:,k) = [-t(2); t(1)]; % unit normal to cam profile

We didn’t use the normalized acceleration for the unit normal, but we will use it to calculate
radius of curvature in the next section.

10.8.5 Radius of Curvature of the Cam Profile

We will next present a formula for finding the radius of curvature at any point on the cam.
The concept for the radius of curvature is relatively simple, although deriving the formula
is a little tricky. As seen in Figure 10.44, the radius of curvature gives the radius of a circle
that “turns the corner” at the same rate as the cam profile at a given point. If the profile is
turning rapidly, then the radius of curvature is small, and a gradually turning profile has
a large radius of curvature. A straight line, of course, has an infinite radius of curvature.

An inflection point is a point on the cam profile where the curvature makes the transition
from convex to concave, as shown in Figure 10.45. Since the curvature is zero here, the
radius of curvature is infinite at an inflection point.

Now imagine that you are an insect traveling around the profile of the cam, as shown in
Figure 10.46. Your rate of progress is such that your angular velocity, ω = dλ/dt, is constant.
Thus, your angular position can be found at any time t by

 λ ω= t (10.62)

ρ

ρ

ρ

FIGURE 10.44
The radius of curvature gives the radius of a circle that has the same curvature as a point on the cam profile.

672 Introduction to Mechanism Design

The Cartesian coordinates of your current position are given by

 ()= + =r s rbc e e (10.63)

Your current velocity is

 ω ω= = + = +d
dt

ds
dt

r v rv
c

e n e n (10.64)

and your current acceleration is

 ω ω ω= = + + − 2d
dt

dv
dt

v
ds
dt

ra
v

e n n e (10.65)

Concave

Convex
Convex

Inflection points

FIGURE 10.45
An inflection point occurs where the curvature makes the transition from convex to concave.

c
θ

FIGURE 10.46
An insect travels around the profile of the cam in such a way that its angular velocity, ω = dλ/dt, remains constant.

673Cams and Followers

or

 ω ω= + −2 2a v ra e n e (10.66)

In the preceding equations, we have made use of the fact that

 ω ω= = −d
dt

d
dt

e
n

n
e

If we separate the velocity and acceleration into x and y components, we have

 ω ω ω
ω ω ω

= −

+

cos sin
sin cos

v
v

v t r t
v t r t

x

y

and

ω ω ω ω

ω ω ω ω

()
()

=

− −

− +

cos 2 sin

sin 2 cos

2

2

a
a

a r t v t

a r t v t

x

y

The equation for the radius of curvature can be found in any textbook on vector calculus:

 ρ
()

=
+
−

2 2
3
2v v

v a v a
x y

x y y x

 (10.67)

After some algebra, we find that

 ρ
()

()=
+

+ −2

2 2
3
2

2

V r

V r r A
 (10.68)

It is remarkable that all of the sine and cosine terms have cancelled out, leaving only
the position, velocity, and acceleration functions. During a dwell cycle, the velocity and
 acceleration are zero so that we are left with

 ρ = r (10.69)

that is, the radius of curvature during a dwell is simply the current radial position, as
expected. If we are so foolish as to design a cam with an abrupt change in velocity (thus
disobeying the fundamental law of cam design) the infinite acceleration will cause the
radius of curvature to be zero – an undesirable situation.

The customary mathematical definition of radius of curvature is the absolute value
of ρ found in Equation (10.67). We will use this definition when plotting the radius
of curvature, but we will allow ρ to take on positive or negative values for the rest of
the calculations. A positive radius of curvature means that the cam profile is convex at
the current location and a negative radius of curvature means that the cam profile is
concave.

We have thus found a simple formula for the radius of curvature for a cam at any point
on the profile. When using a roller follower, the radius of curvature should be 2–3 times as

674 Introduction to Mechanism Design

large as the follower radius at all points on the profile, which we can check by plotting it in
MATLAB. In the dwell segment of CamMotion add the following line

 rho(k) = r; % rad of curv is total radius

and in the rise segment add

% calculate radius of curvature of cam profile
 num = (V^2 + r^2)^1.5;
 den = 2*V^2 + r*(r - A);
 rho(k) = num/den; % radius of curvature

That’s it! Of course, we should also use the spline function at the end of the code to esti-
mate the values of u and ρ at 1° increments.

cam.rho = spline(lambda,rho,cam.lambda);
cam.u = spline(lambda, u,cam.lambda);

If you execute the CamDesigner script, it will appear that nothing has happened because
we haven’t asked MATLAB to plot anything yet. We did, however, calculate several impor-
tant cam functions, which you can see if you type cam at the command line.

>> cam

cam =
 struct with fields:
 Nd: 3
 h: [0 0.0050 0.0100]
 betad: [1.7453 0.6981 0.5236]
 betar: [1.0472 0.8727 1.3963]
 rb: 0.0250
 omega: 104.7198
 camfunc: @svaj345
 Nc: 361
 dLambda: 0.0175
 lambda: [1×361 double]
 dt: 1.6667e-04
 s: [1×361 double]
 v: [1×361 double]
 a: [1×361 double]
 j: [1×361 double]
 c: [2×361 double]
 rho: [1×361 double]
 u: [2×361 double]

Here you can see all of the variables that are stored in the cam structure. Vectors that are
small in size are displayed in full, as are the scalars. Large vectors (such as λ) are given
as a size. You can type cam.lamba at the command line to see the individual values. We
will next create a function that will plot several of the cam parameters that we have just
calculated. These will be used to verify that the s-v-a-j functions are the ones we intended,
to check the cam profile to see that it is realistic and to verify that the radius of curvature
remains at least 2–3 times the radius of the roller follower. The full text of the CamMotion

675Cams and Followers

function is shown below. At 103 lines of code, it is the longest function in our suite of cam
analysis programs.

% The function CamMotion calculates and plots the coordinates of a
% multiple-dwell cam profile. It also calculates and plots cams the
% s-v-a-j functions.
%
% ***** Inputs *****
% cam = parameters of cam profile
% showPlot = plotting options
%
% ***** Outputs *****
% cam = cam profile with kinematic functions

function cam = CamMotion(cam,showPlot)

% calculation parameters
N = 100; % no. of points to calculate on each dwell/rise/fall
M = 2*cam.Nd*N + 1; % total number of points to calculate

% allocate space for motion variables
[lambda,s,v,a,j,rho] = deal(zeros(1,M));
[c,u] = deal(zeros(2,M));

% convert angular segments to radians
cam.betad = pi*cam.betad/180;
cam.betar = pi*cam.betar/180;

% ***** calculate cam profile *****
k = 1; % start index counter at 1
lambda0 = 0; % starting angle for each segment

% main loop
for nd = 1:cam.Nd % loop through each dwell

% ***** dwell segment *****
 beta = cam.betad(nd); % angle of dwell
 for i = 1:N % loop through dwell segment
 x = (i-1)/N; % x ranges from 0 to 1
 lambda(k) = x*beta + lambda0; % current angle within dwell
 s(k) = cam.h(nd); % current displacement
 [e,~] = UnitVector(lambda(k)); % unit vector in radial dir.
 r = cam.rb + s(k); % radius to point B
 c(:,k) = r*e; % coordinates of cam profile
 rho(k) = r; % rad of curv is total radius
 u(:,k) = -e; % unit normal points to center

 k = k + 1; % increment index counter
 end
 lambda0 = lambda0 + cam.betad(nd); % move angle to end of current dwell

% calculate the change in height from this dwell to the next
 if (nd == cam.Nd) % if we are at final dwell, then height
 dh = cam.h(1) - cam.h(nd); % changes back to initial dwell,

676 Introduction to Mechanism Design

 else % otherwise height changes to next
 dh = cam.h(nd+1) - cam.h(nd); % dwell.
 end

% ***** rise (or fall) segment *****
 beta = cam.betar(nd); % angle of rise or fall
 h = cam.h(nd); % starting height of rise or fall
 z = cam.omega/beta; % omega/beta
 for i = 1:N
 x = (i-1)/N; % x ranges from 0 to 1
 lambda(k) = x*beta + lambda0; % current angle within rise
 [s(k),v(k),a(k),j(k)] = cam.camfunc(x,dh,h,z);
 [e,n] = UnitVector(lambda(k)); % unit vector in radial dir.
 r = cam.rb + s(k); % radius to point B
 c(:,k) = r*e; % coordinates of cam profile

% calculate unit normal to cam profile
 V = v(k)/cam.omega; % normalized velocity
 A = a(k)/(cam.omega^2); % normalized acceleration
 t = V*e + r*n; % tangent to cam profile
 t = t/norm(t); % convert to unit vector
 u(:,k) = [-t(2); t(1)]; % unit normal to cam profile

% calculate radius of curvature of cam profile
 num = (V^2 + r^2)^1.5;
 den = 2*V^2 + r*(r - A);
 rho(k) = num/den; % radius of curvature

 k = k + 1; % increment index counter
 end
 lambda0 = lambda0 + cam.betar(nd); % move angle to end of current rise
end

% parameters at 360deg are the same as at 0deg
lambda(M) = 2*pi; % final angle is 360 degrees
c(:,M) = c(:,1); % profile ends where it started
s(M) = s(1); % final displacement is same as initial
u(:,M) = u(:,1); % final unit normal is same as initial
rho(M) = rho(1); % final radius is same as initial

% ***** plotting parameters for the cam profile *****
cam.Nc = 361; % number of points around cam profile
dLambda = 2*pi/(cam.Nc-1); % angular increment
cam.lambda = dLambda*(0:cam.Nc-1); % angles on cam to calculate profile
cam.dt = dLambda/cam.omega; % time increment

% use cubic spline to interpolate parameters on Nc points around cam
cam.s = spline(lambda, s,cam.lambda);
cam.v = spline(lambda, v,cam.lambda);
cam.a = spline(lambda, a,cam.lambda);
cam.j = spline(lambda, j,cam.lambda);
cam.c = spline(lambda, c,cam.lambda);
cam.rho = spline(lambda,rho,cam.lambda);
cam.u = spline(lambda, u,cam.lambda);

677Cams and Followers

10.9 Plotting the Cam Profile, the s-v-a-j Diagram,
and Other Interesting Functions

Now that we have computed the cam profile with its associated surface normals, radius of
curvature and s-v-a-j functions, it is time to begin plotting. We will generate the following
figures to help visualize our cam profile and motion:

 1. The outline of the cam, c.
 2. The s-v-a-j diagram for the cam.
 3. The radius of curvature, ρ, versus angle on the cam, λ.
 4. The profile of the cam overlaid with a circle tangent to a given point on the cam.

This is used as a double-check on our radius of curvature calculations and also to
help visualize where any “trouble-spots” may occur.

Every one of the cam functions that we have calculated is worthy of being plotted, and
our screen will quickly become cluttered if we plot them all. For this reason, we will pass
several logical variables to the CamMotion function. A logical variable is one that can only
take on the values of true or false. In this instance, we will generate the cam profile plot
if showPlot.c is true, otherwise we won’t, with similar logical variables being used for
the other plots. This means that we must surround each set of plotting commands with an
if…end condition. Modify the CamMotion function definition so that we can pass a plot-
ting structure called showPlot containing the logical variable controlling each plot. The
updated first line of our CamMotion function should read:

function cam = CamMotion(cam,showPlot)

For completeness, we must be sure to update the function documentation as well. The new
header should now read:

% ***** Inputs *****
% cam = parameters of cam profile
% showPlot = plotting options

At the bottom of the user defined variables section of our main program, CamDesigner,
we will create our user defined plotting options showPlot. Populate it with the appropri-
ate logical variables:

% ***** Parameters for plotting (user-defined) *****
showPlot.c = true; % plot the profile of the cam?
showPlot.svajC = true; % plot the s-v-a-j functions for cam?
showPlot.rho = true; % plot the radius of curvature?
showPlot.rhoCheck = 225; % plot radius of curvature at a point? (-1=false)

We can now update our function call in the CamDesigner to include our plotting options.

% ***** Calculate cam profile and plot motion *****
cam = CamMotion(cam,showPlot);

With our main program modified to accept user plotting options and our CamMotion
function setup to receive these plotting options, let’s begin generating the plots. Insert our
custom color definitions at the end of CamMotion.

678 Introduction to Mechanism Design

% Define colors for plotting
cBlu = DefineColor([0 110 199]); % Pantone 300C
cBlk = DefineColor([0 0 0]); % grayscale

Make sure that you create a copy of the DefineColor function in the current working
 directory so that the plotting colors will be defined.

10.9.1 Plotting the Cam Profile

Plotting the cam profile is very simple because we can use many of the plotting commands
learned in earlier chapters. We will have many occasions to plot the cam profile as a basis
for other figures, so it is useful to define it as a separate function that we can reuse as many
times as we want. Open up a new script in MATLAB and type in the following function:

% The function PlotCamProfile plots the profile of a cam. The cam can be
% plotted in its original orientation or rotated by an angle theta2.
%
% ***** Inputs *****
% c = 2D vector of cam profile coordinates
% theta = angle of rotation of cam
% cBlu = shades of blue defined in the DefineColor function
% cBlk = shades of gray defined in the DefineColor function

function PlotCamProfile(c,theta,cBlu,cBlk)

hold on
A = [cos(theta) -sin(theta); % rotation matrix for rotating cam
 sin(theta) cos(theta)];
cr = A*c; % rotate coordinates of cam profile

% plot outline of cam
fill(cr(1,:),cr(2,:),cBlu(10,:),'EdgeColor',cBlu(1,:),'LineWidth',2)

% plot cam pivot
plot(0,0,'o','MarkerSize',8,'MarkerFaceColor',cBlk(5,:),'Color',cBlk(1,:))

% plot baseline on cam
plot([0 cr(1,1)],[0 cr(2,1)],':','Color',cBlu(3,:))

axis equal; grid on
xlabel('x (m)'); ylabel('y (m)'); title('Cam Profile')
set(gcf,'Position',[300 100 800 700])

Most of the function is fairly self-explanatory. The first part of the function performs a coor-
dinate transformation on the cam profile in case we wish to rotate the cam. For the present,
the rotation angle theta will be zero, but we will need to rotate the cam when we perform
motion and force analysis on the follower. Note that we have used the fill command,
rather than plot. This shades within the cam boundaries to make it easier to see. The first
plot command places a small circle at the center of the cam so that we can see the axis
of rotation. The second plot command draws the lambda = 0 line on the cam so that the
angle of rotation will be easier to see when we rotate the cam in later sections. Back in the
CamMotion function enter the commands that execute the PlotCamProfile function.

679Cams and Followers

% plot profile of cam
if showPlot.c
 figure
 PlotCamProfile(cam.c,0,cBlu,cBlk)
end

Now hit F5 to save all of the open scripts and execute the main program.
If everything has been entered correctly, you should obtain the plot shown in Figure 10.47.

The cam profile looks like a lumpy circle and it might not be immediately obvious where
the three dwell sections are. Luckily, they will be more apparent in the s-v-a-j plot.

10.9.2 The s-v-a-j Diagram for the Cam

In plotting the s-v-a-j diagram your first thought might be to construct four separate plot win-
dows, one for each function. It is much nicer, however, to have all four plots in one window
so that they can easily be compared with one another. Luckily, MATLAB has a command
subplot that can place several different plots in the same window. The syntax for subplot is

subplot(# of plot rows, # of plot columns, plot number)

That is, if you wanted to access the fifth plot in a window containing three rows and two
columns of plots you would type

subplot(3, 2, 5)

Since each plot in the s-v-a-j diagram is substantially the same, we should define another
function to create a single plot with axis labels, grid lines, etc. Open a new script and type
the following (very short) function.

0.02

0.015

0.01

0.005

0

–0.005

–0.015

–0.01

–0.02

–0.025

–0.03

y (
m

)

–0.04 –0.03 –0.02 –0.01 0 0.01 0.02 0.03
x (m)

Cam profile

FIGURE 10.47
Cam profile as plotted by the MATLAB script with the parameters given. There are three dwells on this cam,
but they are not immediately obvious by looking at the cam profile.

680 Introduction to Mechanism Design

% The function PlotCamSvaj creates a single plot on an s-v-a-j diagram
%
% ***** Inputs *****
% i = plot number (1-4)
% lambda = set of angles on cam (x axis on plot)
% y = function to plot
% ytitle = the y label for the plot (s, v, a or j)
% cBlu = shades of blue defined in the DefineColor function

function PlotCamSvaj(i,lambda,y,ytitle,cBlu)

subplot(4,1,i), plot(180*lambda/pi,y,'Color',cBlu(1,:),'LineWidth',2)

if (i == 1) % only place title on upper plot
 title('s-v-a-j Plot for Cam Profile')
end
if (i == 4) % only place x label for lowest plot
 xlabel('Cam angle (deg)')
end
ylabel(ytitle)

grid on
xlim([0 360])
set(gca,'xtick',0:60:360)

We have included an if statement so that the title is only placed on the uppermost plot
and the x label is only placed on the bottom plot, since it is the same for all four figures. At
the bottom of the CamMotion function, type the following

% create s-v-a-j diagram for cam
if showPlot.svajC
 figure
 PlotCamSvaj(1,cam.lambda,cam.s, 'Disp (m)',cBlu)
 PlotCamSvaj(2,cam.lambda,cam.v, 'Vel (m/s)',cBlu)
 PlotCamSvaj(3,cam.lambda,cam.a, 'Acc (m/s^2)',cBlu)
 PlotCamSvaj(4,cam.lambda,cam.j,'Jerk (m/s^3)',cBlu)

 set(gcf,'Position',[200 50 1000 750])
end

This has made the CamMotion program much shorter, and much less repetitive than it
would have been if we had set the parameters of each plot individually. If you change
showPlot.svajC to true in the main program, you will obtain the s-v-a-j diagram shown
in Figure 10.48. It is likely that the default MATLAB plot window is too small to see the
details in the s-v-a-j plot. This is the reason for the statement

 set(gcf,'Position',[100 50 1300 700])

in the set of plot commands. This sets the size parameters for the current plot window. The
syntax for this command is

set(gcf,'Position',[x-coordinate y-coordinate width height])

681Cams and Followers

where x-coordinate and y-coordinate give the distance (in pixels) from the upper left
 corner of the screen. The values given above work well on a 14-inch laptop screen, but you
may need to ‘tweak’ them for your own screen.

10.9.3 Plotting the Radius of Curvature

The plotting commands for radius of curvature are familiar to us by now. Enter these lines
in the CamMotion function:

% Plot radius of curvature versus lambda
if showPlot.rho
 figure
 ymax = 1.2*(cam.rb + max(cam.h)); % maximum radius of cam
 plot(180*cam.lambda/pi,abs(cam.rho),'LineWidth',2,'Color',cBlu(1,:))

 xlabel('Cam Angle (deg)'); ylabel('Radius of Curvature (m)')
 title('Radius of Curvature vs. Cam Angle')
 grid on

0.02

0.01

0
0 60 120 180

s-v-a-j plot for cam profile

240 300 360

Cam angle (°)

D
isp

 (m
)

2

0

–2
0 60 120 180 240 300 360

Ve
l (

m
/s

)

500

0

–500
0 60 120 180 240 300 360

Ac
c (

m
/s

2)

10 ×105

0

5

–5
0 60 120 180 240 300 360

Je
rk

 (m
/s

3)

FIGURE 10.48
s-v-a-j diagram of the cam as plotted by the MATLAB script. The locations of dwells, rises, and falls are now
obvious.

682 Introduction to Mechanism Design

 axis([0 360 0 ymax])
 set(gca,'xtick',0:60:360)
 set(gcf,'Position',[100 100 1000 600])
end

Since the radius of curvature will approach infinity at each inflection point it is necessary
to scale the plot so that we can see the details we are interested in. The variable ymax
 calculates a value that is 20% larger than the maximum value of the cam radius and uses
it to scale the y axis of the plot. Note that we have used the absolute value of cam.rho in
the plot command. Change showPlot.rho to true in the main program and execute it.

If you save and execute the main program, you should obtain the plot shown in Figure 10.49.
The dwell portions are flat, which means that the radius of curvature is constant in these
regions. Points of inflection appear where the radius of curvature plot shoots off to infinity.

10.9.4 A Plot for Checking the Radius of Curvature

Deriving the radius of curvature was a little abstract, and you might be wondering if there
is a way to check the calculations. One simple method is to plot a circle with the appropri-
ate radius at the center of curvature of a given point on the cam profile to see if it the circle
is tangent to the cam at that point.

Such a circle is shown in Figure 10.50. The circle has radius ρ, which is the same as the
radius of curvature at the point B.

As shown in Figure 10.51, we can get to the center of the circle by moving from the point
B a distance ρ in the direction normal to the surface of the cam.

 ρ= +g c u (10.70)

0.04

0.035

0.03

0.025

0.02

0.015

Ra
di

us
 o

f c
ur

va
tu

re
 (m

)

0.01

0.005

0
0 60 120 180

Cam angle (°)

Radius of curvature vs. cam angle

Dwell

Dwell

Dwell

240 300 360

FIGURE 10.49
Radius of curvature for our example cam. Note that the radii match the outer radius of the cam during the dwell
portions.

683Cams and Followers

At the bottom of the CamMotion function, enter the following plotting commands:

% Plot tangent circle and normal to cam surface
if (showPlot.rhoCheck > -1)
 figure
 ymax = 1.2*(cam.rb + max(cam.h)); % maximum radius of cam
 CamProfilePlot(cam.c,0,cBlu,cBlk); % plot profile of cam

 phi = pi*(0:360)/180; % define unit circle
 circ = [cos(phi); sin(phi)]; % centered at origin

 i = rhoCheck + 1; % angle of tangent point
 g = cam.c(:,i) + cam.rho(i)*cam.u(:,i); % center of circle
 circ(1,:) = cam.rho(i)*circ(1,:) + g(1); % scale and move circle x-coords

c

B

ρ

G

FIGURE 10.50
The circle centered at G has the same radius of curvature as the cam at point B and is also tangent to the cam
at this point.

g
c

B

ρu

G

FIGURE 10.51
To get to the center of the circle move from the point B a distance ρ along the normal to the cam profile.

684 Introduction to Mechanism Design

 circ(2,:) = cam.rho(i)*circ(2,:) + g(2); % scale and move circle y-coords

% plot the circle
 plot(circ(1,:),circ(2,:),':','Color',cBlk(5,:),'LineWidth',2)

% plot the center of the circle
 plot(g(1),g(2),'+','Color',cBlk(5,:),'MarkerSize',8)

% plot the point B on the cam surface
 plot(cam.c(1,i),cam.c(2,i),'p','Color',cBlk(5,:),'MarkerSize',8,...
 'MarkerFaceColor',cBlk(5,:))

% plot the normal to the cam surface
 plot([g(1) cam.c(1,i)],[g(2) cam.c(2,i)],':','Color',cBlk(5,:),...
 'LineWidth',2)

 title(['Contact at ' num2str(180*cam.lambda(i)/pi) 'deg. ' ...
 ' rho = ' num2str(cam.rho(i)) 'm'])
 axis([-ymax ymax -ymax ymax])
end

The variable showPlot.rhoCheck is not, strictly speaking, a logical variable. Instead, it
is used to give the index of the angle on the cam where the tangent circle should touch
the cam profile. Since the angle cam.lambda starts out at cam.lambda(1) = 0, we must
add one to showPlot.rhoCheck to have it plot the proper angle. The rest of the syntax is
mostly self-explanatory, although the portion defining the unit circle may be a little subtle.
We first define a vector phi that ranges from 0 to 2π. The command

 circ = [cos(phi); sin(phi)];

calculates the cosine and sine of phi for each angle, which results in a set of x and y coor-
dinates, one for each angle of the circle. It is a circle with radius 1. We translate the unit
circle to its new origin by adding vector g. We have translated the x and y components of
the circle separately to preserve functionality in earlier versions of MATLAB. In the 2017
release this translation can be completed in one step, using

circ = cam.rho(i)*circ + g; %scale and translate circle

Remember that showPlot.rhoCheck gives the index of the current position on the cam
profile, not the angle itself. We have included the angle λ in the title of the plot to make life
easier for the user. Since we have done our calculations every 1°, there will be a one-to-one
correspondence between showPlot.rhoCheck and λ, but this would not be the case if we
had done our calculations every half-degree, for instance.

To execute the radius of curvature check, change the value of showPlot.rhoCheck in
the main CamDesigner program to read

showPlot.rhoCheck = 75; % plot radius of curvature at a point? (-1=false)

Example plots for three different values of showPlot.rhoCheck can be seen in
Figures 10.52–10.54. This completes our set of functions for calculating and plotting the
cam profile and its associated features.

685Cams and Followers

0.04

0.03

0.02

0.01

0

–0.01

–0.02

–0.03

–0.04

y (
m

)

–0.04 –0.03 –0.02 –0.01 0 0.01 0.02 0.03 0.04
x (m)

Contact at 75° rho = 0.025 m

FIGURE 10.52
Tangent circle where λ = 75°. This is the first dwell segment with s = 0, so the circle is the same as the base circle.

0.04

0.03

0.02

0.01

0

–0.01

–0.02

–0.03

–0.04

y (
m

)

–0.04 –0.03 –0.02 –0.01 0 0.01 0.02 0.03 0.04

x (m)

Contact at 145° rho = 0.015964 m

FIGURE 10.53
Tangent circle where λ = 145°. This is part of the second rise function and the radius of curvature is relatively
small.

686 Introduction to Mechanism Design

10.9.5 Some Design Examples

We will now work through a few design examples to see how our suite of programs might
be used in practice. As a first example, let us determine the effect of the rise function on
the cam profile and s-v-a-j diagram. Create a new rise function for the 4-5-6-7 polynomial.
The simplest way to do this is to modify the svaj345 function already defined using the
formulas developed in Section 10.4. If you plot the profiles of the example triple-dwell cam
you should obtain the plots shown in Figure 10.55. As you can see, the profiles are almost
indistinguishable by eye, although the 4-5-6-7 cam seems to be slightly more concave at
the rise sections.

The profiles are more easily distinguished if we plot their s-v-a-j diagrams, as shown in
Figure 10.56. The jerk function for the 3-4-5 polynomial has higher peaks (and is gener-
ally more “jerky”) than the 4-5-6-7 rise function, but the peak acceleration for the 4-5-6-7
profile is slightly higher. The designer may choose the 3-4-5 profile for lower peak forces or
the 4-5-6-7 profile for smoother operation. As with everything in design, there is no single
correct solution!

As a final check on our cam profiles, we can plot the radius of curvature versus cam angle,
as shown in Figure 10.57. As we suspected by examining the cam profiles, the 4-5-6-7 rise
function has a smaller minimum radius of curvature – around 13 mm versus the 16 mm
or so for the 3-4-5 rise function. If we choose a roller follower with roller diameter of 1/3
the minimum radius of curvature of the cam, this would require a 8.6 mm diameter roller
for the 4-5-6-7 cam and a 10.7 mm diameter roller for the 3-4-5 cam. As a practical matter,

0.04

0.03

0.02

0.01

0

–0.01

–0.02

–0.03

–0.04

y (
m

)

–0.04 –0.03 –0.02 –0.01 0 0.01 0.02 0.03 0.04
x (m)

Contact at 204° rho = 0.15765 m

FIGURE 10.54
Tangent circle where λ = 204°. This is near a point of inflection so the radius of curvature is very large.

687Cams and Followers

0.02
0.015

0.005

–0.005
–0.01

–0.015
–0.02

–0.025
–0.03

–0.04 –0.03 –0.02 –0.01 0 0.01 0.02 0.03

0

0.01

y (
m

)

y (
m

)

x (m)
3-4-5 Polynominal 4-5-6-7 Polynominal

Cam profile Cam profile

0.02
0.015

0.01
0.005

–0.005
–0.01

–0.015
–0.02

–0.025
–0.03

–0.04 –0.03 –0.02 –0.01 0 0.01 0.02 0.03

0

x (m)

FIGURE 10.55
Comparison of cam profiles generated with the 3-4-5 polynomial and 4-5-6-7 polynomial rise functions. The
profiles are almost indistinguishable.

D
isp

 (m
) 0.02

0.01

0
0 60 120 180 240 300 360

D
isp

 (m
) 0.02

0.01

0
0 60 120 180 240 300 360

Ve
l (

m
/s

) 2

0

–2 Ve
l (

m
/s

) 2

0

–2
0 60 120 180 240 300 360 0 60 120 180 240 300 360

Ac
c (

m
/s

2) 500

0

–500 Ac
c (

m
/s

2) 500

0

–500
0 60 120 180 240 300 360 0 60 120 180 240 300 360

Je
rk

 (m
/s

3) 5 × 105

0

–5 Je
rk

 (m
/s

3) 5

0

–5
0 60 120 180

Cam angle (°)
3-4-5 Polynomial 4-5-6-7 Polynomial

s-v-a-j plot for cam profile s-v-a-j plot for cam profile

Cam angle (°)
240 300 360 0 60 120 180 240 300 360

FIGURE 10.56
s-v-a-j diagrams for the 3-4-5 and 4-5-6-7 rise functions for the triple-dwell cam.

Radius of curvature vs. cam angle

Ra
di

us
 o

f c
ur

va
tu

re
 (m

)

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0
0 60 120 180

Cam angle (°)
3-4-5 Polynomial

240 300 360 0

Radius of curvature vs. cam angle

Ra
di

us
 o

f c
ur

va
tu

re
 (m

)

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0
0 60 120 180

Cam angle (°)
4-5-6-7 Polynomial

240 300 360

FIGURE 10.57
Radius of curvature plots for the 3-4-5 and 4-5-6-7 polynomial rise functions for the triple-dwell example cam.

688 Introduction to Mechanism Design

we must include the space taken up by the roller bearings inside the roller, so an 8.6 mm
diameter roller may be too small for our application.

A simple way to increase the radius of curvature is to raise the value of the base radius. If
we increase the base radius to 50 mm on the cam, we obtain the plot shown in Figure 10.58.
The minimum radius of curvature is now approximately 33 mm, which permits a much
larger roller diameter. We can further increase the radius of curvature by increasing the
base radius, but space limitations will limit the maximum size of the cam.

Now that we have a method for calculating and plotting the cam profile we are ready to
begin the more difficult task of modeling the motion of the follower. A full listing of the
CamMotion function that we have developed in this section is given below.

10.9.6 The CamMotion Function

% The function CamMotion calculates and plots the coordinates of a
% multiple-dwell cam profile. It also calculates and plots cams the
% s-v-a-j functions.
%
% ***** Inputs *****
% cam = parameters of cam profile
% showPlot = plotting options
%
% ***** Outputs *****
% cam = cam profile with kinematic functions

function cam = CamMotion(cam,showPlot)

0
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

60 120 180
Cam angle (°)

Radius of curvature vs. cam angle

Ra
di

us
 o

f c
ur

va
tu

re
 (m

)

240 300 360

FIGURE 10.58
Radius of curvature for the 4-5-6-7 cam with base radius 50 mm.

689Cams and Followers

% calculation parameters
N = 100; % no. of points to calculate on each dwell/rise/fall
M = 2*cam.Nd*N + 1; % total number of points to calculate

% allocate space for motion variables
[lambda,s,v,a,j,rho] = deal(zeros(1,M));
[c,u] = deal(zeros(2,M));

% convert angular segments to radians
cam.betad = pi*cam.betad/180;
cam.betar = pi*cam.betar/180;

% ***** calculate cam profile *****
k = 1; % start index counter at 1
lambda0 = 0; % starting angle for each segment

% main loop
for nd = 1:cam.Nd % loop through each dwell

 % ***** dwell segment *****
 beta = cam.betad(nd); % angle of dwell
 for i = 1:N % loop through dwell segment
 x = (i-1)/N; % x ranges from 0 to 1
 lambda(k) = x*beta + lambda0; % current angle within dwell
 s(k) = cam.h(nd); % current displacement
 [e,~] = UnitVector(lambda(k)); % unit vector in radial dir.
 r = cam.rb + s(k); % radius to point B
 c(:,k) = r*e; % coordinates of cam profile
 rho(k) = r; % rad of curv is total radius
 u(:,k) = -e; % unit normal points to center

 k = k + 1; % increment index counter
 end
 lambda0 = lambda0 + cam.betad(nd); % move angle to end of current dwell

 % calculate the change in height from this dwell to the next
 if (nd == cam.Nd) % if we are at final dwell, then height
 dh = cam.h(1) - cam.h(nd); % changes back to initial dwell,
 else % otherwise height changes to next
 dh = cam.h(nd+1) - cam.h(nd); % dwell.
 end

 % ***** rise (or fall) segment *****
 beta = cam.betar(nd); % angle of rise or fall
 h = cam.h(nd); % starting height of rise or fall
 z = cam.omega/beta; % omega/beta
 for i = 1:N
 x = (i-1)/N; % x ranges from 0 to 1
 lambda(k) = x*beta + lambda0; % current angle within rise
 [s(k),v(k),a(k),j(k)] = cam.camfunc(x,dh,h,z);
 [e,n] = UnitVector(lambda(k)); % unit vector in radial dir.
 r = cam.rb + s(k); % radius to point B
 c(:,k) = r*e; % coordinates of cam profile

690 Introduction to Mechanism Design

 % calculate unit normal to cam profile
 V = v(k)/cam.omega; % normalized velocity
 A = a(k)/(cam.omega^2); % normalized acceleration
 t = V*e + r*n; % tangent to cam profile
 t = t/norm(t); % convert to unit vector
 u(:,k) = [-t(2); t(1)]; % unit normal to cam profile

 % calculate radius of curvature of cam profile
 num = (V^2 + r^2)^1.5;
 den = 2*V^2 + r*(r - A);
 rho(k) = num/den; % radius of curvature

 k = k + 1; % increment index counter
 end
 lambda0 = lambda0 + cam.betar(nd); % move angle to end of current rise
end

% parameters at 360deg are the same as at 0deg
lambda(M) = 2*pi; % final angle is 360 degrees
c(:,M) = c(:,1); % profile ends where it started
s(M) = s(1); % final displacement is same as initial
u(:,M) = u(:,1); % final unit normal is same as initial
rho(M) = rho(1); % final radius is same as initial

% ***** plotting parameters for the cam profile *****
cam.Nc = 361; % number of points around cam profile
dLambda = 2*pi/(cam.Nc-1); % angular increment
cam.lambda = dLambda*(0:cam.Nc-1); % angles on cam to calculate profile
cam.dt = dLambda/cam.omega; % time increment

% use cubic spline to interpolate parameters on Nc points around cam
cam.s = spline(lambda, s,cam.lambda);
cam.v = spline(lambda, v,cam.lambda);
cam.a = spline(lambda, a,cam.lambda);
cam.j = spline(lambda, j,cam.lambda);
cam.c = spline(lambda, c,cam.lambda);
cam.rho = spline(lambda,rho,cam.lambda);
cam.u = spline(lambda, u,cam.lambda);

% ***** Plotting Code *****

% define colors for plotting
cBlu = DefineColor([0 110 199]); % Pantone 300C
cBlk = DefineColor([0 0 0]); % grayscale

% plot profile of cam
if showPlot.c
 figure
 PlotCamProfile(cam.c,0,cBlu,cBlk)
end

% create s-v-a-j diagram for cam

691Cams and Followers

if showPlot.svajC
 figure
 PlotCamSvaj(1,cam.lambda,cam.s, 'Disp (m)',cBlu)
 PlotCamSvaj(2,cam.lambda,cam.v, 'Vel (m/s)',cBlu)
 PlotCamSvaj(3,cam.lambda,cam.a, 'Acc (m/s^2)',cBlu)
 PlotCamSvaj(4,cam.lambda,cam.j,'Jerk (m/s^3)',cBlu)

 set(gcf,'Position',[200 50 1000 750])
end

% plot radius of curvature versus lambda
if showPlot.rho
 figure
 ymax = 1.2*(cam.rb + max(cam.h)); % maximum radius of cam
 plot(180*cam.lambda/pi,abs(cam.rho),'LineWidth',2,'Color',cBlu(1,:))

 xlabel('Cam Angle (deg)'); ylabel('Radius of Curvature (m)')
 title('Radius of Curvature vs. Cam Angle')
 grid on
 axis([0 360 0 ymax])
 set(gca,'xtick',0:60:360)
 set(gcf,'Position',[100 100 1000 600])
end

% plot tangent circle and normal to cam surface
if (showPlot.rhoCheck > -1)
 figure
 ymax = 1.2*(cam.rb + max(cam.h)); % maximum radius of cam
 PlotCamProfile(cam.c,0,cBlu,cBlk); % plot profile of cam

 phi = pi*(0:360)/180; % define unit circle
 circ = [cos(phi); sin(phi)]; % centered at origin

 i = showPlot.rhoCheck + 1; % angle of tangent point
 g = cam.c(:,i) + cam.rho(i)*cam.u(:,i); % center of circle
 circ(1,:) = cam.rho(i)*circ(1,:) + g(1); % scale and move circle x-coords
 circ(2,:) = cam.rho(i)*circ(2,:) + g(2); % scale and move circle y-coords

 % plot the circle
 plot(circ(1,:),circ(2,:),':','Color',cBlk(5,:),'LineWidth',2)

 % plot the center of the circle
 plot(g(1),g(2),'+','Color',cBlk(5,:),'MarkerSize',8)

 % plot the point B on the cam surface
 plot(cam.c(1,i),cam.c(2,i),'p','Color',cBlk(5,:),'MarkerSize',8,...
 'MarkerFaceColor',cBlk(5,:))

 % plot the normal to the cam surface
 plot([g(1) cam.c(1,i)],[g(2) cam.c(2,i)],':','Color',cBlk(5,:),...
 'LineWidth',2)

692 Introduction to Mechanism Design

 title(['Contact at ' num2str(180*cam.lambda(i)/pi) 'deg. ' ...
 ' rho = ' num2str(cam.rho(i)) 'm'])
 axis([-ymax ymax -ymax ymax])
end

10.10 Motion of the Follower

In order to be useful, every cam must transmit its motion to another link or body in its
environment. In this section, we will consider the motion that results when a cam rolls
against one of the three types of followers shown in Figure 10.59. The simplest follower
motion to model is the flat-faced translational follower and the other two types are a little
more complicated. Both the first and second types move in translation only, and the third
moves rotationally. To simplify things, we will refer to the translational roller-follower as
the roller-follower, and the oscillating roller-follower we will call the rocker-follower. By the
end of this section, we will have developed another set of functions that perform the posi-
tion, velocity, and acceleration analysis for each type of follower.

We assume that the design of the cam has already been carried out using the tech-
niques of the previous sections, and we wish to analyze the motion of the follower as
the cam rotates. Do not be deceived by the apparent simplicity of the geometry shown
in Figure 10.59 – the motion of the follower is surprisingly complex and will require us
to learn a few new facts about vector geometry. Once we have done the math, however,
it will prove to be relatively simple to write the MATLAB scripts to perform the analysis
for us.

Given the complicated nature of the cam profile functions, the position analysis equa-
tions for the follower are nonlinear and very difficult (or impossible) to solve analytically.
We must, therefore, employ a nonlinear equation solving routine to find the exact position
of the follower. For the same reason we must use numerical differentiation to find the
velocity and acceleration of the follower. A flowchart of our solution technique is shown
in Figure 10.60. We first rotate the cam through one revolution in 1° increments. At each
step we make an estimate of the point of contact with the follower based on the cam profile
information we obtained in the CamMotion function. This will only be an estimate, since

Flat-faced
follower

Translating
roller
follower

Oscillating
roller
follower

FIGURE 10.59
The motion of the cam is transmitted to a follower. The motion of the follower can be translational or rotational.

693Cams and Followers

we computed the cam profile in (relatively coarse) 1° increments. It is a good enough esti-
mate, however, to serve as a starting “guess” for the Newton–Raphson algorithm that will
find the exact point of contact. Once we know the exact point of contact, we can easily find
the position of the follower to a high degree of precision, along with its time derivatives
(velocity and acceleration).

10.10.1 Spline Interpolation—Part 2

We can use the cam profile information already computed to find an estimate of the point
of contact, but we will need to refine this information to a very fine degree when we use
Newton–Raphson to solve for the exact point of contact. Recall that we used cubic spline
interpolation to estimate the cam parameters at 1° increments around the profile. MATLAB
allows us to “store” its values that it used in creating the cubic spline for later use if we
wish to calculate interpolated values at other angles. Just before the plotting section of
CamMotion function, type the following three lines.

% define spline functions for follower calculations
cam.splineU = spline(lambda,u);
cam.splineC = spline(lambda,c);

The field cam.splineU contains the coefficients of the cubic polynomials used to calculate
the cubic interpolation of the surface normals to the cam. By giving the spline function
only two arguments (as opposed to the three arguments we gave it before) we are telling
MATLAB that we want the coefficients of the cubic polynomials for later use. We can use
MATLAB’s ppval function to interpolate the surface normal at any other angle by typing

ustar = ppval(cam.splineU,lambdaStar)

Estimate follower velocity
and acceleration

Use Newton–Raphson to
find exact point of contact

Estimate point of contact within 1°
using cam profile information

For every 1° of rotation

Fo
llo

w
er

 m
ot

io
n

Rotate cam one revolution

FIGURE 10.60
Flowchart for the follower motion functions. We first estimate the point of contact based on the cam profile
information we have already computed, then we refine the estimate using the Newton–Raphson algorithm.

694 Introduction to Mechanism Design

The variable ustar is the newly interpolated value taken at the angle lambdaStar. We
will use the ppval function quite a bit when we refine our estimate for the point of contact
using the Newton–Raphson algorithm.

The position equation is different for each type of follower, so we will need to develop
three different functions: FlatMotion, RollerMotion, and RockerMotion. Each of
these will perform a position/velocity/acceleration analysis on the follower and will
generate a set of useful plots. At the end of each function, we will create a primitive
MATLAB animation to help us visualize the motion of the follower. Knowing that
we will have three different types of followers for the user to select from we will cre-
ate a follower structure in our CamDesigner program. Immediately following our
cam structure definition create the follower structure with the first field being the
follower type:

% ***** Parameters for follower (user-defined) *****
follower.type = 'flat'; % follower type ['flat' | 'roller' | 'rocker']

Since the calculations of each type of follower vary, we will need to run the correct function
based on the type of follower selected by the user. After the CamMotion function is run,
which is the same regardless of follower type, let us use a switch-case statement to select
the correct follower code to run. After the CamMotion function in our CamDesigner pro-
gram add

% ***** Perform calculations based on follower type specified *****
switch follower.type
 case 'flat'
 % Calculate and plot motion of the follower
 follower = FlatMotion(cam,follower,showPlot);

 case 'roller'
 % Calculate and plot motion of the follower
 follower = RollerMotion(cam,follower,showPlot);

 case 'rocker'
 % Calculate and plot motion of the follower
 follower = RockerMotion(cam,follower,showPlot);

 otherwise
 disp('ERROR: Invalid follower type specified, choose flat, roller ',...
 'or rocker')
end

The switch reads the value stored in follower.type and then executes the code in the
case that matches. If it cannot find a correct match then the otherwise block of code is
executed. In our case, we use the otherwise section to throw an error and alert the user
they have made an invalid selection of follower types.

10.10.2 Motion of the Flat-Faced Follower

The basic geometry of the cam and flat-faced follower is shown in Figure 10.61. We assume
that the follower extends to infinity in the positive and negative y directions so that it
always makes contact with the cam at its maximum x coordinate. This gives us a hint as

695Cams and Followers

to how we might proceed in obtaining an estimate of the point of contact. First, rotate the
cam to the desired angle. Next, search through all x coordinates of the rotated cam profile,
c, until the maximum x value is found. This will give the point of contact to within 1°, since
we solved for c at every 1° on the cam. Open a new script and type the following header:

% The function FlatMotion calculates and animates the position, velocity
% and acceleration of a flat follower.
%
% ***** Inputs *****
% cam = cam parameters
% follower = follower parameters
% showPlot = plotting parameters
%
% ***** Outputs *****
% follower = position, velocity and acceleration of the follower

function follower = FlatMotion(cam,follower,showPlot)

We begin the function by rotating the cam one revolution in 1° increments. Recall that
the cam profile was defined by moving around the cam in the clockwise direction – in
the s diagram a positive movement along the λ axis corresponds to a clockwise rota-
tion around the cam. Recall this λ was defined as positive in the clockwise direction
so when we rotate the cam itself in the traditional counterclockwise angle definition
direction, the follower will encounter the cam profile in the opposite direction than
we designed, as shown in Figure 10.62. Enter the for loop below in the FlatMotion
function.

% ***** rotate cam one revolution *****
for i = 1:cam.Nc
 theta = cam.lambda(i); % rotation angle of cam
 A = [cos(theta) -sin(theta); % rotation matrix

rb c

FIGURE 10.61
The flat-faced follower makes contact at the maximum x coordinate on the cam.

Baseline

Point of contact

FIGURE 10.62
The follower encounters the cam profile in the opposite direction from the way we designed it.

696 Introduction to Mechanism Design

 sin(theta) cos(theta)];
 cr = A*cam.c; % rotated cam profile

end

To rotate the cam, we simply multiply the cam profile, cam.c, by the rotation matrix A.
To find the maximum x coordinate of the rotated cam profile, we can use the built-in max
function in MATLAB.

 [~,maxIndex] = max(cr(1,:)); % find max x coordinate of cam profile

Note that we are not particularly interested in the maximum value of the profile at this
point, we just want to know which index of cr contains the maximum value, since we’ll
use this point as a starting value for the Newton–Raphson algorithm.

A simplified flowchart of the Newton–Raphson algorithm is shown in Figure 10.63; see
Chapter 4 for a full explanation of the algorithm. The purpose of the algorithm is to find
the value of the variable q that makes the function Φ take on the value of zero. In our case
the variable q is the angle λ on the cam. Since we are trying to find the maximum value
of the x coordinate on the cam profile, it is not immediately obvious which function we
should set to zero.

A closer look at the cam/follower interface, shown in Figure 10.64, can give us a hint
as to an appropriate function. Assuming that the cam function is continuous, the surface
normal to the cam u at the point of contact is perpendicular to the face of the follower; that
is, it is horizontal. The vertical component of u should be zero at the point of contact, and
we have found an appropriate function.

 ()Φ =q uy (10.71)

Initial guess at q

Evaluate Φ(qi)

∆qi = –Φ(qi)/J

q = q + ∆q

Evaluate J(qi)

|Φ(q)|<ε?

No

Yes
Done!

FIGURE 10.63
The Newton–Raphson algorithm for solving nonlinear equations.

697Cams and Followers

Thus, we wish to find the value of λ on the cam that makes the vertical compo-
nent of the surface normal zero. The same Newton–Raphson algorithm will be used
for each type of follower, but each follower will have its own function Φ that we
will set to zero. We are now ready to enter the Newton–Raphson algorithm into the
FlatMotion function.

% ***** use Newton-Raphson to find where cam normal is horizontal *****
 q = cam.lambda(maxIndex); % max x coordinate is starting point for N-R
 for j = 1:100
 [phi,xB] = FlatPhi(cam,q,A);
 if (abs(phi) < 1e-10) % have we found a solution?
 follower.s(i) = xB(1) - cam.rb;
 follower.xB(:,i) = xB(:); % point of contact
 break
 end
 [phi1,~] = FlatPhi(cam,q-0.0001,A); % calculate Jacobian
 [phi2,~] = FlatPhi(cam,q+0.0001,A); % numerically
 jac = (phi2 - phi1)/0.0002;
 dq = -phi/jac;
 q = q + dq;
 end

You should be able to match each of the statements in the code above to the boxes in the
flowchart. Remember that the Jacobian is defined as

λ

= Φ =J
d
dq

du
d

y (10.72)

or the derivative of the contact function with respect to the angle. Since we lack an ana-
lytical expression for the contact function we must take the derivative numerically. The
FlatPhi function is function we wish to minimize. Enter this function in a separate
script.

% The function FlatPhi generates the current value of phi for the
% Newton-Raphson method while calculating point of contact between a flat

C

c

u

FIGURE 10.64
The surface normal at the point of contact is horizontal.

698 Introduction to Mechanism Design

% follower and a cam
%
% ***** Inputs *****
% Cam = cam parameters
% q = current angle
% A = transformation matrix
%
% ***** Output *****
% phi = calculated value of phi function

function [phi,xBr] = FlatPhi(cam,q,A)

q = mod(q,2*pi); % keep q under 2*pi
xB = ppval(cam.splineC,q); % point of contact
uB = ppval(cam.splineU,q); % surface normal
xBr = A*xB; % rotate point of contact
uBr = A*uB; % rotate surface normal

phi = uBr(2); % y coordinate of surface normal

We have used the mod function to ensure that the current value of λ remains under 2π.
Note that we also calculate the point of contact at the same time as we calculate the y com-
ponent of the surface normal. The variable xBr gives the point of contact with the follower
and will enable us to compute the follower position function. This completes the follower
position analysis loop.

10.10.3 Calculating Velocity and Acceleration of the Follower

We found the position of the follower numerically, so we must also use numerical
 differentiation to find velocity and acceleration. Since we will need to calculate derivatives
for each type of follower, it makes sense to create a separate function for differentiation.

% The function FollowerDerivative calculates the numerical derivatives of
% follower motion
%
% ***** Inputs *****
% cam = cam parameters
% s = starting values
%
% ***** Outputs *****
% v = derivative of starting values

function v = FollowerDerivative(cam,s)

v = zeros(1,cam.Nc);
for i = 1:cam.Nc

 if (i == 1) % if at beginning
 k1 = cam.Nc; % loop back to end
 else
 k1 = i - 1;
 end

699Cams and Followers

 if (i == cam.Nc) % if at end
 k2 = 1; % loop back to beginning
 else
 k2 = i + 1;
 end

 v(i) = (s(k2) - s(k1))/(2*cam.dt);
end

Here we are using symmetric differentiation with the formula

 = −+ −

2
1 1v

s s
dt

i
i i (10.73)

This works because the motion of the follower is cyclical, and s1 = s361. Type in the lines that
call the FollowerDerivative function in the FlatMotion function.

% calculate velocity and acceleration of the follower numerically
follower.v = FollowerDerivative(cam,follow.s);
follower.a = FollowerDerivative(cam,follow.v);

We are now ready to begin plotting and animating the motion of the follower. The first
figure will plot the s-v-a diagram for the follower overlaid with the s-v-a diagram for the
cam. We’ll need a new function to overlay both traces on the same plot.

% The function PlotFollowerSva creates a single plot on an s-v-a diagram
% for the follower overlaid with the same plot for the cam.
%
% ***** Inputs *****
% i = plot number (1-3)
% lambda = angle on cam (x axis on plot)
% y1 = follower function to plot
% y2 = cam function to plot
% ytitle = the y label for the plot (s, v, a)

function PlotFollowerSva(i,lambda,y1,y2,ytitle,cBlu,cBlk)

subplot(3,1,i); plot(180*lambda/pi,y1,'Color',cBlu(1,:),'LineWidth',2)
hold on
subplot(3,1,i); plot(180*lambda/pi,y2,'Color',cBlk(3,:),'LineWidth',1)

if (i == 1) % only place legend for highest plot
 legend('Follower','Cam','Location','Northwest')
 title('s-v-a Plot for Cam and Follower')
end

if (i == 3) % only place x label for lowest plot
 xlabel('Cam angle (deg)')
end
ylabel(ytitle)

grid on
xlim([0 360])
set(gca,'xtick',0:60:360)

700 Introduction to Mechanism Design

This function is very similar to the PlotCamSvaj function developed earlier, and you can
use copy and paste to create most of it. In the FlatMotion function, use the following
lines to create the plot:

% Define colors for plotting
cBlu = DefineColor([0 110 199]); % Pantone 300C
cBlk = DefineColor([0 0 0]); % grayscale

% create s-v-a diagram for cam and follower
if showPlot.svaCF
 figure
 PlotFollowerSva(1,cam.lambda,follower.s,cam.s,'Disp (m)',cBlu,cBlk)
 PlotFollowerSva(2,cam.lambda,follower.v,cam.v,'Vel (m/s)',cBlu,cBlk)
 PlotFollowerSva(3,cam.lambda,follower.a,cam.a,'Acc (m/s^2)',cBlu,cBlk)
 set(gcf,'Position',[100 50 1300 700])
end

Be sure to add the boolean svaCF field to the showPlot structure in the CamDesigner
program

showPlot.svaCF = true; % plot s-v-a diagram for cam and follower?

When you execute the main program you should obtain the s-v-a diagram shown in
Figure 10.65. There is a surprisingly large difference between the cam functions and the
follower functions, and all the work we did in carefully designing the cam seems to have
been for nothing. The reason for this surprising behavior will become more clear when we

15
10

5

Follower
Cam

0
–5

0 60

s-v-a plot for cam and follower

Cam angle (°)

D
isp

 (m
)

120 180 240 300 360
2
1
0

–2
–1

0

3000
2000
1000

0
–1000

Ac
c (

m
/s

2)

60

Ve
l (

m
/s

)

120 180 240 300 360

0 60 120 180 240 300 360

× 10–3

FIGURE 10.65
s-v-a diagram for the example cam. Note the large difference between the s-v-a functions for the cam and the
follower.

701Cams and Followers

animate the cam/follower system, but for now we will simply state that the base radius of
the cam is too small relative to the dwell heights we have specified.

Try changing the base radius on the cam to 0.1 m and you should obtain the plot shown
in Figure 10.66. Here the follower and cam functions are much closer to each other. It is
clear that the larger we make the base radius of the cam, the closer the follower functions
will be to the cam functions. A cam with infinite base radius will have perfect follower
motion! Of course, size and cost limitations will always prevent the cam from being as
large as we would like, and a compromise solution must be used in practice.

The remainder of the FlatMotion function consists of relatively simple plotting com-
mands, and we will not give a detailed explanation here. Remember to add appropriate
fields to showPlot in CamDesigner to control the plotting options.

% Define coordinates of rectangle for plotting follower
rx = cam.rb; % follower starts at base radius of cam
ry = -0.75*cam.rb; % follower is 1.5 times base radius
rw = 0.30*cam.rb; % follower is 0.3 times base radius
rh = -2*ry;
ymax = 1.5*(cam.rb + max(cam.h)); % scaling for profile plots

% Plot follower in contact with cam
if (showPlot.check > -1)
 figure
 i = showPlot.check + 1;
 PlotCamProfile(cam.c,-cam.lambda(i),cBlu,cBlk);
 hold on
 rectangle('Position',[follower.s(i) + rx, ry, rw, rh],...
 'FaceColor',cBlu(8,:),'LineWidth',2,'EdgeColor',cBlu(1,:))

Follower
Cam

15
10

5
0

–5
0 60

s-v-a plot for cam and follower

Cam angle (°)

D
isp

 (m
)

120 180 240 300 360
2
1
0

–2
–1

0

1000

500

0

–500

Ac
c (

m
/s

2)

60

Ve
l (

m
/s

)

120 180 240 300 360

0 60 120 180 240 300 360

× 10–3

FIGURE 10.66
s-v-a diagram for the flat-faced follower and cam with base radius 0.1 m.

702 Introduction to Mechanism Design

 axis([-ymax ymax -ymax ymax])
end

% create animation of cam and follower for one revolution
if showPlot.anim
 figure
 for i = 1:cam.Nc
 cla
 PlotCamProfile(cam.c,-cam.lambda(i),cBlu,cBlk);
 hold on

 % plot follower rectangle and a vertical projection line of face
 rectangle('Position',[follower.s(i) + rx, ry, rw, rh],...
 'FaceColor',cBlu(8,:),'LineWidth',2,'EdgeColor',cBlu(1,:))
 plot(ones(1,101)*follower.s(i)+rx,...
 (-50:50)*(2*ymax/101),':k','linewidth',2)

 % determine if point of contact touches follower face
 if (abs(follower.xB(2,i)) > abs(ry+rh))
 plot(follower.xB(1,i),follower.xB(2,i),'xr','MarkerSize',10);
 else
 plot(follower.xB(1,i),follower.xB(2,i),'xk','MarkerSize',10);
 end

 axis([-ymax ymax -ymax ymax])
 axis manual
 drawnow
 end
end

When you run the animation (by setting showPlot.anim to true in the main program)
you should be rewarded with a “cartoon” of the cam rotating and the follower maintaining
contact. If you set the base radius of the cam back to 0.025 m you will clearly see why the
cam and follower kinematic functions are so different: the point of contact between cam
and follower, shown by the “X,” jumps around because of concavities in the cam profile.
Making the base radius larger reduces, and then eliminates these concavities. Watching
the point of contact jump around in its discontinuous fashion is a good reminder of why
we must use numerical techniques to solve the contact problem: imagine trying to develop
an analytical function that would model these jumps! The general contact problem –
 determining when and where to bodies of general shape make contact with each other – is
one of the more challenging problems in modeling, and we have obtained a small taste of
this with the cam/follower system.

10.10.4 The Translating Roller-Follower

A diagram of the translating roller-follower is shown in Figure 10.67. The base circle is
familiar from our previous analysis, and its radius is given by rb. The follower is assumed
to be circular with a radius rf. The path taken by the center of the follower is called the pitch
curve; it is offset from the cam profile by the radius of the follower. The distance from the
center of the cam to the pitch curve is rp, and is a function of the angle on the cam. The cam
and follower make contact at point C. We assume that they make contact at a single point,
so that the line of transmission is tangent to both cam and roller at this point. The pressure

703Cams and Followers

line is normal to both the cam surface and follower at the point C. Without loss of general-
ity we assume that the follower translates horizontally, and the angle φ between the hori-
zontal and the pressure line is known as the pressure angle. All of the useful force from the
cam to the follower must be directed along this line, since any tangential component will
serve only to spin the follower. We will have much to say about the pressure angle in the
section on force analysis.

The follower in Figure 10.67 is shown with a vertical offset b, which is sometimes
called the eccentricity. In most situations, b will be zero, in which case the follower is
aligned with the axis of the cam. To keep the analysis general, we will assume that b is
not zero.

The path followed by the center of the roller is known as the pitch curve, and is found by
offsetting the cam profile by the radius of the follower, as shown in Figure 10.68. The term
parallel curve has a strict mathematical definition: it is the locus of points that results from
moving a perpendicular distance ρ from the original curve. The simplest parallel curve is
a parallel line, which is found by offsetting the original line by a constant distance. A par-
allel curve to a circle is another circle, and a parallel curve to a square is another square.

Figure 10.69 shows a parabola that has been offset a distance ρ in the outward direc-
tion. While it seems obvious that the parallel curve is larger than the original parabola it
is not obvious that the parallel curve is no longer a parabola. While the parallel curves of
some shapes (e.g. lines and circles) are the same shape as the original curve, the parallel
curves of most other shapes (e.g. parabolas and polynomial functions) are not. That is,
the parallel curve of a 3-4-5 polynomial is not another 3-4-5 polynomial. Remarkably, the
parallel curves of involutes of a circle (e.g. gear teeth) are also involutes of the same circle.
The proof of the preceding discussion is beyond the scope of this text, but see [2] for an
excellent explanation of the subject. The reason for including this topic in the section on
follower motion is that the path traveled by the follower will not be a simple function like
a 3-4-5 polynomial, which means that the follower motion will not be an exact duplicate of
the cam profile, just as we found with the flat follower.

Referring back to Figure 10.67, we can write a vector p to the point D at the center of the
follower as

B

rf

Dc
d

p

Pitch curve

FIGURE 10.67
The translating roller-follower has vertical offset b. The line of common tangents between cam and roller is the
transmission line, and the pressure line is perpendicular to this.

704 Introduction to Mechanism Design

 = −p c d (10.74)

Because the vector d points along a radial line on the follower, it is normal to the surface
of the cam at that point. Thus

 = rfd u (10.75)

where rf is the radius of the follower. Thus, all points on the pitch curve can be traced out
by computing

 = + rfp c u (10.76)

b

rp

rf

rb

B

Pressure line

Line of common tangents

FIGURE 10.68
The pitch curve is found by offsetting the cam profile by the radius of the follower.

Original curve

ρ

Offset curve

FIGURE 10.69
A parallel curve is formed by displacing the original curve a distance ρ in the perpendicular direction.

705Cams and Followers

as λ varies from 0° to 360°. We can plot the pitch curve p in the same manner as we plotted
the cam profile c. Let us try this out now. First, we must allow the user to enter the impor-
tant parameters for the follower, which include its radius and vertical offset. We do this by
defining the fields in the follower structure in the main program.

follower.r = 0.01; % roller radius
follower.b = 0.01; % roller vertical offset

Here we have used a roller radius of 10 mm and a vertical offset of 10 mm. Now, create a
new function called RollerMotion with the header:

% function RollerMotion calculates and animates the position, velocity
% and acceleration of a translating roller follower.
%
% ***** Inputs *****
% cam = cam parameters
% follower = follower parameters
% showPlot = plotting options
%
% ***** Outputs *****
% follower = position, velocity and acceleration of the follower

function follower = RollerMotion(cam,follower,showPlot)

The pitch curve is easy to calculate using Equation (10.76).

cp = cam.c - follower.r*cam.u; % calculate pitch curve for follower

and we can use a variation on the PlotCamProfile function to plot the cam profile and
pitch circle.

if (showPlot.check > -1)
 i = showPlot.check + 1;
 theta = -cam.lambda(i);
 A = [cos(theta) -sin(theta); % rotation matrix for rotating cam
 sin(theta) cos(theta)];
 cpr = A*cp; % rotate coordinates of pitch curve

 figure
 PlotCamProfile(cam.c,-cam.lambda(i),cBlu,cBlk);
 hold on
 xC = follower.xC(:,i); % center of follower circle
 fill(circ(1,:)+xC(1),circ(2,:)+xC(2),cBlu(8,:),...
 'EdgeColor',cBlu(2,:),'LineWidth',2)
 plot(cpr(1,:),cpr(2,:),':','Color',cBlk(3,:),'LineWidth',2)
end

If everything has been entered correctly, you should obtain the pitch curve shown in
Figure 10.70.

Figure 10.71 shows what can go wrong if the roller is too large, or if the base circle is
too small. Try increasing the roller radius to 30 mm and the height of the third dwell to
20 mm. On the left side of the pitch curve a discontinuity has appeared. A quick check
will confirm that all points on the pitch curve are parallel to the cam profile, but the

706 Introduction to Mechanism Design

path seems to reverse direction briefly at the discontinuity. Note that the discontinuity
occurs where the cam profile is concave. The radius of curvature is smaller here than
the radius of the roller, so the roller makes contact with the cam at two points, instead of
the single point that was assumed in the analysis. In short, the radius of the roller must
always be smaller (by a factor of 2 or 3, ideally) than the minimum radius of curvature
of the cam profile.

y (
m

)

0.03

0.02

0.01

0

–0.01

–0.02

–0.03

–0.04

x (m)

Cam pro�le

–0.04 –0.03 –0.02 –0.01 0 0.01 0.02 0.03 0.04–0.05

FIGURE 10.70
The cam profile and pitch curve for the example cam with roller radius 10 mm.

y (
m

)

0.04

0.02

0

–0.02

–0.04

–0.06

x (m)

Cam pro�le

–0.06 –0.04 –0.02 0 0.02 0.04 0.06–0.08

FIGURE 10.71
If the roller is too large, there may exist discontinuities in the pitch curve. In this example, the roller radius has
been increased to 30 mm and the third dwell height is 20 mm.

707Cams and Followers

The contact force between the cam and follower is directed along the surface normal u,
but the desired motion of the follower is purely horizontal, as seen in Figure 10.72. Thus,
any vertical component of the contact force is “wasted” and must be taken up by the slider
that the follower rides in. The angle between the contact force and the horizontal is known
as the pressure angle. If this angle is too large, it may create excessive frictional forces in the
slider, which may even result in the follower “binding up” inside the slider. Since we know
the surface normal at the point of contact, the pressure angle is easy to calculate. Recall
that the dot product of two unit vectors gives the cosine of the angle between the two vec-
tors. The pressure angle is then

 ϕ = ⋅ −cos îu (10.77)

We use the negative of î because the unit normal points generally in the negative x
direction.

Another useful quantity to compute is the neutral position of the roller; that is, the x
coordinate of the roller when it is resting on the base radius of the cam. As seen in Figure
10.73, we can use the Pythagorean theorem to find this minimal x coordinate, s0.

 ()= + −0
2 2s r r bb f (10.78)

Near the top of the RollerMotion function, add the following two lines of code.

rf = follower.r;
s0 = sqrt((cam.rb + rf)^2 - follower.b^2); % neutral pos of follower

Examining Figure 10.68 we see that the position of the center of the roller is located at the
intersection of the pitch curve and the horizontal line at y = b. Recall that the vector to a
point on the pitch curve is

rp

rb

C

Pressure line

u

FIGURE 10.72
The pressure angle for the roller-follower is the angle between the surface normal and the negative x axis.

708 Introduction to Mechanism Design

 = − rfp c u (10.79)

If the y coordinate of p is equal to the vertical offset b then we have found the location of
the roller. We must also require that the x coordinate of p be positive, since there are two
locations where the y coordinate of the pitch curve is equal to b. Thus, our contact function
Φ is

 λ()Φ = −p by (10.80)

To find the point of contact, we will first go around the profile of the cam in 1° steps and
find the angle where dy = py − b is closest to zero. The second for loop in the code below
accomplishes this task.

for i = 1:cam.Nc % rotate cam one revolution
 theta = -cam.lambda(i); % angle of rotation for cam
 A = [cos(theta) -sin(theta); % rotation matrix for cam
 sin(theta) cos(theta)];
 cpr = A*cp; % rotated pitch curve

 % find approximate point of contact
 minDiff = 1000;
 for j = 1:cam.Nc
 dy = abs(cpr(2,j) - follower.b);
 if ((dy < minDiff) && cpr(1,j) > 0)
 minDiff = dy;
 minIndex = j;
 end
 end

end

rf

rb b

S0

FIGURE 10.73
The minimum displacement of the roller occurs when it rolls along the base radius of the cam.

709Cams and Followers

This provides our initial guess for the Newton–Raphson algorithm. The code for the algo-
rithm is almost identical to that for the flat-faced follower, as shown below.

% use Newton-Raphson to find exact point of contact
 q = cam.lambda(minIndex);
 for j = 1:10
 [phi,xB,uB] = RollerPhi(cam,follower,q,A);
 if (abs(phi) < 1e-10)
 xC = xB - follower.r*uB;
 follower.s(i) = xC(1) - s0;
 follower.xB(:,i) = xB; % point of contact
 follower.uB(:,i) = uB; % surface normal at point of contact
 follower.xC(:,i) = xB - rf*uB; % center of roller
 follower.phi(i) = acos(dot(uB,[-1;0]));
 break
 end
 [phi1,~] = RollerPhi(cam,follower,q-0.0001,A);
 [phi2,~] = RollerPhi(cam,follower,q+0.0001,A);
 jac = (phi2 - phi1)/0.0002;
 dq = -phi/jac;
 q = q + dq;
 end

Once we have found the correct position for the follower, we can modify the showPlot.
check plotting routine to plot the roller as a circle.

%create circle for follower
phi = pi*(0:360)/180;
circ = rf*[cos(phi); sin(phi)];
if (showPlot.check > -1)
 i = showPlot.check + 1;
 theta = -cam.lambda(i);
 A = [cos(theta) -sin(theta); % rotation matrix for rotating cam
 sin(theta) cos(theta)];
 cpr = A*cp; % rotate coordinates of pitch curve

 figure
 PlotCamProfile(cam.c,-cam.lambda(i),cBlu,cBlk);
 hold on
 xC = follower.xC(:,i); % center of follower circle
 fill(circ(1,:)+xC(1),circ(2,:)+xC(2),cBlu(8,:),...
 'EdgeColor',cBlu(2,:),'LineWidth',2)
 plot(cpr(1,:),cpr(2,:),':','Color',cBlk(3,:),'LineWidth',2)
end

It is left as an exercise for the reader to create the necessary RollerPhi function, as well
as the plotting code for the s-v-a diagram and roller animation.

10.10.5 The Oscillating Rocker-Follower

The geometry associated with the oscillating rocker-follower is shown in Figure 10.74. We
assume that the ground pin for the rocker is horizontally aligned with the ground pin for

710 Introduction to Mechanism Design

the cam and the distance between ground pins is d. The rocker has length c, and its angle
with the horizontal is θ4.

The rocker reaches its lowest position when the roller is in contact with the base radius of
the cam, as shown in Figure 10.75. Using the Law of Cosines we can calculate this angle as

 θ π ()
= −

+ − +

−cos
20

1
2 2 2

c d r r

cd
f b

 (10.81)

This is the neutral position of the rocker and we will measure its displacement from this
angle.

To conduct the position analysis for the rocker-follower we first draw a vector loop
 diagram as shown in Figure 10.76. Adding vectors around the loop gives

c

d

θ

FIGURE 10.74
Geometry of the oscillating rocker-follower. The rocker makes angle θ4 with the horizontal and has length c.
The distance between ground pins is d.

d

c

θ0rb

rf

FIGURE 10.75
The neutral position of the rocker occurs when the roller touches the base radius of the cam.

711Cams and Followers

 − − = 04 1p r r (10.82)

where

 = − rfp c u (10.83)

is a point on the pitch curve of the cam/follower system. Expanding the vector loop equa-
tion into its components gives

 ()+ + + =u e er r c df 04 1 (10.84)

The vector loop gives two equations and two unknowns: the angle of the vector u
and θ4. We can simplify this somewhat if we note that the rocker must trace out a
circular arc of radius c that is centered at the ground pivot D. Any point on the pitch
curve that lies a distance c from the ground pivot D gives a valid position solution
for the rocker.

Let us define the vector g as extending between an arbitrary point on the pitch curve and
the ground pivot at D as shown in Figure 10.77.

 = − 1g p r (10.85)

Then we must have

 − = 0cg (10.86)

Thus, our contact function is

 λ()Φ = −g c (10.87)

d

c

θ4
r4

r1

p

FIGURE 10.76
Vector loop diagram for the rocker follower. The vector p extends from the center of the cam to the pitch curve.

712 Introduction to Mechanism Design

Once the vector g has been found, the rocker angle can be calculated as

 θ =tan
g
g

y

x
 (10.88)

There will be two valid solutions for g: one with a positive θ and one negative. We will
adopt the positive solution as shown in the diagrams.

The contact force is directed along the surface normal, as before (see Figure 10.78). When
the contact force is aligned with the normal to the rocker, nf, then all of the contact force
is used to rotate the rocker. When this is not the case, then some of the contact force is
wasted in “stretching” the rocker, which may result in excessive wear on the rocker pivot.
The pressure angle between cam and rocker can be computed by taking the dot product
of u with nf.

 ϕ = ⋅cos fu n (10.89)

r1

g
p

A D

FIGURE 10.77
The vector g extends from an arbitrary point on the pitch curve to the ground pivot at D.

A

nf

u

FIGURE 10.78
Pressure angle between rocker and cam.

713Cams and Followers

This concludes the section on follower motion. We will use the results from this section
to perform a force analysis on the cam/follower system. Try writing your own function
for calculating, plotting, and animating the rocker follower system. If you get stuck, a full
listing of the MotionRock script is shown below.

10.10.6 The RockerMotion Function

% function RockerMotion calculates and animates the position, velocity
% and acceleration of an oscillating roller follower.
%
% ***** Inputs *****
% cam = cam parameters
% follower = follower parameters
% showPlot = plotting options
%
% ***** Output *****
% follower = position, velocity and acceleration of the follower

function follower = RockerMotion(cam,follower,showPlot)

% calculate angle of follower when roller is on base radius
rb = cam.rb; % base radius of cam
rf = follower.r; % follower radius
c = follower.c; % rocker length
d = follower.d; % length btw ground pins
follower.x0 = pi - acos((c^2+d^2-(rb+rf)^2)/(2*c*d));

cp = cam.c - rf*cam.u; % pitch curve for follower
xD = [d; 0]; % coordinates of ground pivot of rocker

for i = 1:cam.Nc % rotate cam one revolution
 theta2 = -cam.lambda(i); % angle of rotation for cam
 A = [cos(theta2) -sin(theta2);
 sin(theta2) cos(theta2)];
 cpr = A*cp; % rotated pitch curve (points C)

 minDiff = 1000;
 for j = 1:cam.Nc % est contact point by going around pitch curve
 g = cpr(:,j) - xD; % vector from C to D
 L = norm(g); % length of g
 dL = abs(c - L); % diff btw rocker length and L
 theta = atan2(g(2), g(1)); % angle of g (must be positive)
 if ((dL < minDiff) && theta > 0)
 minDiff = dL;
 minIndex = j;
 end
 end

 q = cam.lambda(minIndex); % best guess from cam profile
 for j = 1:10 % Newton-Raphson algorithm
 [phi,xB,uB] = RockerPhi(cam,follower,q,A);
 if (abs(phi) < eps) % found point of contact!

714 Introduction to Mechanism Design

 xC = xB - rf*uB; % center of roller (C)
 g = xC - xD; % vector from C to D
 follower.x(i) = atan2(g(2),g(1)); % angle of rocker
 follower.xB(:,i) = xB; % point of contact
 follower.uB(:,i) = uB; % surface normal at point of contact
 follower.xC(:,i) = xB - rf*uB; % center of roller
 [~,nf] = UnitVector(follower.x(i)); % unit vector along follower
 follower.phi(i) = acos(dot(uB,nf));
 break
 end
 [phi1,~] = RockerPhi(cam,follower,q-0.0001,A);
 [phi2,~] = RockerPhi(cam,follower,q+0.0001,A);
 jac = (phi2 - phi1)/0.0002;
 dq = -phi/jac;
 q = q + dq;
 end
end

follower.s = follower.x - follower.x0;
follower.v = FollowerDerivative(cam,follower.s);
follower.a = FollowerDerivative(cam,follower.v);

% create circle for follower
phi = pi*(0:360)/180;
circ = rf*[cos(phi); sin(phi)];

cBlu = DefineColor([0 110 199]); % Pantone 300C
cBlk = DefineColor([0 0 0]); % grayscale

% create s-v-a diagram for follower
if showPlot.svaCF
 figure
 PlotFollowerSva(1,cam.lambda,follower.s,cam.s,'Disp (m)',cBlu,cBlk)
 PlotFollowerSva(2,cam.lambda,follower.v,cam.v,'Vel (m/s)',cBlu,cBlk)
 PlotFollowerSva(3,cam.lambda,follower.a,cam.a,'Acc (m/s^2)',cBlu,cBlk)
 set(gcf,'Position',[100 50 1300 700])
end

% plot pressure angle for cam/follower system
if showPlot.phi
 figure
 plot(180*cam.lambda/pi,180*follower.phi/pi,'LineWidth',2,'Color',c
Blu(1,:))

 xlabel('Cam Angle (deg)'); ylabel('Pressure Angle (deg)')
 title('Pressure Angle vs. Cam Angle')
 grid on
 xlim([0 360])
 set(gca,'xtick',0:60:360)
 set(gcf,'Position',[100 100 1000 600])
end

if (showPlot.check > -1)
 i = showPlot.check;

715Cams and Followers

 figure

 PlotCamProfile(cam.c,-cam.lambda(i),cBlu,cBlk);
 hold on
 xC = follower.xC(:,i);
 fill(circ(1,:)+xC(1),circ(2,:)+xC(2),cBlu(8,:),...
 'EdgeColor',cBlu(2,:),'LineWidth',2)
 plot([xD(1) xC(1)],[xD(2) xC(2)],'Color',cBlk(3,:),'LineWidth',4)
 plot(xD(1),xD(2),'o','MarkerSize',8,'MarkerFaceColor',cBlk(5,:),...
 'Color',cBlk(1,:))
 plot(xC(1),xC(2),'o','MarkerSize',8,'MarkerFaceColor',cBlk(5,:),...
 'Color',cBlk(1,:))
end

ymax = 1.5*(cam.rb + max(cam.h));
if showPlot.anim
 figure
 for i = 1:cam.Nc
 cla
 PlotCamProfile(cam.c,-cam.lambda(i),cBlu,cBlk);
 hold on
 xC = follower.xC(:,i);
 fill(circ(1,:)+xC(1),circ(2,:)+xC(2),cBlu(8,:),...
 'EdgeColor',cBlu(2,:),'LineWidth',2)
 plot([xD(1) xC(1)],[xD(2) xC(2)],'Color',cBlk(3,:),'LineWidth',4)
 plot(xD(1),xD(2),'o','MarkerSize',8,'MarkerFaceColor',cBlk(5,:),...
 'Color',cBlk(1,:))
 plot(xC(1),xC(2),'o','MarkerSize',8,'MarkerFaceColor',cBlk(5,:),...
 'Color',cBlk(1,:))
 plot(follower.xB(1,i),follower.xB(2,i),'xk','MarkerSize',10);
 axis([-ymax ymax -ymax ymax])
 axis manual
 drawnow
 end
end

10.11 Force Analysis in Cams

After all of the hard work we’ve done to analyze the motion of the follower, force analysis
on the cam/follower system will be surprisingly straightforward. A free-body diagram of
the flat-faced follower and its cam is shown in Figure 10.79. Here we make the assumption
that the interface between the cam and follower is well lubricated, so that the tangential
friction force is neglected. Our primary goal in conducting the force analysis is to ensure
that the cam and follower maintain contact with each other. If they lose contact then the
motion of the follower will not follow the cam surface, with unpredictable (and sometimes
tragic) results. Contact between cam and follower is maintained with a spring, as shown in
the figure. The spring force is proportional to the motion of the follower as

 ()= − + 0F k s sk f f (10.90)

716 Introduction to Mechanism Design

where k is the spring constant, sf is the displacement of the follower and sf0 is the ini-
tial compression of the spring (a constant). The minus sign is used because the spring
force points in the negative x direction for a positive displacement of the follower, and
vice versa. The contact force between cam and follower is denoted Fn, and is normal to the
face of the cam at the point of contact. The face of the follower is assumed to be vertical, so
the normal force is horizontal. The normal force can be written as

 = Fn nF u (10.91)

where u is the unit normal to the face of the cam at the point of contact. Since the unit nor-
mal points in the negative x direction, we can write

 = −

0
F

n
nF (10.92)

Using the free-body diagrams we sum forces on each body as

 + = 2 2mA nF F a (10.93)

 − + = mn k f fF F a (10.94)

where mf is the mass and af is the acceleration of the follower, respectively. The motion of
the follower is purely horizontal, so that it has only an x component. We found the dis-
placement, velocity, and acceleration of the follower during the motion analysis, so that we
can easily solve for the contact force as

 ()= + +0F k s s m an f f f f (10.95)

Next, we sum moments on the cam. As we discussed at the end of Section 7.2, we can
choose to sum moments about the center of mass of the cam or about its ground pivot.
Since we have already solved for the vector c from the ground pivot to the point of contact,

e

c

n
u B

t

Fn –Fn

FD

Fk

FA

T2

FIGURE 10.79
Free-body diagram of the flat-faced follower and cam.

717Cams and Followers

it is simpler to sum moments about the ground pivot. The moment created by the contact
force about the ground pivot is

 ()= × k̂n nM c F (10.96)

Using the same logic as in Section 7.2 this may be rewritten as

 = ⋅ M rFn n n u (10.97)

where r is the distance from the ground pivot to the point of contact. Remember that n is
the unit normal to the vector c and u is the unit normal to the surface of the cam at the
point of contact. Since u = {−1 0}T we can further simplify by writing

 = −M rF nn n x (10.98)

Summing moments about the ground pivot gives

 α+ =2 2 2M T In A (10.99)

where we have used I2A to indicate that the moment of inertia is calculated about the
ground pivot A. We have assumed thus far that the cam rotates at a constant angular
velocity and α2 = 0, so that

 =2T rF nn x (10.100)

That’s it! We have solved for the contact force and driving torque for the flat-faced follower
system. We could also solve for the reaction force FA at the ground pivot, but we leave that
as an exercise for the reader.

As an interesting side note, we can come up with an initial “guesstimate” of the speed
of the cam when the follower begins to lose contact; that is, when the normal force Fn goes
to zero. As a very rough estimate, assume that the motion of the follower is sinusoidal. It’s
not really, as we have seen, but the motion of the follower does indeed bob up and down,
much like a sine wave. If we make this assumption, we can write

 ω= sins A tf (10.101)

where A is the amplitude that the follower bobs up and down and ω is the angular velocity
of the cam. Taking the time derivative gives the velocity

 ω ω= cosv A tf (10.102)

and differentiating once again gives acceleration

 ω ω= − sin2a A tf (10.103)

Substituting this into Equation (10.95) for the contact force gives

 ω ω()= − sin2F k m A tn f (10.104)

718 Introduction to Mechanism Design

The contact force goes to zero when

 ω = k
mf

 (10.105)

This is the natural frequency of the spring/follower system. The natural frequency of a
spring/mass system arises quite often in oscillating or vibrating systems and it is almost
always an indication that something “interesting” is about to happen. In our case, the fol-
lower loses contact with the cam when the cam spins at the natural frequency.

10.11.1 Force Analysis of the Roller-Follower

A free-body diagram of the roller-follower mechanism is shown in Figure 10.80. We now
have three bodies to analyze: the cam, roller, and follower. We cannot neglect the frictional
force on the surface of the cam, Ft, since it causes the roller to rotate. Luckily, this force
tends to be very small and unimportant relative to the contact force, Fn. In fact, the roller
and follower can be combined into a single body by making a simplifying assumption:
since the radius of the roller is assumed to be small compared with the cam (recall the
radius of curvature discussion in Section 10.8) we may safely neglect its rotary inertia. The
contact force points directly toward the center of the roller and does not create a rotational
moment on it. If we sum torques about the center of the roller we have

 α− =F r It f r r (10.106)

Since we are neglecting the rotational inertia of the roller, Ft = 0 and the frictional force
vanishes.

The roller and follower have the same translational motion, which we have previously
calculated as sf. By ignoring the rotation of the roller, we can combine the roller and fol-
lower into a single body, as shown in Figure 10.81. The force FC is now an internal force
within the roller/follower body, so we do not need to solve for it. Our analysis will,

n
e

u
B

t

c

Fn

Fc
Ft

–Ft

–Fn

Fk

–FD

–Fc

FA

T2

FIGURE 10.80
Free-body diagram of the roller follower.

719Cams and Followers

therefore, be quite similar to that of the flat-faced follower. Summing forces on each
body gives

 + = mA n c cF F a (10.107)

 − + − = mn k D f fF F F a (10.108)

here FD is the vertical force that keeps the follower in its slot. The direction of the contact
force varies depending upon the cam profile, unlike the flat-faced follower, whose contact
force was always horizontal. The contact force points in the direction of the normal to the
cam surface

 = Fn nF u (10.109)

where Fn is the “strength” of the contact force, which can be positive or negative. If the
contact force is negative then the follower loses contact with the cam. We can compute the
horizontal component of the contact force by taking the dot product with the unit vector
in the x direction, î

 = ⋅ = ⋅ˆ ˆF i F inx n nF u (10.110)

But remember that the dot product ⋅ îu is the negative of the cosine of the pressure angle,
so that

 ϕ= − cosF Fnx n (10.111)

Since FD is entirely vertical, we can use the x component of Equation (10.108) to solve for the
strength of the contact force

ϕ

()
=

+ +

cos
0

F
k s s m a

n
f f f f

 (10.112)

c

e
n

u
B

Fn

Fk

–Fk

–FD

FA

T2

FIGURE 10.81
Free-body diagram of the roller-follower with the roller and follower combined into a single body.

720 Introduction to Mechanism Design

We can use the same logic as we did in solving for the flat-faced follower to solve for the
driving torque:

 = − ⋅2T rFnn u (10.113)

10.11.2 Force Analysis on the Rocker-Follower Mechanism

Our final mechanism is the rocker-follower, which is shown in Figure 10.82. Instead of a
linear spring, we use a torsional spring on the rocker to maintain contact with the cam.
The torsional spring creates a torque on the rocker given by

 θ θ()= − +4 4 40T kt (10.114)

where θf is the angular displacement of the rocker and θf0 is the initial preload twist we
give to the torsional spring (a constant). We use the same reasoning as before to ignore the
tangential force on the roller. Adding forces on each body gives

 + = mA n c cF F a (10.115)

 − − = mn D f fF F a (10.116)

The torque on the rocker caused by the contact force can be written

 ()= × − k̂n f nM r F (10.117)

where

 = cf fr e (10.118)

is the vector from the rocker pivot to the center of the roller and

θ
θ

=

cos

sinf
f

f
e (10.119)

e
u

c

B
c

n

Fn

FA

–Fn

–FD

nf

ef

T2

T4

FIGURE 10.82
Free-body diagram of the rocker-follower mechanism.

721Cams and Followers

 is the unit vector in the direction of the rocker. Thus, the moment expression simplifies to

 = − ⋅M cFn n fn u (10.120)

As before, the dot product nf · u is equal to the cosine of the pressure angle so that

 ϕ= − cosM cFn n (10.121)

The sum of torques on the rocker is then

 α+ =4M T In fD f (10.122)

where IfD is the moment of inertia of the rocker about the ground pivot D. Solving for the
contact force gives

θ θ α

ϕ
()

= −
+ +

 cos
0

F
k I

c
n

t f f fD f
 (10.123)

and the driving torque is

 = − ⋅2T rFnn u (10.124)

A summary of the driving torque and contact force formulas found so far can be seen in
Table 10.1. It is remarkable how similar the formulas are, given the different natures of
the followers. This similarity will make programming them into MATLAB a relatively
straightforward task.

10.11.3 Force Analysis of the Rocker-Follower in MATLAB®

We will develop the function for performing the force analysis on the rocker-follower, with
the other two left as exercises for the reader. The rocker-follower is the most complicated,
and adapting the RockerForce function to the other two is not too difficult. We start by
defining the following new fields in the main program CamDesigner:

follower.Ip = 0.0001; % moment of inertia of rocker about ground pivot
follower.kt = 10; % torsional spring constant - rocker (N*m/rad)
follower.st0 = -10*pi/180; % initial angular displacement of spring

TABLE 10.1

Contact Force and Driving Torque for the Three Types of Follower

Contact Force Fn Driving Torque Tc

Flat-faced ()+ +0k s s m af f f f ×rF nn x

Roller

ϕ
()+ +

cos
0k s s m af f f f − ⋅n urFn

Rocker θ θ α
ϕ

()
−

+ +
cos

0k I

c
t f f fD f − ⋅n urFn

722 Introduction to Mechanism Design

Note that the initial preload of the spring must be negative, since pushing the rocker up
corresponds to a negative angle for the follower (i.e. it rotates clockwise). Next, call the
RockerForce function in the appropriate case of the CamDesigner program.

% Conduct force analysis on the follower
RockerForce(cam,follower,showPlot)

This function will generate only two plots: contact force and driving torque. Next, open a
new script and create the header for RockerForce

% function RockerForce calculates and plots the contact force and
% driving torque of an oscillating roller follower.
%
% ***** Inputs *****
% cam = cam parameters
% follower = follower parameters
% showPlot = plotting options

function RockerForce(cam,follower,showPlot)

[Fn,Tc] = deal(zeros(1,cam.Nc)); % allocate memory

As usual, we loop through each angle on the cam, and calculate the contact force and
 driving torque at each position.

for i = 1:cam.Nc
 xB = follower.xB(:,i); % point of contact
 r = norm(xB); % radius on cam to point of contact
 theta = atan2(xB(2),xB(1)); % angle on cam to point of contact
 [~,nc] = UnitVector(theta); % unit vector to pt of contact on cam

We first define the variable xB so that we don’t need to type follower.xB(:,i) in each of
our formulas. We use this to calculate the radius to the point of contact and the angle of the
vector c, which points from the ground pin on the cam to the point of contact.

% calculate contact force
 tNet = follower.s(i) + follower.st0; % total angle of spring
 num = -(follower.kt*tNet + follower.Ip*follower.a(i));
 den = follower.c * cos(follower.phi(i));
 Fn(i) = num/den;

To calculate the contact force we must first determine the total angle of twist of the spring.
Remember that follower.s(i) stores the angular displacement of the spring; that is, its
angle of twist relative to its neutral position. We have divided the formula for contact force
into three lines to make it easier to read.

% calculate driving torque
 Tc(i) = -r * Fn(i) * dot(nc,follower.uB(:,i));

We finish up the loop by calculating the driving torque, and that concludes the force analy-
sis portion of the program. Be sure to add the appropriate fields to showPlot in the main
program and then add the the plotting routines familiar to us by now:

723Cams and Followers

% Define colors for plotting
cBlu = DefineColor([0 110 199]); % Pantone 300C

if showPlot.force
 figure
 % figure('MenuBar','none')
 plot(180*cam.lambda/pi,Fn,'Color',cBlu(1,:),'LineWidth',2)
 grid on
 xlim([0 360])
 set(gca,'xtick',0:60:360)
 set(gcf,'Position',[200 400 1200 350])
 title('Contact Force between Cam and Follower')
 xlabel('Cam Angle (degrees)'); ylabel('Force (N)')
end

if showPlot.torque
 figure
 % figure('MenuBar','none')
 plot(180*cam.lambda/pi,Tc,'Color',cBlu(1,:),'LineWidth',2)
 grid on
 xlim([0 360])
 set(gca,'xtick',0:60:360)
 set(gcf,'Position',[200 100 1200 350])
 title('Driving Torque for Oscillating Roller Follower')
 xlabel('Cam Angle (degrees)')
 ylabel('Torque (N-m)')
end

In the figure command we have set the property “MenuBar” to “none,” which eliminates
the menu and toolbar in the plot windows. This frees up valuable real estate on the screen
for what we are really interested in – the plots themselves.

If everything goes well, you should obtain the plots shown in Figures 10.83 and 10.84
when you execute the code. It may be surprising that the first peaks in the driving torque
are negative, but remember that we are rotating the cam in the clockwise direction and a
negative torque is also clockwise. The contact force is positive through the entire rotation,
which means that the follower remains in contact with the cam the entire time. Observe

0
50

100

150

200

250

300

Fo
rc

e (
N

)

60 120 180
Cam angle (°)

Contact force between cam and follower

240 300 360

FIGURE 10.83
Contact force for the example three-dwell cam.

724 Introduction to Mechanism Design

that the contact force begins and ends at approximately 75 N, which is the effect of preload-
ing the torsional spring.

Now increase the speed of the cam to 2000 rpm. The resulting contact force is shown in
Figure 10.85. It is positive throughout most of the rotation of the cam, but becomes negative
at around 100° of cam rotation. The roller loses contact with the cam at this rotation, and
its motion is unpredictable.

We have two possible options: we can increase the torsional spring constant to make
it stiffer, or we can increase the spring preload to try to maintain a positive contact force
throughout the rotation. Try doubling the spring preload to −20°. The resulting contact
force and driving torque plots are shown in Figures 10.86 and 10.87. The contact force
remains positive, and the initial contact force (the effect of the preload) has been doubled
to approximately 150 N. Note that the driving torque has also increased significantly: this
is the combined effect of the increased speed and preload. Thus, if you wish to increase the
cam’s rotational speed, you must also increase the spring preload or the spring constant,
or both.

You now have at your disposal a powerful set of cam analysis tools that can be used in an
iterative design process. It is clear that the nonlinear nature of the cam/follower interaction
will normally prevent hitting the “optimum” design on the first try, but practicing with the
design tools will tend to reduce the number of design iterations as you gain experience.

0
–2.5

–2
–1.5

–1
–0.5

0
0.5

1
1.5

2

60 120 180
Cam angle (°)

Driving torque for oscillating roller follower

240 300 360

To
rq

ue
 (N

m
)

FIGURE 10.84
Driving torque for the example three-dwell cam.

Contact force between cam and follower

0 60 120 180
Cam angle (°)

240 300 360

Fo
rc

e (
N

)

–100

0

100

200

300

400

500

600

FIGURE 10.85
Contact force with cam rotational speed of 2000 rpm. Note the negative excursion at around 100° of rotation.

725Cams and Followers

10.12 Practice Problems

Problem 10.1

Design a quadruple-dwell cam with the following properties:

• Dwell at 0 mm for 30°
• Rise to 10 mm over 40° and dwell for 30°
• Rise to 15 mm over 20° and dwell for 60°
• Fall to 10 mm over 40° and dwell for 60°
• Fall back to 0 mm over 80°

0 60 120 180
Cam angle (°)

240 300 360

Contact force between cam and follower

Fo
rc

e (
N

)

0

100

200

300

400

500

600

700

FIGURE 10.86
Contact force with the spring preload doubled to −20°. The contact force remains positive through the entire
rotation.

0 60 120 180
Cam angle (°)

Driving torque for oscillation roller follower

240 300 360

To
rq

ue
 (N

m
)

–5
–4
–3
–2
–1

0
1
2
3
4

FIGURE 10.87
Driving torque with the increased spring preload. The spring preload has increased the driving torque.

726 Introduction to Mechanism Design

Use a 3-4-5 polynomial and plot the cam profile and s-v-a-j diagram for the cam. The
base radius is 50 mm and the cam rotates at 2000 rpm. What is the peak accelera-
tion for this cam?

Problem 10.2

Design the cam from Problem 10.1 with a 4-5-6-7 polynomial rise function. Plot the
cam profile and the s-v-a-j diagram. What is the peak acceleration for this cam?
Compare the peak acceleration for the 4-5-6-7 profile with that of the 3-4-5 profile
in Problem 10.1.

Problem 10.3

Design the cam from Problem 10.1 with a cycloidal rise function. Plot the cam profile
and the s-v-a-j diagram. What is the peak acceleration for this cam? Compare the
peak acceleration for this profile with that of the 3-4-5 profile in Problem 10.1.

Problem 10.4

Plot the s-v-a-j diagram for a flat-faced follower on an eccentric cam with base radius
50 mm and eccentricity 10 mm. Hint: it is easiest to “start from scratch” for this
problem, rather than trying to modify the multiple-dwell code developed in the
chapter. Use the follower functions given in Section 10.2.

Problem 10.5

Design a double-dwell cam with the following properties

• Dwell at 0 mm for 90°
• Rise to 20 mm over 90° and dwell for 90°
• Fall back to 0 mm over 90°

The base radius is 100 mm and the rise function is a 3-4-5 polynomial. Plot the radius
of curvature for the cam profile. What is the minimum radius of curvature?

Problem 10.6

Repeat the exercise in Problem 10.5 with a 4-5-6-7 polynomial profile. What is the
minimum radius of curvature?

Problem 10.7

Repeat the exercise in Problem 10.5 with a cycloidal rise profile. What is the mini-
mum radius of curvature?

Problem 10.8

Plot the tangent circle and unit normal at the point of minimum radius of curvature
in Problem 10.5.

Problem 10.9

Plot the s-v-a diagram of the flat-faced follower mated with the cam of Problem 10.5.
The cam rotates at 1000 rpm. What is the maximum acceleration of the follower?

727Cams and Followers

Problem 10.10

Plot the s-v-a diagram of a roller follower mated with the cam of Problem 10.5. The
diameter of the roller is 40 mm and its vertical offset is 20 mm. The cam rotates at
1000 rpm. What is the maximum acceleration of the follower?

Problem 10.11

Plot the s-v-a diagram of a rocker follower mated with the cam of Problem 10.5. The
diameter of the roller is 40 mm and the length of the rocker is 100 mm. The dis-
tance between ground pins is 100 mm and the cam rotates at 1000 rpm. What is the
maximum amplitude of the angular acceleration of the rocker?

Problem 10.12

Figure 10.88 shows an eccentric cam mated with a flat-faced follower of mass mf.
Conduct a force analysis on this system and find an expression for the contact
force between cam and follower as a function of cam angle θ. The spring has stiff-
ness k, and is in its neutral position when θ = 180°; that is, when the follower dis-
placement is at a minimum. Assume that there is no friction between cam and
follower, or between the follower and its guide bushing. The cam rotates at a con-
stant angular velocity, ω. At which angular velocity will the contact force between
cam and follower vanish if the cam is at θ = 0°?

 Problem 10.13

The double-dwell cam of Problem 10.5 is mated with a flat-faced follower, as shown
in Figure 10.89. The spring has a stiffness of 1000 N/m and is compressed 10 mm
when it is in contact with the base radius. The follower has a mass of 20 g. Find the
angular velocity of the cam where it begins to lose contact with the follower and
plot the contact force at this speed.

Problem 10.14

The double-dwell cam of Problem 10.5 is mated with a roller follower, as shown in
Figure 10.90. The vertical offset of the follower is 20 mm and the radius of the roller
is 10 mm. The spring has a stiffness of 1000 N/m and is compressed 10 mm when

Follower

Cam

Spring

x

rb θ

FIGURE 10.88
Problem 10.12.

728 Introduction to Mechanism Design

it is in contact with the base radius. The follower has a mass of 20 g. Plot the driv-
ing torque for the cam when its speed is 1000 rpm. What is the power of the motor
needed to drive this cam?

Problem 10.15

The double-dwell cam of Problem 10.5 is mated with a rocker follower, as shown in
Figure 10.91. A 20 kg point mass has been attached to the end of the rocker and the
torsional spring has been omitted. Plot the contact force between cam and roller
for a cam angular velocity of 100 rpm. At what speed does the cam begin to lose
contact with the roller? You may neglect the inertial properties of the rocker and
roller, but not the point mass. Do not neglect gravity!

FIGURE 10.89
Problem 10.13.

20

FIGURE 10.90
Problem 10.14.

729Cams and Followers

Acknowledgments

SOLIDWORKS is a registered trademark of Dassault Systèmes SolidWorks Corporation.
Several images in this chapter were produced using MATLAB software.
MATLAB is a registered trademark of The MathWorks, Inc.

Works Cited

 1. R. L. Norton, Cam Design and Manufacturing Handbook, New York: Industrial Press, 2002.
 2. F. M. Stein, “The curve parallel to a parabola is not a parabola: parallel curves,” The Two-Year

College Mathematics Journal, vol. 11, no. 4, pp. 239–246, 1980.

200

200

20 mm diameter roller20 kg point mass

FIGURE 10.91
Problem 10.15.

http://www.taylorandfrancis.com

731

Appendix: Inertial Properties
of some Common Shapes

Variable Definitions

V = volume m = mass ρ = mass density
2 2I y z dmx ∫ ()= + = mass moment of inertia about x axis

2 2I x z dmy ∫ ()= + = mass moment of inertia about y axis

2 2I x y dmz ∫ ()= + = mass moment of inertia about z axis

Properties of Common Shapes

Properties of a Rectangular Prism

C

B

A

Y

XZ

Rectangular Prism

V ABC= m Vρ=

12

2 2

I
m A B

x
()

=
+

12

2 2

I
m A C

y
()

=
+

12

2 2

I
m B C

z
()

=
+

732 Appendix: Inertial Properties of some Common Shapes

Properties of a Cylinder

2V R Lπ= m Vρ=

L

Z X

Y

R

Cylinder

2

2

I
mR

x =

3

12

2 2

I
m R L

y
()

=
+

3

12

2 2

I
m R L

z
()

=
+

Properties of a Hollow Cylinder

Ro

Y

Ri

XZ

L

Hollow Cylinder

2 2V R R Lo iπ ()= − m Vρ=

2

2 2

I
m R R

x
o i()

=
+

3 3

12

2 2 2

I
m R R L

y
o i()

=
+ +

3 3

12

2 2 2

I
m R R L

z
o i()

=
+ +

733Appendix: Inertial Properties of some Common Shapes

Properties of a Sphere

4
3

3V Rπ= m Vρ=

R

Y

XZ

Sphere

2
5

2I Rx =

2
5

2I Ry =

2
5

2I Rz =

Properties of a Cone

R

Y

H

0.75H

XZ

Cone

3
2V R H

π= m Vρ=

3
10

2I mRx =

12 3

80

2 2

I
m R H

y
()

=
+

12 3

80

2 2

I
m R H

z
()

=
+

http://www.taylorandfrancis.com

735

Index

A

Acceleration analysis of linkages
of fourbar linkage, 350–356
of geared fivebar linkage, 357–361
of inverted slider-crank, 356–357
of sixbar linkage, 362–365
of slider-crank, 340–350
of threebar slider-crank, 333–340

Acceleration of slip, 356
AC motors, 306–312
Addendum, 557
AGMA see American Gear Manufacturers

Association (AGMA)
Air compressor mechanism, example of force

analysis, 444–456
American Gear Manufacturers Association

(AGMA), 557
Angular acceleration of crank, 343–350

B

Battery-powered DC motor, 315
Bevel gears, 537–540
Bicycle air pump, example of force analysis,

488–499
Brushless motors, 313–317

C

Cam-follower mechanism
degrees of freedom example, 11–12
geared fivebar linkage, 259
planetary gearset, 260–261
threebar linkage, 257–259

Cams
in automotive engine, 632–635
design, 635–639

using MATLAB®, 654–676
eccentric cams, 631–632
force analysis in, 715–725
motion function, 659–665, 688–692
polynomial cam profiles, 640–646
single-dwell cams, 649–654
sinusoidal cam profiles, 646–649
types of, 627–628

Camshaft, 632
Centripetal acceleration, 330
Column vector, 103
Constant crank angular velocity, slider-crank

with, 341–342
Constant-velocity meshing, 542
Construction brick planetary gearset, 585–587
Coriolis acceleration, 333, 335
Crankshaft, 632
Crossed configurations of fourbar, 162
Cross product, 109–110
Cylindrical cam, 627–628

D

DC motors, 312–313
Dedendum, 557
Degrees of freedom (DOF), 3–15
Direct-acting mechanisms, 628–629
DOF see Degrees of freedom (DOF)
Door closer mechanism, external forces acting

on, 427, 429
Dot product, 107–109
Double slider-crank, degrees of freedom

example, 10–11
Drill transmission, design of, 588–592
Driver transmission, design of, 588–592
Dynamics, fundamentals of

center of mass, 384–387
models, 383–384

E

Eccentric cams, 631–632
Electric motors

AC motors, 306–312
brushless motors, 313–317
DC motors, 312–313
servo motors, 317–318
stepper motors, 318

F

Face cam, 627–628
Fancy plot, 136–137, 170–171

736 Index

Fivebar linkage, degrees of freedom example,
13–14

Flat-faced follower, 636, 655, 709, 715–716
motion of, 694–698

Follower
motion of, 692–715
types of, 630–631

Force analysis
in cams, 715–725
on involute gears, 550–553
on linkages

air compressor mechanism, 444–456
bicycle air pump, 488–499
dynamics, fundamentals of, 383–395
of fourbar linkage, 456–464
of geared fivebar linkage, 499–511
grill lid lifting mechanism, 464–480
of inverted slider-crank, 481–488
Newtonian kinetics of rigid body, 395–405
on single link, 405–417
of sixbar linkage, 511–526
of slider-crank, 436–444
threebar door closing mechanism,

424–435
of threebar slider-crank, 417–424

Force matrices, for sixbar linkages, 521–526
Fourbar linkage

acceleration analysis of, 350–356
classifications of

Grashof linkages, 18–19
non-Grashof linkages, 19–20

degrees of freedom example, 8–9
of force analysis, on linkage, 456–464
instant centers of, 246–249
position analysis of, 150–162

using MATLAB®, 163–174
velocity analysis of, 283–287

using MATLAB®, 287–288
Free-body diagram

bicycle pump mechanism, 494
of door and slider, 429–431
fourbar linkage, 457
gear fivebar, 502, 512
invert slider-crank, 482
lid-lifting mechanism, 474
of roller follower, 718
slider-crank linkage, 436

Fundamental law of cam design, 663, 670, 673

G

Geared fivebar linkage
acceleration analysis of, 357–361

force analysis of, 499–511
position analysis of, 186–189

using MATLAB®, 189–193
velocity analysis of, 296–301

Gears
bevel, 537–540
helical, 537
hypoid, 540
internal, 541–542
involute curve, properties of, 542–553
pinion, 540
rack, 540–541
spur, 537
terminology, 553–560
worm, 540

Gear trains
efficiency of, 565–572
speed reduction using, 561–565

Generic planetary gearset, 604–606
Graphical linkage synthesis, using

SOLIDWORKS®

three specified positions, coupler of, 60–71
two specified positions

of coupler, 58–60
of rocker, 43–58

Grashof condition, 15–29
Grill lid lifting mechanism, example of force

analysis, 464–480
Grounded fivebar linkage, 200
Gruebler’s paradox, degrees of freedom

example, 12–13

H

Helical gears, 537
Hobby-type servomotor, 317
Hypoid gears, 540

I

IC see Instant center (IC)
Instant center (IC)

example problems
cam-follower mechanism, 256–257
gear fivebar linkage, 259–260
gears in mesh, 256
threebar linkage, 257–259
planetary gearset, 260–261

method of
of fourbar linkage, 246–249
of inverted slider-crank, 252–256
of slider-crank linkage, 251–252
SOLIDWORKS® tutorial, 254–255

737Index

Internal gears, 541–542
Inverted slider-crank

acceleration analysis of, 356–357
force analysis on linkage of, 481–488
instant centers of, 252–256
mechanism, degrees of freedom example, 11
position analysis of, 174–180

using MATLAB®, 180–186
velocity analysis of, 293–296

Involute curve, properties of, 542–553

K

“Kamado grills,” 464
Kinematics, fundamentals of, 2–3

L

Lemniscate, 191
Length vector, 103

M

Magnitude vector, 103
Mass moment of inertia, 387–399
MATLAB®

accelerations using, 335–337, 351–356
first plot, 86
fourbar linkage using, 163–174
fourbar velocity analysis using, 287–288
geared fivebar linkage using, 189–193
inverted slider-crank using, 180–186
plotting filled square, 90–94
primitive animation, 97–99
rocker-follower in, 721–725
sixbar linkage using, 201–207
slider-crank using, 147–150
threebar slider-crank using, 125–141, 271–280
vector notation in, 84–85
writing sample script, 86–90

Matrix algebra, 114–118
Mechanical advantage, method of instant

centers, 266–267
Mechanical design, 1–2
Mushroom follower, 630–631

N

Newtonian kinetics of rigid body
digression on moments, torques, and

couples, 403–405
equations of motion for rigid body, 396–398
rotational equations of motion, 398–403

Newton–Raphson
algorithm, 717
method, 207–224

Non-Grashof linkage, 27–29
classification scheme for, 20–21
plotting, 172–174
position analysis of, 183–186

O

Open configurations of fourbar, 162
Oscillating rocker-follower, 709–713

P

Parallel axis theorem, 389–393
Parallel curve, 703
Pinion gears, 540
Planetary gearsets, 260–261

analysis of
algebraic method, 601–604
generalized table method, 592–600
table method, 581–592

design examples for, 613–619
efficiency of, 604–609
types of, 577

Plate cam, 627
Polynomial cam profiles, 640–646
Position analysis of linkages

of fourbar linkage, 150–163
using MATLAB®, 163–174

of geared fivebar linkage, 186–189
using MATLAB®, 189–193

of inverted slider-crank, 174–180
using MATLAB®, 180–186

matrix algebra, 114–118
Newton–Raphson method, 207–220
of sixbar linkage, 193–201

using MATLAB®, 201–207
of slider-crank, 141–146

using MATLAB®, 147–150
of threebar slider-crank, 122–125

using MATLAB®, 125–141
transformation of coordinates, 118–121
unit vectors, 112–114
vectors and matrices, review of, 102–121

Prime diagonal line, 152
Pushrod-type valve lifting mechanism, 632

Q

Quick-return mechanism, 53–58
design of, 101–102

738 Index

R

Rack gears, 540–541
Radial cam, 627
Rectangular link, 390–393
Ring gears, 577–580
Robot arm, degrees of freedom example,

14–15
Rocker-follower

in MATLAB®, 721–725
mechanism, force analysis on, 720–721
oscillating, 709–713

Rocker motion function, 713–715
Roller-follower, 636–637

force analysis of, 718–721
in MATLAB®, 721–725

Rotation matrix, 120
Row vector, 103

S

Scalar product, 107–109
Servo motors, 317–318
Simple MATLAB®, 79–84
Single-dwell cams, 649–654
Single link, on force analysis, 405–417
Single-phase AC motor, 311
Sinusoidal cam profiles, 646–649
Sixbar linkage

acceleration analysis of, 362–365
force analysis of, 511–526
position analysis of, 193–201

using MATLAB®, 201–207
velocity analysis of, 301–304

Slider-crank linkage
acceleration analysis of, 340–350
degrees of freedom example, 9–10
force analysis of, 436–444
instant centers of, 251–252
mechanical advantage in, 266–267
position analysis of, 141–146

using MATLAB®, 147–150
velocity analysis of, 281–283

SOLIDWORKS® see also Graphical linkage
synthesis

to calculate moment of inertia, 393–395
tutorial, 249–251

Spur gears, 537
Stephenson, type I, II and III sixbar linkage,

197–200, 202–203, 368, 369
Stepper motors, 318
Sun gears, 577–580

T

Tangential acceleration, 330
Threebar door closing mechanism, example of

force analysis, 424–435
Threebar linkage, degrees of freedom example,

7–8
Threebar slider-crank

acceleration analysis of, 333–340
force analysis of, 417–424
position analysis of, 122–125

using MATLAB®, 125–141
velocity analysis of, 267–270

using MATLAB®, 271–280
Three-phase motors, 310
Time derivatives of unit vectors, 112–114
Tooth loss factor, 566
Traditional planetary gearset, 605, 607, 610–611
Transformation of coordinates, 118–120
Translating roller-follower, 702–709
Trigonometric identities, digression into, 161

U

Unit vectors, time derivatives of unit vectors,
112–114

V

Valve-actuating mechanisms, 628
Vector loop, 105–107

diagram for
Stephenson type I, II and III sixbar

linkage, 368, 369
Watt type I and II sixbar linkage, 370

Vector notation, in MATLAB® , 84–85
Velocity analysis of linkages

complex motion, 243
electric motors, 304–318
of fourbar linkage, 283–293
of geared fivebar linkage, 296–301
instant centers, method of

of fourbar linkage, 246–249
of inverted slider-crank, 252–256
of slider-crank linkage, 251–252
SOLIDWORKS® tutorial, 249–251

of inverted slider-crank, 293–296
mechanical advantage, in slider-crank,

266–267
point moving on rotating link, 243–245
pure rotation, 241–243
of sixbar linkage, 301–304

739Index

of slider-crank, 281–283
of threebar slider-crank, 267–280
velocity ratios, 261–263

Vise-Grip pliers, 266

W

Watt, type I and II sixbar linkage, 198, 370
Windshield wiper mechanism, 53
Worm gears, 540

REQUEST A FREE TRIAL
support@taylorfrancis.com

Taylor & Francis eBooks
www.taylorfrancis.com

A single destination for eBooks from Taylor & Francis
with increased functionality and an improved user
experience to meet the needs of our customers.

90,000+ eBooks of award-winning academic content in
Humanities, Social Science, Science, Technology, Engineering,

and Medical written by a global network of editors and authors.

TAYLOR & FRANCIS EBOOKS OFFERS:

A streamlined
experience for

our library
customers

A single point
of discovery
for all of our

eBook content

Improved
search and
discovery of

content at both
book and

chapter level

mailto:support@taylorfrancis.com
http://www.taylorfrancis.com

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	Authors
	1. Introduction to Kinematics
	1.1 Introduction to Mechanical Design
	1.2 Fundamentals of Kinematics
	1.3 Degrees of Freedom
	1.3.1 Mobility of Mechanisms
	1.3.2 Degrees of Freedom Example Problems

	1.4 The Fourbar Linkage and the Grashof Condition
	1.4.1 Classifications of the Fourbar Linkage
	1.4.2 Fourbar Classification: The Grashof Linkages
	1.4.3 Fourbar Classification: Non-Grashof Linkages
	1.4.4 Fourbar Classification – Special Cases
	1.4.5 Fourbar Classification – The Extreme Cases
	1.4.6 Limiting angles for Non-Grashof Linkages

	1.5 Practice Problems
	Acknowledgments
	Works Cited

	2. Graphical Linkage Synthesis Using SOLIDWORKS®
	2.1 Introduction to Graphical Linkage Synthesis
	2.2 Two Specified Positions of the Rocker
	2.2.1 Two Positions of Rocker without Specified Ground Pin
	2.2.2 Quick-Return Mechanisms

	2.3 Two Specified Positions of the Coupler
	2.4 Three Specified Positions of the Coupler
	2.5 Summary
	2.6 Practice Problems
	Acknowledgments

	3. Introduction to MATLAB®
	3.1 Introduction
	3.2 Simple MATLAB® – The Command Window
	3.3 Vector Notation in MATLAB®
	3.4 A First Plot
	3.5 Writing a Simple MATLAB® Script
	3.6 Plotting a Filled Square
	3.7 Adding Some Structure – The for Loop
	3.8 A Primitive Animation
	3.9 Summary
	Acknowledgments

	4. Position Analysis of Linkages
	4.1 Introduction to Position Analysis
	4.2 Review of Vectors and Matrices
	4.2.1 Vector Addition
	4.2.2 The Vector Loop
	4.2.3 The Dot Product
	4.2.4 The Cross Product
	4.2.5 Unit Vectors
	4.2.5.1 Time Derivatives of Unit Vectors

	4.2.6 A Very Brief Introduction to Matrix Algebra
	4.2.7 Transformation of Coordinates

	4.3 Position Analysis of the Threebar Slider-Crank
	4.4 Position Analysis of the Threebar Slider-Crank Using MATLAB®
	4.4.1 Data Structure for the Position Calculations
	4.4.2 The Main Loop
	4.4.3 Position Calculations
	4.4.4 Making a Fancy Plot and Verifying your Code
	4.4.5 Verifying Your Calculations
	4.4.6 Drawing the Linkage in MATLAB®

	4.5 Position Analysis of the Slider-Crank
	4.5.1 Extreme Positions of the Slider-Crank

	4.6 Position Analysis of the Slider-Crank Using MATLAB®
	4.6.1 Verifying the Code

	4.7 Position Analysis of the Fourbar Linkage
	4.7.1 Finding the Position of Any Point on the Linkage
	4.7.2 A Digression into Trigonometric Identities
	4.7.3 Open and Crossed Configurations of the Fourbar
	4.7.4 Summary

	4.8 Position Analysis of the Fourbar Linkage Using MATLAB®
	4.8.1 Data Structure for the Position Calculations
	4.8.2 The Main Loop
	4.8.3 Position Calculations
	4.8.4 Making a Fancy Plot and Verifying your Code
	4.8.5 Plotting the Non-Grashof Linkage

	4.9 Position Analysis of the Inverted Slider-Crank
	4.9.1 Limiting Positions for the Inverted Slider-Crank

	4.10 Position Analysis of the Inverted Slider-Crank Using MATLAB®
	4.10.1 Position Analysis of the Non-Grashof Linkage

	4.11 Position Analysis of the Geared Fivebar Linkage
	4.12 Position Analysis of the Geared Fivebar Using MATLAB®
	4.12.1 Verifying Your Code
	4.12.2 Position of Any Point on the Linkage

	4.13 Position Analysis of the Sixbar Linkage
	4.13.1 Stephenson Type I Sixbar Linkage
	4.13.2 The Remaining Sixbar Linkages
	4.13.3 The Stephenson Type II Sixbar Linkage
	4.13.4 Summary

	4.14 Position Analysis of the Sixbar Linkage Using MATLAB®
	4.14.1 Making the Sixbar Plot
	4.14.2 The Remaining Sixbar Linkages

	4.15 Advanced Topic: The Newton–Raphson Method
	4.15.1 The One-Dimensional Newton-Raphson Algorithm
	4.15.2 One Dimensional Examples
	4.15.3 A More Complicated Function
	4.15.4 Newton–Raphson in Multidimensional Space
	4.15.5 The Newton–Raphson Algorithm in MATLAB®
	4.15.6 Summary

	4.16 Practice Problems
	Acknowledgments
	Works Cited

	5. Velocity Analysis of Linkages
	5.1 Introduction to Velocity Analysis
	5.1.1 Pure Rotation
	5.1.2 Complex Motion
	5.1.3 Velocity of a Point Moving on a Rotating Link

	5.2 The Method of Instant Centers
	5.2.1 Instant Centers of the Fourbar Linkage
	5.2.2 SOLIDWORKS® Tutorial – Velocity Analysis of the Fourbar Linkage
	5.2.3 Instant Centers of the Slider-Crank Linkage
	5.2.4 Instant Centers of the Inverted Slider-Crank
	5.2.5 Instant Center Example Problems
	5.2.6 Velocity Ratios
	5.2.7 Mechanical Advantage
	5.2.7.1 Mechanical Advantage in the Slider-Crank

	5.3 Velocity Analysis of the Threebar Slider-Crank
	5.3.1 Velocity of Any Point on the Linkage
	5.3.2 Velocity Analysis of the Threebar Slider-Crank Using MATLAB®
	5.3.2.1 Verifying the Code
	5.3.2.2 Verifying the Code – An Alternative Approach

	5.4 Velocity Analysis of the Slider-Crank
	5.4.1 Example Slider-Crank

	5.5 Velocity Analysis of the Fourbar Linkage
	5.5.1 Velocity of Any Point on the Linkage
	5.5.2 Fourbar Velocity Analysis Using MATLAB®
	5.5.3 Verifying the Code

	5.6 Velocity Analysis of the Inverted Slider-Crank
	5.7 Velocity Analysis of the Geared Fivebar Linkage
	5.7.1 Example Fivebar Linkage

	5.8 Velocity Analysis of the Sixbar Linkage
	5.8.1 Some Example Solutions for the Sixbar Linkage

	5.9 Introduction to Electric Motors
	5.9.1 AC Motors
	5.9.2 DC Motors
	5.9.3 Brushless Motors
	5.9.4 Servo Motors
	5.9.5 Stepper Motors

	5.10 Practice Problems
	Acknowledgments

	6. Acceleration Analysis of Linkages
	6.1 Introduction to Acceleration Analysis
	6.1.1 Acceleration of a Moving Point on a Moving Link

	6.2 Acceleration Analysis of the Threebar Slider-Crank
	6.2.1 Computing the Accelerations Using MATLAB®
	6.2.2 Acceleration at the Pins

	6.3 Acceleration Analysis of the Slider-Crank
	6.3.1 Slider-Crank with Constant Crank Angular Velocity
	6.3.2 A Note on the Angular Acceleration of the Crank

	6.4 Acceleration Analysis of the Fourbar Linkage
	6.4.1 Computing the Accelerations Using MATLAB®

	6.5 Acceleration Analysis of the Inverted Slider-Crank
	6.5.1 Computing the Accelerations Using MATLAB®

	6.6 Acceleration Analysis of the Geared Fivebar Linkage
	6.6.1 Computing the accelerations using MATLAB®

	6.7 Acceleration Analysis of the Sixbar Linkage
	6.7.1 Some Example Solutions for the Sixbar Linkage

	6.8 Summary
	6.9 Practice Problems
	Acknowledgments

	7. Force Analysis on Linkages
	7.1 Fundamentals of Dynamics
	7.1.1 Dynamic Models
	7.1.1.1 Mass
	7.1.1.2 Center of Mass
	7.1.1.3 Mass Moment of Inertia

	7.1.2 The Parallel Axis Theorem
	7.1.3 Using SOLIDWORKS® to Calculate Moment of Inertia

	7.2 Newtonian Kinetics of a Rigid Body
	7.2.1 Equations of Motion for the Rigid Body
	7.2.2 Rotational Equations of Motion
	7.2.3 A Digression on Moments, Torques, and Couples

	7.3 Force Analysis on a Single Link
	7.3.1 Another Useful MATLAB® Function
	7.3.2 Force Analysis of a Threebar Linkage using MATLAB®

	7.4 Force Analysis of the Threebar Slider-Crank
	7.4.1 Code Verification
	7.4.1.1 Static Verification
	7.4.1.2 Verifying the Code using the Energy Method

	7.4.2 Summary

	7.5 Force Analysis Example 1 – The Threebar Door Closing Mechanism
	7.5.1 The Problem Statement
	7.5.1.1 Critical Dimensions of the Linkage
	7.5.1.2 Inertial Properties of the Mechanism
	7.5.1.3 External Forces Acting on the Mechanism
	7.5.1.4 Free-Body Diagrams of each Link in the Mechanism
	7.5.1.5 Motion of the Crank
	7.5.1.6 Solving for the Pin Forces and Plotting Results

	7.5.2 Verification of the Code
	7.5.3 Summary

	7.6 Force Analysis of the Slider-Crank
	7.6.1 Force Analysis of the Example Linkage

	7.7 Force Analysis Example 2 – The Air Compressor Mechanism
	7.7.1 First, a Simple Model
	7.7.2 Inertial Properties of the Links
	7.7.3 Driving Torque without Pressure Force
	7.7.4 And Now, a Little Thermo
	7.7.5 Adding Friction to the Model
	7.7.6 Potential Energy of Air Inside the Cylinder

	7.8 Force Analysis of the Fourbar Linkage
	7.8.1 Force Analysis of the Sample Linkage

	7.9 Force Analysis Example 3 – The Grill Lid Lifting Mechanism
	7.9.1 Designing the Fourbar Mechanism
	7.9.2 Determine the Critical Dimensions of the Linkage
	7.9.3 Determine the Inertial Properties of Each Body in the Mechanism
	7.9.4 Determine the Nature of the External Forces Acting on the Linkage
	7.9.5 Draw Free-body Diagrams of Each Link in the Mechanism
	7.9.6 Determine the Nature of the Motion of the Crank
	7.9.7 Solve the Equations of Motion and Plot the Desired Results
	7.9.8 Using the Code to Improve the Design
	7.9.9 Summary

	7.10 Force Analysis of the Inverted Slider-Crank
	7.11 Force Analysis Example 4 – The Bicycle Air Pump
	7.11.1 Determine the Critical Dimensions of the Linkage
	7.11.2 Calculate the Inertial Properties of Each Body in the Mechanism
	7.11.3 Determine the External Forces
	7.11.4 Draw Free-Body Diagrams of Each Link in the Mechanism
	7.11.5 Determine the Nature of the Movement of Crank
	7.11.6 Solve for the Pin Forces and Driving Force

	7.12 Force Analysis of the Geared Fivebar Linkage
	7.12.1 Some Gear Geometry

	7.13 Force Analysis of the Sixbar Linkage
	7.13.1 Force Matrices for Sixbar Linkages

	7.14 Practice Problems
	Acknowledgments
	Work Cited

	8. Gears and Gear Trains
	8.1 Introduction to Gears
	8.1.1 Spur Gears
	8.1.2 Helical Gears
	8.1.3 Bevel Gears
	8.1.4 Hypoid Gears
	8.1.5 Worm Gears
	8.1.6 Rack
	8.1.7 Internal Gears

	8.2 Properties of the Involute Curve
	8.2.1 Base Circles and Pitch Circles
	8.2.2 Force Analysis on Involute Gears
	8.2.3 Summary

	8.3 Gear Terminology
	8.3.1 Parts of the Gear Tooth
	8.3.2 Pressure Angle
	8.3.3 Interference

	8.4 Speed Reduction using Gear Trains
	8.5 Efficiency of Gear Trains
	8.5.1 Summary

	8.6 Practice Problems
	Acknowledgments
	Notes
	Works Cited

	9. Planetary Gear Trains
	9.1 Introduction to Planetary Gearsets
	9.1.1 Types of Planetary Gearsets
	9.1.2 Sun, Ring, and Planet
	9.1.3 Two Suns and Two Planets
	9.1.4 The Differential

	9.2 Analysis of Planetary Gearsets—The Table Method
	9.2.1 Table Method with One Fixed Input

	9.3 Analysis of Planetary Gearsets—The Generalized Table Method
	9.4 Analysis of Planetary Gearsets—An Algebraic Method
	9.4.1 Overall Ratio of the Planetary Gearset

	9.5 Efficiency of Planetary Gearsets
	9.5.1 A Generic Planetary Gearset
	9.5.2 The Basic Efficiency
	9.5.3 Torque Balance on the Gearset
	9.5.4 Power Balance of the Gearset
	9.5.5 Efficiency of the Overall Gearset

	9.6 Design Examples for Planetary Gearsets
	9.7 Practice Problems
	Acknowledgments
	Notes
	Works Cited

	10. Cams and Followers
	10.1 Introduction to Cams
	10.1.1 Types of Cams
	10.1.2 Follower Motion
	10.1.3 Types of Followers

	10.2 Eccentric Cams
	10.3 Cams in an Automotive Engine
	10.4 Introduction to Cam Design
	10.5 Polynomial Cam Profiles
	10.6 Sinusoidal Cam Profiles
	10.7 Single-Dwell Cams
	10.8 Cam Design Using MATLAB®
	10.8.1 The Main Program
	10.8.2 The Cam Motion Function
	10.8.3 Interpolating the Cam Profile Using the Spline Function
	10.8.4 The Unit Tangent and Normal Vectors
	10.8.5 Radius of Curvature of the Cam Profile

	10.9 Plotting the Cam Profile, the s-v-a-j Diagram, and Other Interesting Functions
	10.9.1 Plotting the Cam Profile
	10.9.2 The s-v-a-j Diagram for the Cam
	10.9.3 Plotting the Radius of Curvature
	10.9.4 A Plot for Checking the Radius of Curvature
	10.9.5 Some Design Examples
	10.9.6 The CamMotion Function

	10.10 Motion of the Follower
	10.10.1 Spline Interpolation—Part 2
	10.10.2 Motion of the Flat-Faced Follower
	10.10.3 Calculating Velocity and Acceleration of the Follower
	10.10.4 The Translating Roller-Follower
	10.10.5 The Oscillating Rocker-Follower
	10.10.6 The RockerMotion Function

	10.11 Force Analysis in Cams
	10.11.1 Force Analysis of the Roller-Follower
	10.11.2 Force Analysis on the Rocker-Follower Mechanism
	10.11.3 Force Analysis of the Rocker-Follower in MATLAB®

	10.12 Practice Problems
	Acknowledgments
	Works Cited

	Appendix: Inertial Properties of some Common Shapes
	Index

