Question 1. Prove using mathematical induction that for all $n \geq 1$,

$$
1+4+7+\cdots+(3 n-2)=\frac{n(3 n-1)}{2}
$$

Solution.

For any integer $n \geq 1$, let P_{n} be the statement that

$$
1+4+7+\cdots+(3 n-2)=\frac{n(3 n-1)}{2}
$$

Base Case. The statement P_{1} says that

$$
1=\frac{1(3-1)}{2}
$$

which is true.
Inductive Step. Fix $k \geq 1$, and suppose that P_{k} holds, that is,

$$
1+4+7+\cdots+(3 k-2)=\frac{k(3 k-1)}{2}
$$

It remains to show that P_{k+1} holds, that is,

$$
\begin{aligned}
& 1+4+7+\cdots+(3(k+1)-2)=\frac{(k+1)(3(k+1)-1)}{2} \\
& 1+4+7+\cdots+(3(k+1)-2)=1+4+7+\cdots+(3(k+1)-2) \\
&=1+4+7+\cdots+(3 k+1) \\
&=1+4+7+\cdots+(3 k-2)+(3 k+1) \\
&=\frac{k(3 k-1)}{2}+(3 k+1) \\
&=\frac{k(3 k-1)+2(3 k+1)}{2} \\
&=\frac{\left.3 k^{2}-k+6 k+2\right)}{2} \\
&=\frac{\left.3 k^{2}+5 k+2\right)}{2} \\
&=\frac{(k+1)(3 k+2)}{2} \\
&=\frac{(k+1)(3(k+1)-1)}{2} .
\end{aligned}
$$

Therefore P_{k+1} holds.
Thus, by the principle of mathematical induction, for all $n \geq 1, P_{n}$ holds.

Question 2. Use the Principle of Mathematical Induction to verify that, for n any positive integer, $6^{n}-1$ is divisible by 5 .

Solution.

For any $n \geq 1$, let P_{n} be the statement that $6^{n}-1$ is divisible by 5 .
Base Case. The statement P_{1} says that

$$
6^{1}-1=6-1=5
$$

is divisible by 5 , which is true.
Inductive Step. Fix $k \geq 1$, and suppose that P_{k} holds, that is, $6^{k}-1$ is divisible by 5 .
It remains to show that P_{k+1} holds, that is, that $6^{k+1}-1$ is divisible by 5 .

$$
\begin{aligned}
6^{k+1}-1 & =6\left(6^{k}\right)-1 \\
& =6\left(6^{k}-1\right)-1+6 \\
& =6\left(6^{k}-1\right)+5 .
\end{aligned}
$$

By P_{k}, the first term $6\left(6^{k}-1\right)$ is divisible by 5 , the second term is clearly divisible by 5 . Therefore the left hand side is also divisible by 5 . Therefore P_{k+1} holds.

Thus by the principle of mathematical induction, for all $n \geq 1, P_{n}$ holds.

Question 3. Verify that for all $n \geq 1$, the sum of the squares of the first $2 n$ positive integers is given by the formula

$$
1^{2}+2^{2}+3^{2}+\cdots+(2 n)^{2}=\frac{n(2 n+1)(4 n+1)}{3}
$$

Solution.

For any integer $n \geq 1$, let P_{n} be the statement that

$$
1^{2}+2^{2}+3^{2}+\cdots+(2 n)^{2}=\frac{n(2 n+1)(4 n+1)}{3}
$$

Base Case. The statement P_{1} says that

$$
1^{2}+2^{2}=\frac{(1)(2(1)+1)(4(1)+1)}{3}=\frac{3(5)}{3}=5
$$

which is true.
Inductive Step. Fix $k \geq 1$, and suppose that P_{k} holds, that is,

$$
1^{2}+2^{2}+3^{2}+\cdots+(2 k)^{2}=\frac{k(2 k+1)(4 k+1)}{3}
$$

It remains to show that P_{k+1} holds, that is,

$$
\begin{align*}
1^{2}+2^{2}+3^{2}+\cdots & +(2(k+1))^{2}=\frac{(k+1)(2(k+1)+1)(4(k+1)+1)}{3} . \\
1^{2}+2^{2}+3^{2}+\cdots+(2(k+1))^{2} & =1^{2}+2^{2}+3^{2}+\cdots+(2 k+2)^{2} \\
& =1^{2}+2^{2}+3^{2}+\cdots+(2 k)^{2}+(2 k+1)^{2}+(2 k+2)^{2} \\
& =\frac{k(2 k+1)(4 k+1)}{3}+(2 k+1)^{2}+(2 k+2)^{2} \tag{k}\\
& =\frac{k(2 k+1)(4 k+1)}{3}+\frac{3(2 k+1)^{2}+3(2 k+2)^{2}}{3} \\
& =\frac{k(2 k+1)(4 k+1)+3(2 k+1)^{2}+3(2 k+2)^{2}}{3} \\
& =\frac{k\left(8 k^{2}+6 k+1\right)+3\left(4 k^{2}+4 k+1\right)+3\left(4 k^{2}+8 k+4\right)}{3} \\
& =\frac{\left(8 k^{3}+6 k^{2}+k\right)+\left(12 k^{2}+12 k+3\right)+\left(12 k^{2}+24 k+12\right)}{3} \\
& =\frac{8 k^{3}+30 k^{2}+37 k+15}{3}
\end{align*}
$$

On the other side of P_{k+1},

$$
\frac{(k+1)(2(k+1)+1)(4(k+1)+1)}{3}=\frac{(k+1)(2 k+2+1)(4 k+4+1)}{3}
$$

$$
\begin{aligned}
& =\frac{(k+1)(2 k+3)(4 k+5)}{3} \\
& =\frac{\left(2 k^{2}+5 k+3\right)(4 k+5)}{3} \\
& =\frac{8 k^{3}+30 k^{2}+37 k+15}{3} .
\end{aligned}
$$

Therefore P_{k+1} holds.
Thus, by the principle of mathematical induction, for all $n \geq 1, P_{n}$ holds.

Question 4. Consider the sequence of real numbers defined by the relations

$$
x_{1}=1 \text { and } x_{n+1}=\sqrt{1+2 x_{n}} \text { for } n \geq 1
$$

Use the Principle of Mathematical Induction to show that $x_{n}<4$ for all $n \geq 1$.

Solution.

For any $n \geq 1$, let P_{n} be the statement that $x_{n}<4$.
Base Case. The statement P_{1} says that $x_{1}=1<4$, which is true.
Inductive Step. Fix $k \geq 1$, and suppose that P_{k} holds, that is, $x_{k}<4$.
It remains to show that P_{k+1} holds, that is, that $x_{k+1}<4$.

$$
\begin{aligned}
x_{k+1} & =\sqrt{1+2 x_{k}} \\
& <\sqrt{1+2(4)} \\
& =\sqrt{9} \\
& =3 \\
& <4 .
\end{aligned}
$$

Therefore P_{k+1} holds.
Thus by the principle of mathematical induction, for all $n \geq 1, P_{n}$ holds.

Question 5. Show that $n!>3^{n}$ for $n \geq 7$.

Solution.

For any $n \geq 7$, let P_{n} be the statement that $n!>3^{n}$.
Base Case. The statement P_{7} says that $7!=7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=5040>3^{7}=2187$, which is true.
Inductive Step. Fix $k \geq 7$, and suppose that P_{k} holds, that is, $k!>3^{k}$.
It remains to show that P_{k+1} holds, that is, that $(k+1)!>3^{k+1}$.

$$
\begin{aligned}
(k+1)! & =(k+1) k! \\
& >(k+1) 3^{k} \\
& \geq(7+1) 3^{k} \\
& =8 \times 3^{k} \\
& >3 \times 3^{k} \\
& =3^{k+1} .
\end{aligned}
$$

Therefore P_{k+1} holds.
Thus by the principle of mathematical induction, for all $n \geq 1, P_{n}$ holds.

Question 6. Let $p_{0}=1, p_{1}=\cos \theta$ (for θ some fixed constant) and $p_{n+1}=2 p_{1} p_{n}-p_{n-1}$ for $n \geq 1$. Use an extended Principle of Mathematical Induction to prove that $p_{n}=\cos (n \theta)$ for $n \geq 0$.

Solution.

For any $n \geq 0$, let P_{n} be the statement that $p_{n}=\cos (n \theta)$.
Base Cases. The statement P_{0} says that $p_{0}=1=\cos (0 \theta)=1$, which is true. The statement P_{1} says that $p_{1}=\cos \theta=\cos (1 \theta)$, which is true.

Inductive Step. Fix $k \geq 0$, and suppose that both P_{k} and P_{k+1} hold, that is, $p_{k}=\cos (k \theta)$, and $p_{k+1}=$ $\cos ((k+1) \theta)$.

It remains to show that P_{k+2} holds, that is, that $p_{k+2}=\cos ((k+2) \theta)$.
We have the following identities:

$$
\begin{aligned}
& \cos (a+b)=\cos a \cos b-\sin a \sin b \\
& \cos (a-b)=\cos a \cos b+\sin a \sin b
\end{aligned}
$$

Therefore, using the first identity when $a=\theta$ and $b=(k+1) \theta$, we have

$$
\cos (\theta+(k+1) \theta)=\cos \theta \cos (k+1) \theta-\sin \theta \sin (k+1) \theta
$$

and using the second identity when $a=(k+1) \theta$ and $b=\theta$, we have

$$
\cos ((k+1) \theta-\theta)=\cos (k+1) \theta \cos \theta+\sin (k+1) \theta \sin \theta
$$

Therefore,

$$
\begin{aligned}
p_{k+2} & =2 p_{1} p_{k+1}-p_{k} \\
& =2(\cos \theta)(\cos ((k+1) \theta))-\cos (k \theta) \\
& =(\cos \theta)(\cos ((k+1) \theta))+(\cos \theta)(\cos ((k+1) \theta))-\cos (k \theta) \\
& =\cos (\theta+(k+1) \theta)+\sin \theta \sin (k+1) \theta+(\cos \theta)(\cos ((k+1) \theta))-\cos (k \theta) \\
& =\cos ((k+2) \theta)+\sin \theta \sin (k+1) \theta+(\cos \theta)(\cos ((k+1) \theta))-\cos (k \theta) \\
& =\cos ((k+2) \theta)+\sin \theta \sin (k+1) \theta+\cos ((k+1) \theta-\theta)-\sin (k+1) \theta \sin \theta-\cos (k \theta) \\
& =\cos ((k+2) \theta)+\cos (k \theta)-\cos (k \theta) \\
& =\cos ((k+2) \theta) .
\end{aligned}
$$

Therefore P_{k+2} holds.
Thus by the principle of mathematical induction, for all $n \geq 1, P_{n}$ holds.

Question 7. Consider the famous Fibonacci sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$, defined by the relations $x_{1}=1, x_{2}=1$, and $x_{n}=x_{n-1}+x_{n-2}$ for $n \geq 3$.
(a) Compute x_{20}.
(b) Use an extended Principle of Mathematical Induction in order to show that for $n \geq 1$,

$$
x_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]
$$

(c) Use the result of part (b) to compute x_{20}.

Solution.

(a)

$$
1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765
$$

(b) For any $n \geq 1$, let P_{n} be the statement that

$$
x_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right] .
$$

Base Case. The statement P_{1} says that

$$
\begin{aligned}
x_{1} & =\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{1}-\left(\frac{1-\sqrt{5}}{2}\right)^{1}\right] \\
& =\frac{1}{\sqrt{5}}\left[\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}\right] \\
& =\frac{1}{\sqrt{5}}\left[\frac{1+\sqrt{5}-1+\sqrt{5}}{2}\right] \\
& =\frac{1}{\sqrt{5}}\left[\frac{2 \sqrt{5}}{2}\right] \\
& =1
\end{aligned}
$$

which is true. The statement P_{2} says that

$$
x_{2}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{2}-\left(\frac{1-\sqrt{5}}{2}\right)^{2}\right]
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{5}}\left[\left(\frac{1+2 \sqrt{5}+5}{4}\right)-\left(\frac{1-2 \sqrt{5}+5}{4}\right)\right] \\
& =\frac{1}{\sqrt{5}}\left[\left(\frac{1+2 \sqrt{5}+5-1+2 \sqrt{5}-5}{4}\right)\right] \\
& =\frac{1}{\sqrt{5}}\left[\frac{4 \sqrt{5}}{4}\right] \\
& =1
\end{aligned}
$$

which is again true.
$\underline{\text { Inductive Step. Fix } k \geq 1 \text {, and suppose that } P_{k} \text { and } P_{k+1} \text { both hold, that is, }}$

$$
x_{k}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\left(\frac{1-\sqrt{5}}{2}\right)^{k}\right]
$$

and

$$
x_{k+1}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{k+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{k+1}\right]
$$

It remains to show that P_{k+2} holds, that is, that

$$
\begin{aligned}
& x_{k+2}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{k+2}-\left(\frac{1-\sqrt{5}}{2}\right)^{k+2}\right] \\
& x_{k+2}= x_{k}+x_{k+1} \\
&= \frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\left(\frac{1-\sqrt{5}}{2}\right)^{k}\right]+\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{k+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{k+1}\right] \\
&= \frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{k}+\left(\frac{1+\sqrt{5}}{2}\right)^{k+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{k}-\left(\frac{1-\sqrt{5}}{2}\right)^{k+1}\right] \\
&= \frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{k}\left(1+\frac{1+\sqrt{5}}{2}\right)-\left(\frac{1-\sqrt{5}}{2}\right)^{k}\left(1+\frac{1-\sqrt{5}}{2}\right)\right] \\
&= \frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{k}\left(\frac{3+\sqrt{5}}{2}\right)-\left(\frac{1-\sqrt{5}}{2}\right)^{k}\left(\frac{3-\sqrt{5}}{2}\right)\right] \\
&= \frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{k}\left(\frac{6+2 \sqrt{5}}{4}\right)-\left(\frac{1-\sqrt{5}}{2}\right)^{k}\left(\frac{6-2 \sqrt{5}}{4}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{k}\left(\frac{1+2 \sqrt{5}+5}{4}\right)-\left(\frac{1-\sqrt{5}}{2}\right)^{k}\left(\frac{1-2 \sqrt{5}+5}{4}\right)\right] \\
& =\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{k}\left(\frac{1+\sqrt{5}}{2}\right)^{2}-\left(\frac{1-\sqrt{5}}{2}\right)^{k}\left(\frac{1-\sqrt{5}}{2}\right)^{2}\right] \\
& =\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{k+2}-\left(\frac{1-\sqrt{5}}{2}\right)^{k+2}\right]
\end{aligned}
$$

Therefore P_{k+2} holds.
Thus by the principle of mathematical induction, for all $n \geq 1, P_{n}$ holds.
(c) Plugging $n=20$ in a calculator yields the answer quickly.

