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Mathematical induction is a proof technique that can be applied to establish the veracity of 
mathematical statements. This professional practice paper offers insight into mathematical 
induction as it pertains to the Australian Curriculum: Mathematics (ACMSM065, ACMSM066) 
and implications for how secondary teachers might approach this technique to students. In 
particular, literature on proof – and specifically, mathematical induction – will be presented, 
and several worked examples will outline the key steps involved in solving problems. After 
various teaching and learning caveats have been explored, the paper will conclude with some 
mathematical induction example problems that can be used in the secondary classroom.   

Introduction 

A significant amount of mathematics involves the examination of patterns. Many of these 

patterns are concerned with generalisations about sequences and series. Mathematical 

induction is a method of proof argument that is based in recursion, and it is used for 

proving conjectures which claim that a certain statement is true for integer values of 

some variable. One idea that has been used to illustrate this method is to imagine a 

number of dominoes lined up in a row (Peressini et al., 1998). These authors suggest that 

for each integer 𝑘 ≥ 1, if the kth domino falls over then it will cause the (k+1)st domino 

to fall over as well. Furthermore, it could be argued specifically that if the first domino is 

pushed over, then all remaining dominoes would also fall.  

 If we suppose that for each positive integer n, S(n) is a statement written in terms of 

n, then the principle of mathematical induction can be explained generally in two steps: 

 

  1. If S(1) is true, and 

  2. for all integers 𝑘 ≥ 1, the assumption that S(k) is true implies that S(k+1) is true, 

      then S(n) is true for all positive integers n. 

 

In other words, we commence the proof method through a verification of Step 1 (the 

Initial Step), or by pushing over the first domino. Then, we assume that S(k) is true for a 

particular but arbitrarily chosen integer 𝑘 ≥ 1, known as the inductive assumption. In 

Step 2 (the Base Induction Step) we show that the supposition that S(k) is true implies 
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that S(k+1) is true. Compared with the domino line-up, Step 2 corresponds to the 

assumption that if the kth domino falls then so will the (k+1)st domino. 

The Importance of Proof in Mathematics Education 

Mathematical proof involves following a logical way to explain a hypothesis and to offer 

a cogent explanation of how deductive reasoning has been used to reach a conclusion.  

(Hanna, 1995; Tall, 1998). During the proving process, proofs require us to create “a 

sequence of steps, where each step follows logically from an earlier part of the proof 

where the last line is the statement being proved” (Garnier & Taylor, 2010, p. 50). The 

concept of proof is considered to be central to the discipline of mathematics, and because 

of this centrality, scholars have argued that proof should feature prominently in 

mathematics education (Ball et al., 2002; Baştürk, 2010; Siemon et al., 2015). 

Specifically, proof is recognised as an essential tool for promoting mathematical 

understanding in students (Ball et al., 2002; Reid, 2011) and for providing educators with 

insight about how students learn mathematics (Wilkerson-Jerde & Wilensky, 2011). 

Güler (2016) proposed that proof is important in mathematics education for various 

reasons, in that it: improves skills in problem solving, persuasive argumentation, 

reasoning, creativity and mathematical thinking. Moreover, proof forms the basis of 

mathematics, enables mathematical communication to transpire, and prevents rote 

learning of information. 

Mathematical Induction 

Mathematical induction is considered one of the most powerful tools for proving 

statements in discrete mathematics (Ashkenazi & Itzkovitch, 2014). While there is 

endless scope for the types of problems mathematical induction can be applied to, three 

popular ‘types’ of problems are used by teachers when teaching this type of mathematical 

proof to secondary students. These problem types include: General series, divisibility and 

implication. Each of these types will now be presented as a worked example. 

General series 

Let us propose that we are interested in finding a general statement to explain the sum 

of n consecutive odd integers starting at 1. If we tabulate our findings for the first 10 

natural or counting numbers, and their partial sums, we have: 

Table 1. Counting numbers and their sums, 1 ≤ 𝑛 ≤ 10. 

n 1 2 3 4 5 6 7 8 9 10 

Tn 1 3 5 7 9 11 13 15 17 19 

Sn 1 4 9 16 25 36 49 64 81 100 

 

It should be noted that the row Tn represents the nth odd integer, and the row Sn is the 

sum of the first n odd integers. One interesting pattern that can be observed is that the 

last row of the table, Sn, shows all integers n2 for 𝑛 ≥ 1. A cursory comparison between 

the three rows reveals that the sum of the first n odd numbers appears to be the square 

of n. In making this statement, we have arrived at a conjecture – which is the first step 

in working towards a theorem – but we may not even know if the statement is true! The 
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following worked example provides a precise mathematical statement of the result we 

are trying to prove. 

 

Worked example 1: General series 

Prove by mathematical induction that for all  integers 𝑛 ≥ 1 

     𝑆(𝑛) ∶  1 + 3 + 5 + ⋯ + (2𝑛 − 1) =  𝑛2 

Worked solution 

1. Initial step: We need to show that the conjecture is true for a small value of n, e.g.                 

n = 1. Substituting this value into the series we have: 

 

      1 = 12  

      which is clearly true 

      ∴ we have shown that S(1) is true 

 

2. Inductive Step: Here we assume the statement (inductive hypothesis)  

 

𝑆(𝑘) ∶  1 + 3 + 5 + ⋯ + (2𝑘 − 1) =  𝑘2           (1) 

 

is true for a fixed but arbitrary value of 𝑘 ≥ 1 and verify that the statement  

   

  𝑆(𝑘 + 1) ∶  1 + 3 + 5 + ⋯ + (2𝑘 − 1) + [2(𝑘 + 1) − 1] =  (𝑘 + 1)2 (2) 

 

Looking back at (1), we can see that the series 1 + 3 + 5 + ⋯ + (2𝑘 − 1) exists in (2). 

We therefore substitute k2 into (2) for 1 + 3 + 5 + ⋯ + (2𝑘 − 1), and algebraically rewrite 

the Left Hand Side (LHS) until it equals the Right Hand Side (RHS). 

 

    LHS = 1 + 3 + 5 + ⋯ + (2𝑘 − 1) + [2(𝑘 + 1) − 1] 

     = 1 + 3 + 5 + ⋯ + (2𝑘 − 1) + (2𝑘 + 1) 

     = 𝑘2 + (2𝑘 + 1) 

     = (𝑘 + 1)2 = RHS 

 

Conclusion: Because we have verified the initial and inductive steps we can conclude by 

induction that the statement  

 

     S(n) ∶  1 + 3 + 5 + ⋯ + (2𝑛 − 1) =  𝑛2  

 

is true for all integers  𝑛 ≥ 1. 

 

Worked example 2: Divisibility 

Prove by mathematical induction that for all integers  𝑛 ≥ 1 

 

     𝑆(𝑛) ∶  32𝑛 − 1 is divisible by 8.    

    

Worked solution 
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1. Initial step: We need to show that the statement S(1) is true. Substituting n = 1 into the 

expression gives us: 

       32(1) − 1 = 32 − 1 = 9 − 1 = 8 

       which is clearly divisible by 8. 

       Therefore, S(1) is true. 

 

2. Inductive step: We assume that the statement (inductive hypothesis) 

 

       32𝑘 − 1 is divisible by 8                  (1)  

 

is true for a fixed and arbitrary value of 𝑘 ≥ 1. We must verify that the statement  

 

       𝑆(𝑘 + 1) ∶  32(𝑘+1) − 1 is divisible by 8 

 

is true. Now, we manipulate the expression 32(𝑘+1) − 1 using algebraic rules until it 

becomes divisible by 8. 

       32(𝑘+1) − 1 = 32𝑘+2 − 1 

       = 32𝑘 × 32 − 1 

       = 32𝑘(9) − 1       

       = 32𝑘(8 + 1) − 1  

       = 8 × 32𝑘 + 32𝑘 − 1        (2) 

 

Now because from (1) we have assumed that 32𝑘 − 1 is divisible by 8, there are two terms 

which are divisible by 8 – one proven through clear algebra, and the other via an 

assumption from the inductive step. As such, both terms of (2) are divisible by 8 and 

therefore so is their sum. In other words, S(k+1) is true. 

 

Worked example 3: Inequalities 

Using mathematical induction, prove that for all integers 𝑛 ≥ 3 

 

       𝑆(𝑛) ∶  2𝑛 > 2𝑛 + 1 

 

Worked solution 

1. Initial step: We need to show that the statement S(3) is true. Substituting n=3 into this 

expression gives: 

       23 > 2(3) + 1    

        8 > 7     

       which is clearly true 

       Therefore, S(3) is true. 

 

2. Inductive step: We assume that the statement (inductive hypothesis) 

 

       𝑆(𝑘) ∶  2𝑘 > 2𝑘 + 1          (1) 

 

is true for a fixed and arbitrary value of k ≥ 3. We must verify the statement  
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       𝑆(𝑘 + 1) ∶  2𝑘+1 > 2(𝑘 + 1) + 1        (2) 

 

We now manipulate both sides of (1) to transform it into (2). In other words, the 

inductive statement will be manipulated algebraically so the values of n = k have been 

transformed into n = k + 1. Once we have done this, by implication we will have shown 

that the statement will remain true for all values of k and the very next value after k. 

Ideally, the ‘finished product’ will look like: 

 

       2𝑘+1 > 2(𝑘 + 1) + 1   

 

Some annotations have been included on the RHS of the inequality to assist in following 

the steps in working out. 

      2𝑘 × 2 > 2(2𝑘 + 1)    Multiply both sides by 2 

      2𝑘+1 > 4𝑘 + 2     Simplify 

      2𝑘+1 > 2𝑘 + 2𝑘 + 2    Re-express the RHS terms 

      2𝑘+1 > 2𝑘 + 2 + 2k    Rearrange the RHS terms 

      2𝑘+1 > 2(𝑘 + 1) + 2k    Factorise the first two terms 

      

Now, as the original problem stated, 𝑛 ≥ 3 which implies that the LHS of the original 

statement 2n + 1 > 1. In particular, if we substitute n = 3 into the LHS we obtain a value 

of 7, which is clearly greater than 1. As such we can create a concatenated inequality 

statement: 

     2𝑘+1 > 2(𝑘 + 1) + 2k > 2(𝑘 + 1) + 1  

      ∴ 2𝑘+1 > 2(𝑘 + 1) + 1 

In this way, the inductive step S(k) has implied S(k+1) is true.     

Some caveats associated with mathematical induction    
   

A review of literature on mathematical induction reveals that this method is difficult to 

teach for a variety of reasons (Ashkenazi & Itzkovitch, 2014; Harel, 2002; Stylianides et 

al., 2007). To commence, Ashkenazi and Itzkovitch (2014) contended that although 

secondary school and university students can successfully apply this proof method to 

statements of the kind they are accustomed to, they do not understand the correctness 

of the proof. Put another way, these authors suggest that most students learn how to use 

the method mechanically; such learning does not foster a deep understanding of the 

correctness of the method and ultimately contributes to a failure to solve problems of a 

different style (Ashkenazi & Itzkovitch, 2014). Echoing the contention of these authors 

contention, both Harel (2002) and Stylianides et al. (2007) asserted that undergraduate 

university students often display both a fragile knowledge on mathematical induction 

and a propensity to follow the steps without understanding what they are doing. In his 

analysis of students’ attempts at mathematical induction, Harel (2002) further identified 

two specific difficulties experienced by students. First, students tended to consider 

mathematical induction as a case of circular reasoning as they believe that the proof 

assumes S(n) is true for all positive integers. Second, students demonstrated a belief that 
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the general argument for mathematical induction can be derived from a number of 

particular cases, rather than proving for all cases.  

 

Divisibility 

An alternative method that can be used to prove induction divisibility problems (such as 

Worked Example 2) requires the use of two assumptions. Because the strength of a 

mathematical argument relies on the extent to which assumptions are minimised, the 

method shown below should be treated cautiously and avoided. If we recommence 

Worked Example 2 at the Inductive Step, it could be written that: 

      32𝑘 − 1 = 8𝐴  for some integer A, 𝐴 ≥ 1 

We can rearrange this inductive assumption as 32𝑘 = 8𝐴 + 1 (1), which will be used when 

manipulating the statement S(k+1). Herein: 

      32(𝑘+1) − 1 = 32𝑘+2 − 1 = 32𝑘 × 32 − 1 = 9 × 32𝑘 − 1  

We now substitute (1):  = 9(8𝐴 + 1) − 1 = 72𝐴 + 9 − 1 = 72𝐴 + 8 

      = 8(9𝐴 + 1) which is clearly a multiple of 8 

Having completed the necessary algebraic manipulations to reach a final statement 

which is divisible by 8, we are able to conclude that the conjecture is indeed true. 

However, looking back at the Inductive Step, we assumed that not only was the 

conjecture true for 𝑘 ≥ 1 but we also assumed that it was equal to a 8A (a multiple of 8) 

for 𝐴 ≥ 1. As such, the inductive assumption itself rested upon an assumption, which is 

a practice that should be avoided. Rather, to fulfil the logical steps of the proof we need 

to actually use the inductive assumption of the proof (i.e. 32𝑘 − 1) in the final stages and 

not a substitute. 

 

Conclusion 
The purpose of this paper was to offer insight to educators about proof by mathematical 

induction as it pertains to the Australian Curriculum: Mathematics. In particular, this 

method of proof has been outlined in a step-by-step fashion, and some worked examples 

have been offered to amplify these steps and the theoretical approach overall. 

Additionally, a cursory review of literature has revealed how scholars have championed 

the place of proof in a mathematics curriculum. In a study where mathematics professors 

were asked to evaluate and score undergraduate university students’ completion of 

proofs (an example of mathematical induction was Task 4), these professors 

acknowledged that the most important characteristics of a well-written proof are logical 

correctness, clarity, fluency, and demonstration of understanding of the proof (Moore, 

2016). It is the author’s hope that this paper will be useful to mathematics educators 

within Australia – and perhaps internationally – as they model to secondary students 

how to apply the principles of mathematical induction to statements. Moreover, it is 

hoped that as students strive to master those characteristics of well-written proofs, their 

efforts will be underscored by a demonstration of procedural understanding. 

 

Examples to Try With Secondary Students 
Use mathematical induction to prove that for all positive integers n: 

1.     1 + 2 + 3 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
 

2.    12 + 22 + 32 + ⋯ + 𝑛2 =
𝑛(𝑛+1)(2𝑛+1)

6
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3.   13 + 23 + 33 + ⋯ + 𝑛3 = (
𝑛(𝑛+1)

2
)

2
 

Use mathematical induction to prove that for all positive integers n: 

4.    5𝑛 + 3 is divisible by 4 

5.    34𝑛 − 1 is divisible by 80 

6.   4𝑛 − 1 is divisible by 3 

Use mathematical induction to prove the following statements for all natural numbers 

𝑛 ≥ 5: 

7.    2𝑛 > 𝑛2 

8.   4𝑛 < 2𝑛 

9.   1 × 2 × 3 × … × (𝑛 − 1) > 2𝑛 
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