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1-15 use mathematieal induetion to establish the formmla for v > 1
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For n = 1, the statement reduces to 1° = r and is obviously true.
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Assuming the statement is true for n= k:
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we will prove that the statement must be true for n =k + 1:
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The left-hand side of (2) can be written as
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In view of (1), this simplifies to:
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Thus the keft-hand side of (2) is equal to the right-hand side of (2). This
proves the inductive step. Therefore, by the principle of mathematical
induction, the given statement is true for every positive integer n.
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Proof:
33

For n = 1, the statement reduces to 3 = and is obviously true.

Assuming the statement is true for n = &:

. g _3
3+3 48+ 43 = (3)
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In Exercises 1-15 use mathematical induction to establish the formula for n > 1.

n(n+1)(2n+1)
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1L 12+2° 43+ +n?=

Proof:
1-2-3

For n = 1, the statement reduces to 1> = and is obviously trt

Assuming the statement is true for n = k:
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1 +2 +3 + - +k = 6 ;

we will prove that the statement must be true for n = k + 1:
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The left-hand side of (2) can be written as
2 +22 43+ + B+ (k+1)2

In view of (1), this simplifies to:
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Thus the left-hand side of (2) is equal to the right-hand side of (2). ]
proves the inductive step. Therefore, by the principle of mathemai

induction, the given statement is true for every positive integer n.
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Proof:

— - 1 1 . ~

https://www.academia.edu/36236409/Solutions_to_Exercises_on_Mathematical_Induction 2/22


https://www.academia.edu/attachments/56140338/download_file?st=MTU4NDM3NDM1MCw0MS4yMzIuMzIuNTQ%3D&s=swp-splash-header

3/16/2020 (PDF) Solutions to Exercises on Mathematical Induction | Bagas Rahman - Academia.edu

A Solutions to Exercises on Mathematical Induction

2 3 k b Y
343 43 ++3 = 2

we will prove that the statement must be true forn = k + 1:

3k+2 —3
343243 4. 430! =0
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The left-hand side of (4) can be written as
34324374 +3F 438

In view of (3), this simplifies to:

3k+1_3
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induction, the given statement is true for every positive integer n.
n?(n+1)>2

3. 1P+ 2243+ 40’ = 7

Proof:
12 .92

For n = 1, the statement reduces to 1% = and is obviously true

Assuming the statement is true for n = k:
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5 (k+1)*(k+2)?
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The left-hand side of (6) can be written as
P+22 43+ B (k+1)%

In view of (5), this simplifies to:
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Thus the left-hand side of (6) is equal to the right-hand side of (6). ]
proves the inductive step. Therefore, by the principle of mathemai
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induction, the given statement is true for every positive integer n.

1 1)(n+2
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Proof: 1-2.3

For n = 1, the statement reduces to 1 = and is obviously true

Assuming the statement is true for n = k:
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The left-hand side of (8) can be written as

Kkt1) (bt 1)(k+2
143+6+104--+ (;')+(4_§ +2)

In view of (7), this simplifies to:
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Thus the left-hand side of (8) is equal to the right-hand side of (8). ]
proves the inductive step. Therefore, by the principle of mathemat

1+34+6+10+- -+

induction, the given statement is true for every positive integer n.

3n—1

5. 144474+ (3n—2) :%

Proof:

L2
For n = 1, the statement reduces to 1 = 2 and is obviously true.
Assuming the statement is true for n = k:
k(3k —1
L+4+ 74+ (3k —2) :%,

we will prove that the statement must be true for n = k + 1:
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